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Abstract

This note settles an open problem about cut-generating functions, a concept that has its
origin in the work of Gomory and Johnson from the 1970’s and has received renewed attention
in recent years.
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1 Introduction

We consider sets of the form

X = X(R,S) := {x ∈ Rn
+ : Rx ∈ S}, (1a)

where

{
R = [r1 . . . rn] is a real q × n matrix,

S ⊂ Rq is a nonempty closed set with 0 /∈ S.
(1b)

This model has been studied in [Joh81] and [CCD+13]. It appears in cutting plane theory [Gom69,
GJ72, ALWW07, JSRF06] where the goal is to generate inequalities that are valid for X but not
for the origin. Such cutting planes are well-defined [CCD+13, Lemma 2.1] and can be written as

c⊤x > 1. (2)

Let S ⊂ Rq be a given nonempty closed set with 0 /∈ S. The set S is assumed to be fixed in this
paragraph. [CCD+13] introduce the notion of a cut-generating function: This is any function ρ :
Rq 7→ R that produces coefficients cj := ρ(rj) of a cut (2) valid for X(R,S) for any choice of n and
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R = [r1 . . . rn]. It is shown in [CCD+13] that cut-generating functions enjoy significant structure.
For instance, the minimal ones are sublinear and are closely related to S-free neighborhoods of
the origin. We say that a closed convex set is S-free if it contains no point of S in its interior.
For any minimal cut-generating function ρ, there exists a closed convex S-free set V ⊂ Rq such
that 0 ∈ intV and V = {r ∈ Rq : ρ(r) 6 1}. A cut (2) with coefficients cj := ρ(rj) is called an
S-intersection cut.

Now assume that both S and R are fixed. Noting X(R,S) ⊂ Rn
+, we say that a cutting plane

c⊤x > 1 dominates b⊤x > 1 if cj 6 bj for j ∈ [n]. A natural question is whether every cut (2) valid
for X(R,S) is dominated by an S-intersection cut. [CCD+13] give an example showing that this is
not always the case. However, this example has the peculiarity that S contains points that cannot
be obtained as Rx for any x ∈ Rn

+. [CCD+13] propose the following open problem: Assuming
S ⊂ coneR, is it true that every cut (2) valid for X(R,S) is dominated by an S-intersection cut?
Our main theorem shows that this is indeed the case. This generalizes the main result of [CCZ10]
and Theorem 6.3 in [CCD+13].

Theorem 1.1. Suppose S ⊂ coneR. Then any valid inequality c⊤x > 1 separating the origin from
X is dominated by an S-intersection cut.

2 Proof of the Main Theorem

Our proof of Theorem 1.1 will use several lemmas. We first introduce some terminology. Given
a convex cone K ⊆ Rd, let K◦ := {w ∈ Rd : u⊤w 6 0,∀u ∈ K} (resp. K∗ := {w ∈ Rd :
u⊤w > 0,∀u ∈ K}) denote the polar (resp. dual) of K. Let σW (u) := supw∈W u⊤w be the support
function of a set W ⊆ Rd. A function ρ : Rd 7→ R ∪ {+∞} is said to be positively homogeneous
if ρ(λu) = λρ(u) for all λ > 0 and u ∈ Rd and subadditive if ρ(u1) + ρ(u2) > ρ(u1 + u2) for
all u1, u2 ∈ Rd. Moreover, ρ is sublinear if it is both positively homogeneous and subadditive.
Sublinear functions are known to be convex and it is not difficult to show that support functions
are sublinear (see, e.g., [HUL04, Chapter C]). Given a closed convex neighborhood V of the origin,
a representation of V is any sublinear function ρ : Rq 7→ R such that V = {r ∈ Rq : ρ(r) 6 1}.
S-intersection cuts are generated via representations of closed convex S-free neighborhoods of the
origin.

Throughout this section, we assume that X ̸= ∅ and c⊤x > 1 is a valid inequality separating
the origin from X.

Lemma 2.1. If u ∈ Rn
+ and Ru = 0, then c⊤u > 0, or, equivalently, c ∈ Rn

+ + ImR⊤.

Proof. Let x ∈ X. Note that R(x+ tu) = Rx ∈ S and x+ tu > 0 for all t > 0. By the validity of
c, we have c⊤(x + tu) > 1 for all t > 0. Observing tc⊤u > 1 − c⊤x and letting t → +∞ implies
c⊤u > 0 as desired. Because u is an arbitrary vector in Rn

+∩KerR, we can write c ∈ (Rn
+∩KerR)∗.

