Sufficiency of Cut-Generating Functions^{*}

Gérard Cornuéjols^{†1}, Laurence Wolsey^{‡2}, and Sercan Yıldız^{§1}

¹Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States

²CORE, Université Catholique de Louvain, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve, Belgium

April 4, 2013

Abstract

This note settles an open problem about cut-generating functions, a concept that has its origin in the work of Gomory and Johnson from the 1970's and has received renewed attention in recent years.

Keywords: Mixed Integer Programming, Separation, Corner Polyhedron, Intersection Cuts Mathematics Subject Classification: 90C11, 90C26

1 Introduction

We consider sets of the form

$$X = X(R, S) := \{ x \in \mathbb{R}^n_+ : Rx \in S \},$$

$$(1a)$$

where
$$\begin{cases} R = [r_1 \dots r_n] \text{ is a real } q \times n \text{ matrix,} \\ S \subset \mathbb{R}^q \text{ is a nonempty closed set with } 0 \notin S. \end{cases}$$
(1b)

This model has been studied in [Joh81] and [CCD⁺13]. It appears in cutting plane theory [Gom69, GJ72, ALWW07, JSRF06] where the goal is to generate inequalities that are valid for X but not for the origin. Such cutting planes are well-defined [CCD⁺13, Lemma 2.1] and can be written as

$$c^{\top}x \ge 1. \tag{2}$$

Let $S \subset \mathbb{R}^q$ be a given nonempty closed set with $0 \notin S$. The set S is assumed to be fixed in this paragraph. [CCD⁺13] introduce the notion of a *cut-generating function*: This is any function ρ : $\mathbb{R}^q \to \mathbb{R}$ that produces coefficients $c_j := \rho(r_j)$ of a cut (2) valid for X(R, S) for any choice of n and

^{*}This work was supported in part by NSF grant CMMI1024554 and ONR grant N00014-09-1-0033.

 $^{^{\}dagger}gc0v@andrew.cmu.edu$

 $^{^{\}ddagger}$ laurence.wolsey@uclouvain.be

[§]syildiz@andrew.cmu.edu

 $R = [r_1 \dots r_n]$. It is shown in [CCD⁺13] that cut-generating functions enjoy significant structure. For instance, the minimal ones are sublinear and are closely related to S-free neighborhoods of the origin. We say that a closed convex set is S-free if it contains no point of S in its interior. For any minimal cut-generating function ρ , there exists a closed convex S-free set $V \subset \mathbb{R}^q$ such that $0 \in \text{int } V$ and $V = \{r \in \mathbb{R}^q : \rho(r) \leq 1\}$. A cut (2) with coefficients $c_j := \rho(r_j)$ is called an S-intersection cut.

Now assume that both S and R are fixed. Noting $X(R, S) \subset \mathbb{R}^n_+$, we say that a cutting plane $c^{\top}x \ge 1$ dominates $b^{\top}x \ge 1$ if $c_j \le b_j$ for $j \in [n]$. A natural question is whether every cut (2) valid for X(R, S) is dominated by an S-intersection cut. [CCD+13] give an example showing that this is not always the case. However, this example has the peculiarity that S contains points that cannot be obtained as Rx for any $x \in \mathbb{R}^n_+$. [CCD+13] propose the following open problem: Assuming $S \subset \operatorname{cone} R$, is it true that every cut (2) valid for X(R, S) is dominated by an S-intersection cut? Our main theorem shows that this is indeed the case. This generalizes the main result of [CCZ10] and Theorem 6.3 in [CCD+13].

Theorem 1.1. Suppose $S \subset \operatorname{cone} R$. Then any valid inequality $c^{\top}x \ge 1$ separating the origin from X is dominated by an S-intersection cut.

