Skip to main content

Novel Vector-Valued Approach to Automatic Brain Tissue Classification

  • Conference paper
Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging (MCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7766))

Included in the following conference series:

Abstract

In this work we propose a novel SSIM (Structural Similarity Index Measure)-guided brain tissue classification approach, implementing Kernel Fisher Discriminant Analysis (KFDA). In Computer Vision, KFDA has been shown to be competitive with other state-of-the-art techniques. In the KFDA-based framework, we exploit the complex structure of grey matter, white matter and cerebro-spinal fluid intensity clusters to find an optimal classification. We illustrate our novel technique using a dataset of early normal brain development in the age range from 10 days to 4.5 years. The SSIM metric, an objective measure of an image quality as perceived by the Human Visual System, is used to evaluate the quality of brain segmentation. SSIM comparison of the quality of classification obtained by the KFDA-based and the Expectation-Maximization algorithms shows the superior performance of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans, A.C., Brain Development Cooperative Group: The NIH MRI study of normal brain development. NeuroImage 30, 184–202 (2006)

    Google Scholar 

  2. Zijdenbos, A.P., Forghani, R., Evans, A.: Automatic Quantification of MS Lesions in 3D MRI Brain Data Sets: Validation of INSECT. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 439–448. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Warfield, S.: Fast kNN classification for multichannel image data. Pattern Recogn. Lett. 17(7), 713–721 (1996)

    Article  Google Scholar 

  4. Zijdenbos, A.P., Dawant, B.M., et al.: Morphometric Analysis of White Matter Lesions in MR Images: Method and Validation. IEEE Trans. Med. Imag 21(10), 1280–1291 (1994)

    Article  Google Scholar 

  5. Wells, W.M., Kikinis, R., Grimson, W.E.L., Jolesz, F.: Adaptive Segmentation of MRI Data. IEEE Trans. Med. Imag. 23, 429–442 (1996)

    Article  Google Scholar 

  6. Pohl, K.M., Bouix, S., Kikinis, R., Grimson, W.E.L.: Anatomical Guided Segmentation with non-Stationary Tissue Class Distributions in an Expectation-Maximization Framework. In: IEEE Int. Symposium on Biomed. Imag., Arlington, VA, pp. 81–84 (2004)

    Google Scholar 

  7. Grau, V., Mewes, A.U.J., et al.: Improved Watershed Transform for Medical Image Segmentation Using Prior Information. IEEE Trans. Med. Imag. 23(4), 447–458 (2004)

    Article  Google Scholar 

  8. Bouix, S., Martin-Fernandez, M., Ungar, L., et al.: On Evaluating Brain Tissue Classifiers without a Ground Truth. NeuroImage 36, 1207–1224 (2007)

    Article  Google Scholar 

  9. Tohka, J., Zijdenbos, A., Evans, A.: Fast and Robust Estimation for Statistical Partial Volume Models in Brain MRI. NeuroImage 23, 84–97 (2004)

    Article  Google Scholar 

  10. Portman, N., Evans, A.: Novel Vector-Valued Approach to Automatic Brain Tissue Classification. Poster 6488, 18th Annual Meeting of the OHBM, Beijing (2012)

    Google Scholar 

  11. Mika, S., Ratsch, G., Weston, J., et al.: Fisher Discriminant Analysis with Kernels. In: Neural Networks for Signal Processing IX: Proc. of the 1999 IEEE Signal Proc. Soc. Workshop, pp. 41–48 (1999)

    Google Scholar 

  12. Fonov, V., Evans, A.C., Botteron, K., et al.: Unbiased Average Age-Appropriate Atlases for Pediatric Studies. Neuroimage 54(1), 313–327 (2011)

    Article  Google Scholar 

  13. Vapnik, V.N.: Statistical learning theory. John Wiley & Sons (1998) (manuscript)

    Google Scholar 

  14. Baudat, G., Anouar, F.: Generalized Discriminant Analysis Using a Kernel Approach. Neural Computation 12(10), 2385–2404 (2000)

    Article  Google Scholar 

  15. Almli, C.R., Rivkin, M.J., McKinstry, R.C., Brain Development Cooperative Group: The NIH MRI study of normal brain development (Objective-2): Newborns, infants, toddlers, and preschoolers. NeuroImage 35(1), 308–325 (2007)

    Google Scholar 

  16. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A Non-Parametric Method for Automatic Correction of Intensity Non-Uniformity in MRI Data. IEEE Trans. Med. Imag. 17, 87–97 (1998)

    Article  Google Scholar 

  17. Collins, D.L., Neelin, P., Peters, P.M., Evans, A.C.: Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space. J. Comput. Assist. Tomogr. 18(2), 192–205 (1994)

    Article  Google Scholar 

  18. Wang, Z., Bovik, A.C.: A Universal Image Quality Index. IEEE Signal Processing Letters 9, 81–84 (2002)

    Article  Google Scholar 

  19. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale Structural Similarity for Image Quality Assessment. In: IEEE Proc. Asilomar Conf. Signals, Syst.,Comput., pp. 1398–1402 (2003)

    Google Scholar 

  20. Wang, Z., Bovik, A.C., Sheikh, H.R.: Image Quality Asessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Proc. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Portman, N., Evans, A. (2013). Novel Vector-Valued Approach to Automatic Brain Tissue Classification. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2012. Lecture Notes in Computer Science, vol 7766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36620-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36620-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36619-2

  • Online ISBN: 978-3-642-36620-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics