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Abstract. We present a novel 2D/3D deformable registration method,
called Registration Efficiency and Accuracy through Learning Metric
on Shape (REALMS), that can support real-time Image-Guided Radia-
tion Therapy (IGRT ). The method consists of two stages: planning-time
learning and registration. In the planning-time learning, it firstly models
the patient’s 3D deformation space from the patient’s time-varying 3D
planning images using a low-dimensional parametrization. Secondly, it
samples deformation parameters within the deformation space and gen-
erates corresponding simulated projection images from the deformed 3D
image. Finally, it learns a Riemannian metric in the projection space
for each deformation parameter. The learned distance metric forms a
Gaussian kernel of a kernel regression that minimizes the leave-one-out
regression residual of the corresponding deformation parameter. In the
registration, REALMS interpolates the patient’s 3D deformation param-
eters using the kernel regression with the learned distance metrics. Our
test results showed that REALMS can localize the tumor in 10.89 ms
(91.82 fps) with 2.56 ± 1.11 mm errors using a single projection image.
These promising results show REALMS’s high potential to support real-
time, accurate, and low-dose IGRT.

1 Introduction

Tumor localization in 3D is the main goal of Image-guided Radiation Ther-
apy (IGRT ). It is usually accomplished by computing the patient’s treatment-
time 3D deformations based on an on-board imaging system, usually x-ray. The
treatment-time 3D deformations can be computed by doing image registration
between the treatment-time reconstructed 3D image and the treatment-planning
3D image (3D/3D registration) or between the treatment-time on-board projec-
tion images and the treatment-planning 3D image (2D/3D registration). Recent
advances of the IGRT registration methods emphasize real-time computation
and low-dose image acquisition. Russakoff et al. [1,2], Khamene et al. [3], Mun-
bodh et al. [4], Li et al. [5,6] rejected the time-consuming 3D/3D registration
and performed 2D/3D registration by optimizing similarity functions defined in



the projection domain. Other than the optimization-based methods, Chou et
al. [7,8] recently introduced a faster and low-dose 2D/3D image registration by
using a linear operator that approximates the deformation parameters. How-
ever, all of the above registration methods involve computationally demanding
production of Digitally-Reconstructed Radiographs (DRRs) in each registration
iteration (e.g., 15ms on a modern GPU to produce a 256 × 256 DRR from a
256× 256× 256 volume [9]), which makes them difficult to be extended to sup-
port real-time (> 30 fps) image registration.

We present a novel real-time 2D/3D registration method, called Registra-
tion Efficiency and Accuracy through Learning Metric on Shape (REALMS ),
that does not require DRR production in the registration. It calculates the pa-
tient’s treatment-time 3D deformations by kernel regression. Specifically, each of
the patient’s deformation parameters is interpolated using a weighting Gaussian
kernel on that parameter’s training case values. In each training case, its pa-
rameter value is associated with a corresponding training projection image. The
Gaussian kernel is formed from distances between training projection images.
This distance for the parameter in question involves a Riemannian metric on
projection image differences. At planning time, REALMS learns the parameter-
specific metrics from the set of training projection images using a Leave-One-Out
(LOO) training.

To the best of our knowledge, REALMS is the first 2D/3D deformable regis-
tration method that achieves real-time (> 30 fps) performance. REALMS uses
the metric learning idea firstly introduced in Weinberger and Tesauro [10] to
tackle the 2D/3D image registration problem. Particularly, in order to make
the metric learning work for the high dimensional (D � 103) projection space,
REALMS uses a specially-designed initialization approximated by linear regres-
sion. The results have led to substantial error reduction when the special initial-
ization is applied.

The rest of the paper is organized as follows: In section 2, we describe
REALMS’s novel registration scheme that uses kernel regression. In section 3,
we describe its deformation space modeling approach for generating training
samples in the deformation space. In section 4, we describe the metric learning
scheme and the specialized initialization in REALMS. We show our synthetic
and real results in section 5. Finally, we discuss the results and conclude in
section 6.

2 2D/3D Registration Framework

In this section, we describe REALMS’s 2D/3D registration framework. REALMS
uses kernel regression (eq. 1) to interpolate the patient’s n 3D deformation pa-
rameters c = (c1, c2, · · · , cn) separately from the on-board projection image Ψ(θ)
where θ is the projection angle. It uses a Gaussian kernel KMi,σi with the width
σi and a metric tensor Mi on projection intensity differences to interpolate the
patient’s ith deformation parameter ci from a set of N training projection images
{P(I ◦ T (cκ); θ) | κ = 1, 2, · · · , N} simulated at planning time. Specifically, the



training projection image, P(I ◦ T (cκ); θ), is the DRR of a 3D image deformed
from the patient’s planning-time 3D mean image I with sampled deformation
parameters cκ = (c1κ, c

2
κ, · · · , cnκ). T and P are the warping and the DRR op-

erators, respectively. P simulates the DRRs according to the treatment-time
imaging geometry, e.g., the projection angle θ.

In the treatment-time registration, each deformation parameter ci in c can
be estimated with the following kernel regression:

ci =

N∑
κ=1

ciκ ·KMi,σi(Ψ(θ),P(I ◦ T (cκ); θ))

N∑
κ=1

KMi,σi(Ψ(θ),P(I ◦ T (cκ); θ))

, (1)

KMi,σi(Ψ(θ),P(I ◦ T (cκ); θ)) =
1√

2πσi
e
−
d2
Mi (Ψ(θ),P(I◦T (cκ);θ))

2(σi)2 , (2)

d2Mi(Ψ(θ),P(I◦T (cκ); θ)) = (Ψ(θ)−P(I◦T (cκ); θ))ᵀMi(Ψ(θ)−P(I◦T (cκ); θ)),
(3)

where KMi,σi is a Gaussian kernel (kernel width= σi) that uses a Riemannian
metric Mi in the squared distance d2Mi and gives the weights for the parameter
interpolation in the regression. The minus signs in eq. 3 denote pixel-by-pixel
intensity subtraction.

We describe in section 3 how REALMS, at planning time, parameterizes the
deformation space and describe in section 4 how it learns the metric tensor Mi

and decides the kernel width σi.

3 Deformation Modeling at Planning Time

REALMS limits the deformation to a shape space. It models deformations as
a linear combination of a set of basis deformations calculated through PCA
analysis. In our target problem – lung IGRT, a set of Respiratory-Correlated
CTs (RCCTs, dimension: 512× 512× 120) {Jτ | τ = 1, 2, · · · , 10} are available
at planning time. From these a mean image I = J and a set of deformations φτ
between Jτ and J can be computed. The basis deformations can then be chosen
to be the primary eigenmodes of a PCA analysis on the φτ .

3.1 Deformation Shape Space and Mean Image Generation

REALMS computes a respiratory Fréchet mean image J from the RCCT dataset
via an LDDMM (Large Deformation Diffeomorphic Metric Mapping) framework
described in Lorenzen et al. [11]. The Fréchet mean J , as well as the diffeomorphic
deformations φ from the mean J to each image Jτ , are computed using a fluid-
flow distance metric:

J = arg
J
min

10∑
τ=1

ˆ 1

0

ˆ
Ω

||vτ,γ(x)||2dxdγ +
1

s2

ˆ
Ω

||J(φ−1τ (x))− Jτ (x)||2dx, (4)



where Jτ (x) is the intensity of the pixel at position x in the image Jτ , vτ,γ is
the fluid-flow velocity field for the image Jτ in flow time γ , s is the weighting
variable on the image dissimilarity, and φτ (x) describes the deformation at the

pixel location x: φτ (x) = x+
´ 1
0
vτ,γ(x)dγ.

3.2 Statistical Analysis

With the diffeomorphic deformation set {φτ | τ = 1, 2, · · · , 10} calculated, our
method finds a set of linear deformation basis vectors φipc by PCA analysis. The

scores λiτ on each φipc yield φτ in terms of these basis vectors.