2 Proof of the Main Theorem

Our proof of Theorem 1.1 will use several lemmas. We first introduce some terminology. Given a convex cone $K \subseteq \mathbb{R}^d$, let $K^\circ := \{w \in \mathbb{R}^d : u^\top w \leq 0, \forall u \in K\}$ (resp. $K^* := \{w \in \mathbb{R}^d : u^\top w \geq 0, \forall u \in K\}$) denote the *polar* (resp. *dual*) of K. Let $\sigma_W(u) := \sup_{w \in W} u^\top w$ be the *support* function of a set $W \subseteq \mathbb{R}^d$. A function $\rho : \mathbb{R}^d \mapsto \mathbb{R} \cup \{+\infty\}$ is said to be *positively homogeneous* if $\rho(\lambda u) = \lambda \rho(u)$ for all $\lambda > 0$ and $u \in \mathbb{R}^d$ and subadditive if $\rho(u_1) + \rho(u_2) \geq \rho(u_1 + u_2)$ for all $u_1, u_2 \in \mathbb{R}^d$. Moreover, ρ is sublinear if it is both positively homogeneous and subadditive. Sublinear functions are known to be convex and it is not difficult to show that support functions are sublinear (see, e.g., [HUL04, Chapter C]). Given a closed convex neighborhood V of the origin, a representation of V is any sublinear function $\rho : \mathbb{R}^q \mapsto \mathbb{R}$ such that $V = \{r \in \mathbb{R}^q : \rho(r) \leq 1\}$. S-intersection cuts are generated via representations of closed convex S-free neighborhoods of the origin.

Throughout this section, we assume that $X \neq \emptyset$ and $c^{\top}x \ge 1$ is a valid inequality separating the origin from X.

Lemma 2.1. If $u \in \mathbb{R}^n_+$ and Ru = 0, then $c^\top u \ge 0$, or, equivalently, $c \in \mathbb{R}^n_+ + \operatorname{Im} R^\top$.

Proof. Let $\overline{x} \in X$. Note that $R(\overline{x} + tu) = R\overline{x} \in S$ and $\overline{x} + tu \ge 0$ for all $t \ge 0$. By the validity of c, we have $c^{\top}(\overline{x} + tu) \ge 1$ for all $t \ge 0$. Observing $tc^{\top}u \ge 1 - c^{\top}\overline{x}$ and letting $t \to +\infty$ implies $c^{\top}u \ge 0$ as desired. Because u is an arbitrary vector in $\mathbb{R}^n_+ \cap \operatorname{Ker} R$, we can write $c \in (\mathbb{R}^n_+ \cap \operatorname{Ker} R)^*$. The equality $(\mathbb{R}^n_+ \cap \operatorname{Ker} R)^* = \mathbb{R}^n_+ + \operatorname{Im} R^{\top}$ follows from the facts $(\mathbb{R}^n_+)^* = \mathbb{R}^n_+$, $(\operatorname{Ker} R)^* = \operatorname{Im} R^{\top}$ and $\mathbb{R}^n_+ + \operatorname{Im} R^{\top}$ is closed (see, e.g., [Roc70, Cor. 16.4.2]).

Let

$$h(r) := \min \quad c^{\top} x$$

$$Rx = r,$$

$$x \ge 0.$$
(3)

Remark 2.2. $h(r_j) \leq c_j$ for all $j \in [n]$.

Lemma 2.3. *h* is a piecewise-linear sublinear function on the domain cone *R*.

Proof. The domain of h must be a subset of cone R because (3) is infeasible for $r \notin \text{cone } R$. The dual of (3) is

$$\max \quad \begin{array}{c} r^{\top}y\\ R^{\top}y \leqslant c. \end{array}$$

$$(4)$$

Let $P := \{y \in \mathbb{R}^q : R^\top y \leq c\}$. By Lemma 2.1, c = c' + c'' where $c' \in \mathbb{R}^n_+$ and $c'' \in \operatorname{Im} R^\top$. Because $c'' \in \operatorname{Im} R^\top$, there exists $y'' \in \mathbb{R}^q$ such that $R^\top y'' = c'' \leq c$. Hence $y'' \in P$ which shows that the dual LP is always feasible, strong duality holds and $h(r) = \sigma_P(r)$ for all $r \in \operatorname{cone} R$. In particular, h(0) = 0 and h(r) is finite for all $r \in \operatorname{cone} R$. Now let W be a finite set of points for which $P = \operatorname{conv} W + \operatorname{rec} P$. Observe that $\operatorname{rec} P = (\operatorname{cone} R)^\circ$ and $r^\top u \leq 0$ for all $r \in \operatorname{cone} R$ and $u \in \operatorname{rec} P$. Therefore, $h(r) = \sigma_P(r) = \sigma_W(r)$ for all $r \in \operatorname{cone} R$ which implies that h is piecewise-linear and sublinear on the domain $\operatorname{cone} R$.

Lemma 2.4. Theorem 1.1 holds when cone $R = \mathbb{R}^q$.