The equality (Rn
+ ∩KerR)∗ = Rn

+ + ImR⊤ follows from the facts (Rn
+)

∗ = Rn
+, (KerR)∗ = ImR⊤

and Rn
+ + ImR⊤ is closed (see, e.g., [Roc70, Cor. 16.4.2]).

Let
h(r) := min c⊤x

Rx = r,
x > 0.

(3)
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Remark 2.2. h(rj) 6 cj for all j ∈ [n].

Lemma 2.3. h is a piecewise-linear sublinear function on the domain coneR.

Proof. The domain of h must be a subset of coneR because (3) is infeasible for r /∈ coneR. The
dual of (3) is

max r⊤y
R⊤y 6 c.

(4)

Let P := {y ∈ Rq : R⊤y 6 c}. By Lemma 2.1, c = c′ + c′′ where c′ ∈ Rn
+ and c′′ ∈ ImR⊤. Because

c′′ ∈ ImR⊤, there exists y′′ ∈ Rq such that R⊤y′′ = c′′ 6 c. Hence y′′ ∈ P which shows that the
dual LP is always feasible, strong duality holds and h(r) = σP (r) for all r ∈ coneR. In particular,
h(0) = 0 and h(r) is finite for all r ∈ coneR. Now let W be a finite set of points for which
P = convW +recP . Observe that recP = (coneR)◦ and r⊤u 6 0 for all r ∈ coneR and u ∈ recP .
Therefore, h(r) = σP (r) = σW (r) for all r ∈ coneR which implies that h is piecewise-linear and
sublinear on the domain coneR.

Lemma 2.4. Theorem 1.1 holds when coneR = Rq.

Proof. In this case, h is finite everywhere. Let V := {r ∈ Rq : h(r) 6 1}. Because the Slater
condition is satisfied, we have intV = {r ∈ Rq : h(r) < 1} (see, e.g., [HUL04, Prop. D.1.3.3]).
Thus V is a closed convex neighborhood of the origin and h represents V by definition.

Claim 2.1: V is S-free. Suppose this is not the case. Let r ∈ S be a point in intV . Then there
exists x > 0 such that Rx = r ∈ S and c⊤x = h(r) < 1. Because x ∈ X, this contradicts the
validity of c⊤x > 1. �

Therefore,
∑n

j=1 h(rj)xj > 1 is an S-intersection cut that can be obtained from the closed
convex S-free neighborhood V of the origin. By Remark 2.2, h(rj) 6 cj for all j ∈ [n]. This shows
that

∑n
j=1 h(rj)xj > 1 dominates c⊤x > 1.

We now consider the case where coneR ( Rq. We want to extend the definition of h to the
whole of Rq and show that this extension is a cut-generating function. We will first construct a
function h′ such that 1) h′ is finite everywhere on spanR, 2) h′ coincides with h on coneR. If
dim(R) < q, we will further extend h′ to the whole of Rq by letting h′(r) = h′(r′) for all r ∈ Rq,
r′ ∈ spanR, r′′ ∈ (spanR)⊥ such that r = r′ + r′′. Our proof of Theorem 1.1 will show that this
procedure yields a function h′ that is the desired extension of h.

Let r0 ∈ − ri(coneR) where ri(·) denotes the relative interior. Note that this guarantees cone(R∪
{r0}) = spanR since there exist ϵ > 0 and d := dim(R) linearly independent vectors a1, . . . , ad ∈
spanR such that −r0 ± ϵai ∈ coneR for all i ∈ [d] which implies ±ai ∈ cone(R ∪ {r0}). Now we
define c0 as

c0 := sup
r∈coneR

sup
α>0

h(r)− h(r + α(−r0))

α
. (5)

Lemma 2.5. c0 is finite.

Proof. Any pair r ∈ coneR and α > 0 yields a lower bound on c0: Our choice of r0 ensures
r + α(−r0) ∈ coneR and c0 > h(r)−h(r+α(−r0))

α . To get an upper bound on c0, consider the LPs
(3) and (4). Let r̃ ∈ coneR and α̃ > 0. Observe that r̃ + α̃(−r0) ∈ coneR and, as in the proof of
Lemma 2.3, one can show that both LPs are feasible when we plug in r̃+ α̃(−r0) for r. Therefore,
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strong duality holds and h(r̃ + α̃(−r0)) = σP (r̃ + α̃(−r0)) where P := {y ∈ Rq : R⊤y 6 c} is the
feasible region of (4). Let W be a finite set of points for which P = convW + recP . Because
recP = (coneR)◦, we have (r̃ + α̃(−r0))

⊤u 6 0 for all u ∈ recP . This implies σP (r̃ + α̃(−r0)) =
σW (r̃ + α̃(−r0)) and we can write

c0 = sup
r∈coneR

sup
α>0

σW (r)− σW (r + α(−r0))

α

6 sup
r∈coneR

sup
α>0

σW (αr0)

α

= σW (r0)

where we have used the sublinearity of σW in the inequality and the second equality. The conclusion
follows now from the fact that W is a finite set.