φτ = φ+

10∑
i=1

λiτ · φipc (5)

We choose a subset of n eigenmodes that captures more than 95% of the total
variation. Then we let the n scores form the the n-dimensional parametrization
c.

c = (c1, c2, · · · , cn) = (λ1, λ2, · · · , λn) (6)

For most of our target problems, n = 3 satisfies the requirement.

4 Metric Learning at Planning Time

4.1 Metric Learning and Kernel Width Selection

REALMS learns a metric tensor Mi with a corresponding kernel width σi for the
patient’s ith deformation parameter ci using a Leave-One-Out (LOO) training
strategy. At planning time, it samples a set of N deformation parameter tuples{
cκ = (c1κ, c

2
κ, · · · , cnκ) | κ = 1, 2, · · ·N

}
to generate training projection images

{P(I ◦ T (cκ); θ) | κ = 1, 2, · · · , N} where their associated deformation param-
eters are sampled uniformly within three standard deviations of the scores λ
observed in the RCCTs. For each deformation parameter ci in c, REALMS finds
the best pair of the metric tensor Mi† and the kernel width σi† that minimizes
the sum of squared LOO regression residuals Lci among the set of N training
projection images:

Mi†, σi† = arg
Mi,σi

minLci(Mi, σi), (7)

Lci(Mi, σi) =

N∑
κ=1

(
ciκ − ĉiκ(Mi, σi)

)2
, (8)

ĉiκ(Mi, σi) =

∑
χ 6=κ

ciχ ·KMi,σi(P(I ◦ T (cκ); θ),P(I ◦ T (cχ); θ))∑
χ 6=κ

KMi,σi(P(I ◦ T (cκ); θ),P(I ◦ T (cχ); θ))
, (9)



where ĉiκ(Mi, σi) is the estimated value for parameter ciκ interpolated by the
metric tensor Mi and the kernel width σi from the training projection images
χ other than κ; Mi needs to be a positive semi-definite (p.s.d) matrix to fulfill
the pseudo-metric constraint; and the kernel width σi needs to be a positive real
number.

To avoid high-dimensional optimization over the constrained matrix Mi, we
structure the metric tensor Mi as a rank-1 matrix formed by a basis vector ai:
Mi = aiaiᵀ. Therefore, we can transform eq. 7 into a optimization over the unit
vector ai where

∥∥ai∥∥
2

= 1:

ai†, σi† = arg
ai,σi

minLci(aiaiᵀ, σi) (10)

Then we can rewrite the squared distance d2Mi = d2aiaiᵀ used in the Gaussian
kernel KMi,σi as follows:

d2aiaiᵀ(P(I ◦ T (cκ); θ),P(I ◦ T (cχ); θ)) = (aiᵀ · rκ,χ)ᵀ(aiᵀ · rκ,χ), (11)

rκ,χ = P(I ◦ T (cκ); θ)−P(I ◦ T (cχ); θ), (12)

where rκ,χ is a vector of intensity differences between projection images gen-
erated by parameters cκ and cχ; and ai is a metric basis vector where the
magnitude of the inner product of ai and the intensity difference vector rκ,χ,
aiᵀ · rκ,χ gives the Riemannian distance for the parameter ci (eq. 11).

The learned metric basis vector ai† and the selected kernel width σi† form a
weighting kernel Kai†ai†ᵀ,σi† to interpolate the parameter ci in the registration
(see eq. 1).

4.2 Linear-Regression Implied Initial Metric

Since the residual functional L (see eq. 7) that we want to minimize is non-
convex, a good initial guess of the metric basis vector a is essential. Therefore,
REALMS uses a vector wi as an initial guess of the metric basis vector ai

for the parameter ci. Let W =
(
w1 w2 · · · wn

)
list these initial guesses. The

matrix W is approximated by a multivariate linear regression (eq. 13 and eq. 14)
between the projection difference matrix R = (r1r2 · · · rN )

ᵀ
and the parameter

differences matrix ∆C. In particular, the projection difference vector rκ = P(I ◦
T (cκ); θ)−P(I; θ) is the intensity differences between the DRRs calculated from
the deformed image I ◦ T (cκ) and the DRRs calculated from the mean image I
(where c = 0).

