Sufficiency of Cut-Generating Functions*

Gérard Cornuéjols ${ }^{\dagger 1}$, Laurence Wolsey ${ }^{\ddagger 2}$, and Sercan Yıldız ${ }^{\S 1}$
${ }^{1}$ Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States
${ }^{2}$ CORE, Université Catholique de Louvain, Voie du Roman Pays 34, B-1348
Louvain-la-Neuve, Belgium

April 4, 2013

Abstract

This note settles an open problem about cut-generating functions, a concept that has its origin in the work of Gomory and Johnson from the 1970's and has received renewed attention in recent years.

Keywords: Mixed Integer Programming, Separation, Corner Polyhedron, Intersection Cuts Mathematics Subject Classification: 90C11, 90C26

1 Introduction

We consider sets of the form

$$
\begin{gather*}
X=X(R, S):=\left\{x \in \mathbb{R}_{+}^{n}: R x \in S\right\}, \tag{1a}\\
\text { where }\left\{\begin{array}{l}
R=\left[r_{1} \ldots r_{n}\right] \text { is a real } q \times n \text { matrix, } \\
S \subset \mathbb{R}^{q} \text { is a nonempty closed set with } 0 \notin S .
\end{array}\right. \tag{1b}
\end{gather*}
$$

This model has been studied in [Joh81] and [CCD $\left.{ }^{+} 13\right]$. It appears in cutting plane theory [Gom69, GJ72, ALWW07, JSRF06] where the goal is to generate inequalities that are valid for X but not for the origin. Such cutting planes are well-defined $\left[\mathrm{CCD}^{+} 13\right.$, Lemma 2.1] and can be written as

$$
\begin{equation*}
c^{\top} x \geqslant 1 . \tag{2}
\end{equation*}
$$

Let $S \subset \mathbb{R}^{q}$ be a given nonempty closed set with $0 \notin S$. The set S is assumed to be fixed in this paragraph. $\left[\mathrm{CCD}^{+} 13\right]$ introduce the notion of a cut-generating function: This is any function ρ : $\mathbb{R}^{q} \mapsto \mathbb{R}$ that produces coefficients $c_{j}:=\rho\left(r_{j}\right)$ of a cut (2) valid for $X(R, S)$ for any choice of n and

[^0]$R=\left[r_{1} \ldots r_{n}\right]$. It is shown in $\left[\mathrm{CCD}^{+} 13\right]$ that cut-generating functions enjoy significant structure. For instance, the minimal ones are sublinear and are closely related to S-free neighborhoods of the origin. We say that a closed convex set is S-free if it contains no point of S in its interior. For any minimal cut-generating function ρ, there exists a closed convex S-free set $V \subset \mathbb{R}^{q}$ such that $0 \in$ int V and $V=\left\{r \in \mathbb{R}^{q}: \rho(r) \leqslant 1\right\}$. A cut (2) with coefficients $c_{j}:=\rho\left(r_{j}\right)$ is called an S-intersection cut.

Now assume that both S and R are fixed. Noting $X(R, S) \subset \mathbb{R}_{+}^{n}$, we say that a cutting plane $c^{\top} x \geqslant 1$ dominates $b^{\top} x \geqslant 1$ if $c_{j} \leqslant b_{j}$ for $j \in[n]$. A natural question is whether every cut (2) valid for $X(R, S)$ is dominated by an S-intersection cut. [CCD $\left.{ }^{+} 13\right]$ give an example showing that this is not always the case. However, this example has the peculiarity that S contains points that cannot be obtained as $R x$ for any $x \in \mathbb{R}_{+}^{n} \cdot\left[\mathrm{CCD}^{+} 13\right]$ propose the following open problem: Assuming $S \subset$ cone R, is it true that every cut (2) valid for $X(R, S)$ is dominated by an S-intersection cut? Our main theorem shows that this is indeed the case. This generalizes the main result of [CCZ10] and Theorem 6.3 in $\left[\mathrm{CCD}^{+} 13\right]$.

Theorem 1.1. Suppose $S \subset$ cone R. Then any valid inequality $c^{\top} x \geqslant 1$ separating the origin from X is dominated by an S-intersection cut.