We define a sublinear function h′ over spanR:

h′(r) := min c0x0 + c⊤x
r0x0 +Rx = r,
x0 > 0, x > 0.

(6)

Lemma 2.6. The function h′ coincides with h on coneR. Furthermore, for any r ∈ coneR, (6)
admits an optimal solution of the form (0, x) ∈ R× Rn.

Proof. It is clear that h′ 6 h. Let r ∈ coneR and suppose h′(r) < h(r). Then there exists (x0, x)
satisfying r0x0 + Rx = r, x > 0, x0 > 0 and c0x0 + c⊤x < h(r). Rearranging the terms and using
Remark 2.2, we obtain

c0 <
h(r)− c⊤x

x0
6

h(r)−
∑n

j=1 h(rj)xj

x0
.

Finally, the sublinearity of h and the observation that Rx = r − r0x0 give

c0 <
h(r)−

∑n
j=1 h(xjrj)

x0
6 h(r)− h(Rx)

x0
=

h(r)− h(r − r0x0)

x0
.

This contradicts the definition of c0 and proves the first claim. Now let x̃ be an optimal solution
to (3) for r = r. We have c⊤x̃ = h(r) = h′(r) and (0, x̃) is feasible to (6). This shows that (0, x̃) is
an optimal solution to (6).

If dim(R) < q, we extend the function h′ defined in (6) to the whole of Rq by letting

h′(r) = h′(r′) for all r ∈ Rq, r′ ∈ spanR, r′′ ∈ (spanR)⊥ such that r = r′ + r′′. (7)

Proof of Theorem 1.1. Let h′ be defined as in (6) and (7) and let V ′ := {r ∈ Rq : h′(r) 6 1}.
Observe that V ′ is a closed convex neighborhood of the origin because h′ is sublinear and finite
everywhere. Furthermore, int(V ′) = {r ∈ Rq : h′(r) < 1} by the Slater property.

Claim 2.2: V ′ is S-free. Suppose this is not the case. Let r ∈ S be a point in int(V ′). By Lemma 2.6,
there exists x > 0 such that Rx = r ∈ S and c⊤x = h′(r) < 1. Because x ∈ X, this contradicts the
validity of c⊤x > 1. �

Now, by Remark 2.2 and Lemma 2.6, h′(rj) = h(rj) 6 cj for all j ∈ [n]. This shows that the
S-intersection cut

∑n
j=1 h

′(rj)xj > 1 dominates c⊤x > 1.
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3 Constructing the S-Free Convex Neighborhood of the Origin

We now give a geometric interpretation for the proof of Theorem 1.1. Again let c⊤x > 1 be a
valid inequality separating the origin from X. Assume without any loss of generality that the
vectors r1, . . . , rn have been normalized so that cj ∈ {0,±1} for all j ∈ [n]. Define the sets
J+ := {j ∈ [n] : cj = +1}, J− := {j ∈ [n] : cj = −1} and J0 := {j ∈ [n] : cj = 0}. Let
C := conv({0} ∪ {rj : j ∈ J+}) and K := cone({rj : j ∈ J0 ∪ J−} ∪ {rj + ri : j ∈ J+, i ∈ J−}).
Let Q := C + K and h be defined as in (3). One can show Q = {r ∈ Rq : h(r) 6 1}. However,
when coneR ̸= Rq, the origin lies on the boundary of Q. In the proof of Theorem 1.1, we overcame
this difficulty by extending h into a function h′ which is defined on the whole of Rq and coincides
with h on coneR. We can also follow a similar approach here. Let r0 ∈ − ri(coneR) and let c0
be as defined in (5). When c0 ̸= 0, scale r0 so that c0 ∈ {±1}. Introduce r0 into the relevant
subset of [n] according to the sign of c0: If c0 = +1, let J ′