∆C =


c11 c21 · · · cn1
c12 c22 · · · cn2
...

...
. . .

...
c1N c2N · · · cnN

− 0 ≈


rᵀ1
rᵀ2
...

rᵀN

 · (w1 w2 · · · wn
)

(13)



W = (RᵀR)−1Rᵀ∆C (14)

The inner product of the matrix W, calculated by the pseudo-inverse in eq.
14, and the projection intensity difference matrix R, WᵀR, gives the best linear
approximation of the parameter differences ∆C. Therefore, we use wi as the
initial guess of the metric basis vector ai for the parameter ci.

4.3 Optimization Scheme

REALMS uses a two-step scheme to optimize the metric basis vector ai and the
kernel width σi in eq. 10.

First, for each candidate kernel width σi, it optimizes the metric basis vector
ai using the quasi-Newton method (specifically, the BFGS method) with the
vector wi as the initialization. The gradient of the function Lci with respect to
ai can be stated as

∂Lci
∂ai

=
2
√

2

σi
ai

N∑
κ=1

(ĉiκ−ciκ)

N∑
χ=1

(ĉiχ−ciχ)Kaiaiᵀ,σi(P(I◦T (cκ); θ),P(I◦T (cχ); θ))rκ,χrᵀκ,χ

(15)
Second, REALMS selects a kernel width σi† among the candidate kernel

widths where its learned metric basis vector ai† yields minimum LOO regression
residuals Lci for parameter ci.

4.4 Projection Normalization

To account for variations caused by x-ray scatter that produces inconsistent
projection intensities, REALMS normalizes both the training projection images
P(I ◦ T (cκ); θ) and the on-board projection image Ψ(θ). In particular, it uses
the localized Gaussian normalization introduced in Chou et al. [8], which has
shown promise in removing the undesired scattering artifacts.

5 Results

5.1 Synthetic Tests

We used coronal DRRs (dimension: 64 × 48) of the target CTs as synthetic
on-board cone-beam projection images. The target CTs were deformed from
the patient’s Fréchet mean CT by normally distributed random samples of the
first three deformation parameters.1 We generated 600 synthetic test cases from
6 lung datasets and measured the registration quality by the average mTRE
(mean Target Registration Error) over all cases and all voxels at tumor sites.

1 In our lung datasets, the first three deformation parameters captured more than
95% lung variation observed in their RCCTs.



With REALMS’s registrations, the average mTRE and its standard deviation are
down from 6.89± 3.53 mm to 0.34± 0.24 mm using N = 125 training projection
images. The computation time for each registration is 11.39±0.73 ms (87.79 fps)
on Intel Core2 Quad CPU Q6700. As shown in figure 1, REALMS reduces the
minimum errors produced by kernel regressions that use the Euclidean metric
(Mi = I).

(a) (b) (c)

Fig. 1. Average mTREs over 600 test cases projected onto the (a) first, (b) second, and
(c) third deformation basis vector versus the candidate kernel widths using N = 125
training projection images.

Figure 2 shows the computation time and registration accuracy tradeoff in
REALMS.

(a) (b)

Fig. 2. (a) Time and (b) accuracy v.s. the number of training projection images N .