Proof. In this case, h is finite everywhere. Let $V := \{r \in \mathbb{R}^q : h(r) \leq 1\}$. Because the Slater condition is satisfied, we have $\operatorname{int} V = \{r \in \mathbb{R}^q : h(r) < 1\}$ (see, e.g., [HUL04, Prop. D.1.3.3]). Thus V is a closed convex neighborhood of the origin and h represents V by definition.

Claim 2.1: V is S-free. Suppose this is not the case. Let $\overline{r} \in S$ be a point in V. Then there exists $\overline{x} \ge 0$ such that $R\overline{x} = \overline{r} \in S$ and $c^{\top}\overline{x} = h(\overline{r}) < 1$. Because $\overline{x} \in X$, this contradicts the validity of $c^{\top}x \ge 1$.

Therefore, $\sum_{j=1}^{n} h(r_j) x_j \ge 1$ is an S-intersection cut that can be obtained from the closed convex S-free neighborhood V of the origin. By Remark 2.2, $h(r_j) \le c_j$ for all $j \in [n]$. This shows that $\sum_{j=1}^{n} h(r_j) x_j \ge 1$ dominates $c^{\top} x \ge 1$.

We now consider the case where cone $R \subsetneq \mathbb{R}^q$. We want to extend the definition of h to the whole of \mathbb{R}^q and show that this extension is a cut-generating function. We will first construct a function h' such that 1) h' is finite everywhere on span R, 2) h' coincides with h on cone R. If $\dim(R) < q$, we will further extend h' to the whole of \mathbb{R}^q by letting h'(r) = h'(r') for all $r \in \mathbb{R}^q$, $r' \in \operatorname{span} R$, $r'' \in (\operatorname{span} R)^{\perp}$ such that r = r' + r''. Our proof of Theorem 1.1 will show that this procedure yields a function h' that is the desired extension of h.

Let $r_0 \in -\operatorname{ri}(\operatorname{cone} R)$ where $\operatorname{ri}(\cdot)$ denotes the relative interior. Note that this guarantees $\operatorname{cone}(R \cup \{r_0\}) = \operatorname{span} R$ since there exist $\epsilon > 0$ and $d := \dim(R)$ linearly independent vectors $a_1, \ldots, a_d \in \operatorname{span} R$ such that $-r_0 \pm \epsilon a_i \in \operatorname{cone} R$ for all $i \in [d]$ which implies $\pm a_i \in \operatorname{cone}(R \cup \{r_0\})$. Now we define c_0 as

$$c_0 := \sup_{r \in \operatorname{cone} R} \sup_{\alpha > 0} \frac{h(r) - h(r + \alpha(-r_0))}{\alpha}.$$
(5)

Lemma 2.5. c_0 is finite.

Proof. Any pair $\overline{r} \in \operatorname{cone} R$ and $\overline{\alpha} > 0$ yields a lower bound on c_0 : Our choice of r_0 ensures $\overline{r} + \overline{\alpha}(-r_0) \in \operatorname{cone} R$ and $c_0 \ge \frac{h(\overline{r}) - h(\overline{r} + \overline{\alpha}(-r_0))}{\overline{\alpha}}$. To get an upper bound on c_0 , consider the LPs (3) and (4). Let $\tilde{r} \in \operatorname{cone} R$ and $\tilde{\alpha} \ge 0$. Observe that $\tilde{r} + \tilde{\alpha}(-r_0) \in \operatorname{cone} R$ and, as in the proof of Lemma 2.3, one can show that both LPs are feasible when we plug in $\tilde{r} + \tilde{\alpha}(-r_0)$ for r. Therefore,

strong duality holds and $h(\tilde{r} + \tilde{\alpha}(-r_0)) = \sigma_P(\tilde{r} + \tilde{\alpha}(-r_0))$ where $P := \{y \in \mathbb{R}^q : R^\top y \leq c\}$ is the feasible region of (4). Let W be a finite set of points for which $P = \operatorname{conv} W + \operatorname{rec} P$. Because $\operatorname{rec} P = (\operatorname{cone} R)^\circ$, we have $(\tilde{r} + \tilde{\alpha}(-r_0))^\top u \leq 0$ for all $u \in \operatorname{rec} P$. This implies $\sigma_P(\tilde{r} + \tilde{\alpha}(-r_0)) = \sigma_W(\tilde{r} + \tilde{\alpha}(-r_0))$ and we can write

$$c_{0} = \sup_{r \in \operatorname{cone} R} \sup_{\alpha > 0} \frac{\sigma_{W}(r) - \sigma_{W}(r + \alpha(-r_{0}))}{\alpha}$$
$$\leq \sup_{r \in \operatorname{cone} R} \sup_{\alpha > 0} \frac{\sigma_{W}(\alpha r_{0})}{\alpha}$$
$$= \sigma_{W}(r_{0})$$

where we have used the sublinearity of σ_W in the inequality and the second equality. The conclusion follows now from the fact that W is a finite set.