+ := J+ ∪ {0}, J ′
0 := J0 and J ′

− := J−;
otherwise, if c0 = 0, let J ′

+ := J+, J
′
0 := J0 ∪ {0} and J ′

− := J−; otherwise (c0 = −1), let J ′
+ := J+,

J ′
0 := J0 and J ′

− := J− ∪ {0}. Finally, let C ′ := conv({0} ∪ {rj : j ∈ J ′
+}), K ′ := cone({rj : j ∈

J ′
0 ∪ J ′

−} ∪ {rj + ri : j ∈ J ′
+, i ∈ J ′

−}) and Q′ := C ′ +K ′ + (spanR)⊥. The following proposition
shows that h′ represents Q′ and Q′ can be used to generate an S-intersection cut that dominates
c⊤x > 1.

Proposition 3.1. Q′ = {r ∈ Rq : h′(r) 6 1} where h′ is defined as in (6) and (7).

Proof. Let V ′ := {r ∈ Rq : h′(r) 6 1}. Note that V ′ is convex by the sublinearity of h′. We have
h′(rj) 6 cj = 1 for all j ∈ J ′

+, h
′(rj) 6 cj 6 0 for all j ∈ J ′

0 ∪ J ′
− and h′(rj + ri) 6 h′(rj) + h′(ri) 6

cj + ci = 0 for all j ∈ J ′
+ and i ∈ J ′

−. Moreover, h′(r) = h′(r+ r′) for all r ∈ Rq and r′ ∈ (spanR)⊥

by the definition of h′. Hence C ′ ⊆ V ′, K ′ ⊆ rec(V ′) and (spanR)⊥ ⊆ lin(V ′) which together give
us Q′ = C ′ +K ′ + (spanR)⊥ ⊆ V ′.

To prove the converse, let r ∈ Rq be such that h′(r) 6 1. We consider two distinct cases:
h′(r) 6 0 and 0 < h′(r) 6 1. First, let us suppose h′(r) 6 0. Then the definition of h′ implies that
there exist (x0, x) ∈ R×Rn and r′ ∈ (spanR)⊥ such that (x0, x) > 0,

∑
j∈J ′

+
xj−

∑
i∈J ′

−
xi 6 0 and

r0x0+Rx = r−r′. It can be verified by inspection that the first two sets of inequalities define a cone
generated by the rays {ej : j ∈ J ′

0∪J ′
−}∪{ej+ei : j ∈ J ′

+, i ∈ J ′
−}. This shows r ∈ K ′+(spanR)⊥ ⊆

Q′. Now suppose 0 < h′(r) 6 1. Then there exist (x0, x) ∈ R × Rn and r′ ∈ (spanR)⊥ such that

(x0, x) > 0, 0 <
∑

j∈J ′
+
xj −

∑
i∈J ′

−
xi 6 1 and r0x0 + Rx = r − r′. Define xji := xi

xj∑
j∈J′

+
xj

for all

i ∈ J ′
− and j ∈ J ′

+. These values are well-defined since 0 6
∑

i∈J ′
−
xi <

∑
j∈J ′

+
xj . Observe that∑

j∈J ′
+
xji = xi and r0x0 +Rx =

∑
j∈J ′

+
(xj −

∑
i∈J ′

−
xji )rj +

∑
i∈J ′

−

∑
j∈J ′

+
xji (ri + rj)+

∑
j∈J ′

0
xjrj .

We have
∑

j∈J ′
+
(xj−

∑
i∈J ′

−
xji ) =

∑
j∈J ′

+
xj−

∑
i∈J ′

−
xi 6 1 together with xj−

∑
i∈J ′

−
xji > 0 which

is true for all j ∈ J ′
+ because

∑
i∈J ′

−
xji = xj

∑
i∈J′

−
xi∑

j∈J′
+

xj
< xj . Hence

∑
j∈J ′

+
(xj −

∑
i∈J ′

−
xji )rj ∈ C ′.

Moreover,
∑

i∈J ′
−

∑
j∈J ′

+
xji (ri+rj)+

∑
j∈J ′

0
xjrj ∈ K ′. These yield r ∈ C ′+K ′+(spanR)⊥ = Q′.

The proof of Theorem 1.1 shows that V ′ := {r ∈ Rq : h′(r) 6 1} is a closed convex S-free
neighborhood of the origin. Proposition 3.1 shows that Q′ = V ′. Therefore,

∑n
j=1 h

′(rj)xj > 1 is
an S-intersection cut obtained from Q′.
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