5.2 Real Tests

We tested REALMS on 6 lung datasets with an on-board CBCT system where
a single coronal on-board CB projection (dimension downsampled to 64×48 for
efficient computation) at both EE (End-Expiration) and EI (End-Inspiration)
phases were used for the testing. See the top image of figure 4(b) for illustration.
For each dataset, we generated N = 125 training DRRs to learn the metrics
and select optimal interpolation kernel widths. The learned metrics and the
selected kernel widths were used to estimate deformation parameters for the
testing EE and EI on-board projections. The estimated CTs were deformed from



the Fréchet mean CT with the estimated deformation parameters. The results
were validated with reconstructed CBCTs at target phases.2 Table 1 shows the
3D Tumor Centroid Differences (TCDs) between REALMS-estimated CTs and
the reconstructed CBCTs at the same respiratory phases. Tumor centroids were
computed via Snake active segmentations. As shown in table 1, REALMS reduces
the TCD from 5.58± 3.14 mm to 2.56± 1.11 mm in 10.89± 0.26 ms (91.82 fps).

dataset# TCD at EE phase (mm) TCD at EI phase (mm) Time (ms)

1 2.42 (9.70) 4.06 (7.45) 10.40
2 3.60 (4.85) 3.60 (4.89) 10.92
3 2.30 (8.71) 3.60 (4.03) 10.91
4 1.27 (2.69) 2.80 (2.29) 10.91
5 0.70 (9.89) 3.28 (8.71) 11.15
6 1.98 (2.03) 1.12 (1.72) 11.08

Table 1. Tumor Centroid Differences (TCD) after REALMS’s registration at EE and
EI phases of 6 lung datasets. Numbers inside the parentheses are the initial TCDs.

Figure 3 illustrates an example REALMS registration on a lung dataset where
the tumor, the diaphragm, and most of the soft tissues are correctly aligned.

(a) (b)

Fig. 3. (a) Image overlay of the reconstructed CBCT at EE phase (red) and the Fréchet
mean CT (green) (b) Image overlay of the reconstructed CBCT at EE phase (red) and
the REALMS-estimated CT (green) calculated from an on-board cone-beam projection
image at EE phase. The yellow areas are the overlapped region.

5.3 The Learned Metric Basis Vector

The learned metric basis vector ai† will emphasize projection pixels that are
significant for the distance calculation of the deformation parameter ci (e.g. give

2 The CBCTs were reconstructed by the retrospectively-sorted CB projections at tar-
get breathing phases.



high positive or high negative values). As shown in figure 4(a), the learned metric
basis vector a1† emphasized the diaphragm locations and the lung boundaries
as its corresponding deformation basis vector φ1pc covers the expansion and con-
traction motion of the lung. See the bottom image of figure 4(b) for illustration.

(a) (b)

Fig. 4. (a) Initial guess of the metric basis vector a1 = w1 (top) and the optimized
metric basis vector a1† (bottom) of a lung dataset. They are re-shaped into projection
image domain for visualization. As shown in the figure, the diaphragm locations and
the lung boundaries (yellow boxes) were emphasized after metric learning. (b) Top:
a coronal on-board CB projection at EE phase of the lung dataset used in (a). The
yellow boxes in (a) and (b) correspond to the same 2D locations. Bottom: the first
deformation basis vector φ1

pc (the color arrows indicate heat maps of the deformation
magnitudes) overlaid with the volume rendering of the Fréchet mean CT of the lung
dataset used in (a). For this dataset, φ1

pc covers the expansion and contraction motion
of of the lung.

6 Conclusion and Discussion

This paper presents an accurate and real-time 2D/3D registration method, REALMS,
that estimates 3D deformation parameters from a single projection image using
kernel regressions with learned rank-1 projection distance metrics. The learned
distance metrics are optimized with an initialization approximated by linear re-
gression that we found, is essential to the success of this high dimensional metric
learning. Without this special initialization, the optimization would have easily
converged to local minimum and thus produce wrong distance metrics. With this
special initialization, the regression estimation on both synthetic and real test
cases showed its good promise in supporting real-time and low-dose IGRT by
using a single projection image. In this paper, we use highly down-sampled pro-
jection images for efficient learning at planning time. To support efficient learn-



ing for projection images of higher dimensions, the future work of REALMS will
incorporate neighborhood approximation methods in the leave-one-out training
such that the computation complexity will be reduced from O(N2) to O(kN) if
only k nearest training neighbors are considered for the regression estimation.
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