We define a sublinear function h' over span R:

$$h'(r) := \min \quad c_0 x_0 + c^{\top} x \\ r_0 x_0 + R x = r, \\ x_0 \ge 0, \ x \ge 0.$$
(6)

Lemma 2.6. The function h' coincides with h on cone R. Furthermore, for any $r \in \operatorname{cone} R$, (6) admits an optimal solution of the form $(0, x) \in \mathbb{R} \times \mathbb{R}^n$.

Proof. It is clear that $h' \leq h$. Let $\overline{r} \in \operatorname{cone} R$ and suppose $h'(\overline{r}) < h(\overline{r})$. Then there exists $(\overline{x}_0, \overline{x})$ satisfying $r_0\overline{x}_0 + R\overline{x} = \overline{r}, \ \overline{x} \geq 0, \ \overline{x}_0 > 0$ and $c_0\overline{x}_0 + c^{\top}\overline{x} < h(\overline{r})$. Rearranging the terms and using Remark 2.2, we obtain

$$c_0 < \frac{h(\overline{r}) - c^{\top} \overline{x}}{\overline{x}_0} \leqslant \frac{h(\overline{r}) - \sum_{j=1}^n h(r_j) \overline{x}_j}{\overline{x}_0}.$$

Finally, the sublinearity of h and the observation that $R\overline{x} = \overline{r} - r_0\overline{x}_0$ give

$$c_0 < \frac{h(\overline{r}) - \sum_{j=1}^n h(\overline{x}_j r_j)}{\overline{x}_0} \leqslant \frac{h(\overline{r}) - h(R\overline{x})}{\overline{x}_0} = \frac{h(\overline{r}) - h(\overline{r} - r_0\overline{x}_0)}{\overline{x}_0}$$

This contradicts the definition of c_0 and proves the first claim. Now let \tilde{x} be an optimal solution to (3) for $r = \overline{r}$. We have $c^{\top}\tilde{x} = h(\overline{r}) = h'(\overline{r})$ and $(0, \tilde{x})$ is feasible to (6). This shows that $(0, \tilde{x})$ is an optimal solution to (6).

If dim(R) < q, we extend the function h' defined in (6) to the whole of \mathbb{R}^q by letting

$$h'(r) = h'(r')$$
 for all $r \in \mathbb{R}^q$, $r' \in \operatorname{span} R$, $r'' \in (\operatorname{span} R)^{\perp}$ such that $r = r' + r''$. (7)

Proof of Theorem 1.1. Let h' be defined as in (6) and (7) and let $V' := \{r \in \mathbb{R}^q : h'(r) \leq 1\}$. Observe that V' is a closed convex neighborhood of the origin because h' is sublinear and finite everywhere. Furthermore, $\operatorname{int}(V') = \{r \in \mathbb{R}^q : h'(r) < 1\}$ by the Slater property.

Claim 2.2: V' is S-free. Suppose this is not the case. Let $\overline{r} \in S$ be a point in int(V'). By Lemma 2.6, there exists $\overline{x} \ge 0$ such that $R\overline{x} = \overline{r} \in S$ and $c^{\top}\overline{x} = h'(\overline{r}) < 1$. Because $\overline{x} \in X$, this contradicts the validity of $c^{\top}x \ge 1$.

Now, by Remark 2.2 and Lemma 2.6, $h'(r_j) = h(r_j) \leq c_j$ for all $j \in [n]$. This shows that the S-intersection cut $\sum_{j=1}^{n} h'(r_j) x_j \geq 1$ dominates $c^{\top} x \geq 1$.

3 Constructing the S-Free Convex Neighborhood of the Origin

We now give a geometric interpretation for the proof of Theorem 1.1. Again let $c^{\top}x \ge 1$ be a valid inequality separating the origin from X. Assume without any loss of generality that the vectors r_1, \ldots, r_n have been normalized so that $c_j \in \{0, \pm 1\}$ for all $j \in [n]$. Define the sets $J_{+} := \{j \in [n] : c_{j} = +1\}, J_{-} := \{j \in [n] : c_{j} = -1\} \text{ and } J_{0} := \{j \in [n] : c_{j} = 0\}.$ Let $C := \operatorname{conv}(\{0\} \cup \{r_j : j \in J_+\}) \text{ and } K := \operatorname{cone}(\{r_j : j \in J_0 \cup J_-\} \cup \{r_j + r_i : j \in J_+, i \in J_-\}).$ Let Q := C + K and h be defined as in (3). One can show $Q = \{r \in \mathbb{R}^q : h(r) \leq 1\}$. However, when cone $R \neq \mathbb{R}^{q}$, the origin lies on the boundary of Q. In the proof of Theorem 1.1, we overcame this difficulty by extending h into a function h' which is defined on the whole of \mathbb{R}^q and coincides with h on cone R. We can also follow a similar approach here. Let $r_0 \in -\operatorname{ri}(\operatorname{cone} R)$ and let c_0 be as defined in (5). When $c_0 \neq 0$, scale r_0 so that $c_0 \in \{\pm 1\}$. Introduce r_0 into the relevant subset of [n] according to the sign of c_0 : If $c_0 = +1$, let $J'_+ := J_+ \cup \{0\}, J'_0 := J_0$ and $J'_- := J_-$; otherwise, if $c_0 = 0$, let $J'_+ := J_+$, $J'_0 := J_0 \cup \{0\}$ and $J'_- := J_-$; otherwise $(c_0 = -1)$, let $J'_+ := J_+$, $J'_0 := J_0 \text{ and } J'_- := J_- \cup \{0\}.$ Finally, let $C' := \operatorname{conv}(\{0\} \cup \{r_j : j \in J'_+\}), K' := \operatorname{cone}(\{r_j : j \in J'_+\}), K'$ $J'_{0} \cup J'_{-} \cup \{r_{i} + r_{i} : j \in J'_{+}, i \in J'_{-}\}$ and $Q' := C' + K' + (\text{span } R)^{\perp}$. The following proposition shows that h' represents Q' and Q' can be used to generate an S-intersection cut that dominates $c^{\top}x \ge 1.$

Proposition 3.1. $Q' = \{r \in \mathbb{R}^q : h'(r) \leq 1\}$ where h' is defined as in (6) and (7).

Proof. Let $V' := \{r \in \mathbb{R}^q : h'(r) \leq 1\}$. Note that V' is convex by the sublinearity of h'. We have $h'(r_j) \leq c_j = 1$ for all $j \in J'_+$, $h'(r_j) \leq c_j \leq 0$ for all $j \in J'_0 \cup J'_-$ and $h'(r_j + r_i) \leq h'(r_j) + h'(r_i) \leq c_j + c_i = 0$ for all $j \in J'_+$ and $i \in J'_-$. Moreover, h'(r) = h'(r+r') for all $r \in \mathbb{R}^q$ and $r' \in (\operatorname{span} R)^{\perp}$ by the definition of h'. Hence $C' \subseteq V'$, $K' \subseteq \operatorname{rec}(V')$ and $(\operatorname{span} R)^{\perp} \subseteq \operatorname{lin}(V')$ which together give us $Q' = C' + K' + (\operatorname{span} R)^{\perp} \subseteq V'$.

To prove the converse, let $\overline{r} \in \mathbb{R}^q$ be such that $h'(\overline{r}) \leq 1$. We consider two distinct cases: $h'(\overline{r}) \leq 0$ and $0 < h'(\overline{r}) \leq 1$. First, let us suppose $h'(\overline{r}) \leq 0$. Then the definition of h' implies that there exist $(\overline{x}_0, \overline{x}) \in \mathbb{R} \times \mathbb{R}^n$ and $\overline{r}' \in (\operatorname{span} R)^{\perp}$ such that $(\overline{x}_0, \overline{x}) \geq 0$, $\sum_{j \in J'_+} \overline{x}_j - \sum_{i \in J'_-} \overline{x}_i \leq 0$ and $r_0 \overline{x}_0 + R\overline{x} = \overline{r} - \overline{r}'$. It can be verified by inspection that the first two sets of inequalities define a cone generated by the rays $\{e_j : j \in J'_0 \cup J'_-\} \cup \{e_j + e_i : j \in J'_+, i \in J'_-\}$. This shows $\overline{r} \in K' + (\operatorname{span} R)^{\perp} \subseteq Q'$. Now suppose $0 < h'(\overline{r}) \leq 1$. Then there exist $(\overline{x}_0, \overline{x}) \in \mathbb{R} \times \mathbb{R}^n$ and $\overline{r}' \in (\operatorname{span} R)^{\perp}$ such that $(\overline{x}_0, \overline{x}) \geq 0$, $0 < \sum_{j \in J'_+} \overline{x}_j - \sum_{i \in J'_-} \overline{x}_i \leq 1$ and $r_0 \overline{x}_0 + R\overline{x} = \overline{r} - \overline{r}'$. Define $\overline{x}_i^j := \overline{x}_i \frac{\overline{x}_j}{\sum_{j \in J'_+} \overline{x}_j}$ for all $i \in J'_-$ and $j \in J'_+$. These values are well-defined since $0 \leq \sum_{i \in J'_-} \overline{x}_i < \sum_{j \in J'_+} \overline{x}_i$. Observe that $\sum_{j \in J'_+} \overline{x}_i^j = \overline{x}_i$ and $r_0 \overline{x}_0 + R\overline{x} = \sum_{j \in J'_+} (\overline{x}_j - \sum_{i \in J'_-} \overline{x}_i) r_j + \sum_{i \in J'_-} \sum_{j \in J'_+} \overline{x}_i^j (r_i + r_j) + \sum_{j \in J'_0} \overline{x}_j r_j$. We have $\sum_{j \in J'_+} (\overline{x}_j - \sum_{i \in J'_-} \overline{x}_i^j) = \sum_{j \in J'_+} \overline{x}_j - \sum_{i \in J'_-} \overline{x}_i \leq 1$ together with $\overline{x}_j - \sum_{i \in J'_-} \overline{x}_i^j > 0$ which is true for all $j \in J'_+$ because $\sum_{i \in J'_-} \overline{x}_i^j = \overline{x}_j \frac{\sum_{i \in J'_-} \overline{x}_i}{\sum_{j \in J'_+} \overline{x}_j} < \overline{x}_j$. Hence $\sum_{j \in J'_+} (\overline{x}_j - \sum_{i \in J'_-} \overline{x}_i^j) r_j \in C'$. Moreover, $\sum_{i \in J'_-} \sum_{j \in J'_+} \overline{x}_i^j (r_i + r_j) + \sum_{j \in J'_0} \overline{x}_j r_j \in K'$. These yield $\overline{r} \in C' + K' + (\operatorname{span} R)^{\perp} = Q'$.

The proof of Theorem 1.1 shows that $V' := \{r \in \mathbb{R}^q : h'(r) \leq 1\}$ is a closed convex S-free neighborhood of the origin. Proposition 3.1 shows that Q' = V'. Therefore, $\sum_{j=1}^n h'(r_j)x_j \geq 1$ is an S-intersection cut obtained from Q'.

References

- [ALWW07] K. Andersen, Q. Louveaux, R. Weismantel, and L.A. Wolsey. Cutting planes from two rows of a simplex tableau. In *Proceedings of IPCO XII*, volume 4513 of *Lecture Notes in Computer Science*, pages 1–15, Ithaca, New York, June 2007.
- [CCD⁺13] M. Conforti, G. Cornuéjols, A. Daniilidis, C. Lemaréchal, and J. Malick. Cut-generating functions and S-free sets. February 2013. Working Paper.
- [CCZ10] M. Conforti, G. Cornuéjols, and G. Zambelli. Equivalence between intersection cuts and the corner polyhedron. Operations Research Letters, 38:153–155, 2010.
- [GJ72] R.E. Gomory and E.L. Johnson. Some continuous functions related to corner polyhedra. *Mathematical Programming*, 3:23–85, 1972.
- [Gom69] R.G. Gomory. Some polyhedra related to combinatorial problems. *Linear Algebra and Applications*, 2:451–558, 1969.
- [HUL04] J.-B. Hiriart-Urruty and C. Lemaréchal. *Fundamentals of Convex Analysis*. Grundlehren Text Editions. Springer, Berlin, 2004.
- [Joh81] E.L. Johnson. Characterization of facets for multiple right-hand side choice linear programs. Mathematical Programming Study, 14:112–142, 1981.
- [JSRF06] J.J. Júdice, H. Sherali, I.M. Ribeiro, and A.M. Faustino. A complementarity-based partitioning and disjunctive cut algorithm for mathematical programming problems with equilibrium constraints. *Journal of Global Optimization*, 136:89–114, 2006.
- [Roc70] R.T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, New Jersey, 1970.