2 Proof of the Main Theorem

Our proof of Theorem 1.1 will use several lemmas. We first introduce some terminology. Given a convex cone $K \subseteq \mathbb{R}^{d}$, let $K^{\circ}:=\left\{w \in \mathbb{R}^{d}: u^{\top} w \leqslant 0, \forall u \in K\right\}$ (resp. $K^{*}:=\left\{w \in \mathbb{R}^{d}\right.$: $\left.u^{\top} w \geqslant 0, \forall u \in K\right\}$) denote the polar (resp. dual) of K. Let $\sigma_{W}(u):=\sup _{w \in W} u^{\top} w$ be the support function of a set $W \subseteq \mathbb{R}^{d}$. A function $\rho: \mathbb{R}^{d} \mapsto \mathbb{R} \cup\{+\infty\}$ is said to be positively homogeneous if $\rho(\lambda u)=\lambda \rho(u)$ for all $\lambda>0$ and $u \in \mathbb{R}^{d}$ and subadditive if $\rho\left(u_{1}\right)+\rho\left(u_{2}\right) \geqslant \rho\left(u_{1}+u_{2}\right)$ for all $u_{1}, u_{2} \in \mathbb{R}^{d}$. Moreover, ρ is sublinear if it is both positively homogeneous and subadditive. Sublinear functions are known to be convex and it is not difficult to show that support functions are sublinear (see, e.g., [HUL04, Chapter C]). Given a closed convex neighborhood V of the origin, a representation of V is any sublinear function $\rho: \mathbb{R}^{q} \mapsto \mathbb{R}$ such that $V=\left\{r \in \mathbb{R}^{q}: \rho(r) \leqslant 1\right\}$. S-intersection cuts are generated via representations of closed convex S-free neighborhoods of the origin.

Throughout this section, we assume that $X \neq \emptyset$ and $c^{\top} x \geqslant 1$ is a valid inequality separating the origin from X.

Lemma 2.1. If $u \in \mathbb{R}_{+}^{n}$ and $R u=0$, then $c^{\top} u \geqslant 0$, or, equivalently, $c \in \mathbb{R}_{+}^{n}+\operatorname{Im} R^{\top}$.
Proof. Let $\bar{x} \in X$. Note that $R(\bar{x}+t u)=R \bar{x} \in S$ and $\bar{x}+t u \geqslant 0$ for all $t \geqslant 0$. By the validity of c, we have $c^{\top}(\bar{x}+t u) \geqslant 1$ for all $t \geqslant 0$. Observing $t c^{\top} u \geqslant 1-c^{\top} \bar{x}$ and letting $t \rightarrow+\infty$ implies $c^{\top} u \geqslant 0$ as desired. Because u is an arbitrary vector in $\mathbb{R}_{+}^{n} \cap \operatorname{Ker} R$, we can write $c \in\left(\mathbb{R}_{+}^{n} \cap \operatorname{Ker} R\right)^{*}$. The equality $\left(\mathbb{R}_{+}^{n} \cap \operatorname{Ker} R\right)^{*}=\mathbb{R}_{+}^{n}+\operatorname{Im} R^{\top}$ follows from the facts $\left(\mathbb{R}_{+}^{n}\right)^{*}=\mathbb{R}_{+}^{n},(\operatorname{Ker} R)^{*}=\operatorname{Im} R^{\top}$ and $\mathbb{R}_{+}^{n}+\operatorname{Im} R^{\top}$ is closed (see, e.g., [Roc70, Cor. 16.4.2]).

Let

$$
\begin{array}{ll}
h(r):=\min & c^{\top} x \\
& R x=r \tag{3}\\
& x \geqslant 0
\end{array}
$$

Remark 2.2. $h\left(r_{j}\right) \leqslant c_{j}$ for all $j \in[n]$.
Lemma 2.3. h is a piecewise-linear sublinear function on the domain cone R.
Proof. The domain of h must be a subset of cone R because (3) is infeasible for $r \notin$ cone R. The dual of (3) is

$$
\begin{array}{ll}
\max & r^{\top} y \\
& R^{\top} y \leqslant c . \tag{4}
\end{array}
$$

Let $P:=\left\{y \in \mathbb{R}^{q}: R^{\top} y \leqslant c\right\}$. By Lemma 2.1, $c=c^{\prime}+c^{\prime \prime}$ where $c^{\prime} \in \mathbb{R}_{+}^{n}$ and $c^{\prime \prime} \in \operatorname{Im} R^{\top}$. Because $c^{\prime \prime} \in \operatorname{Im} R^{\top}$, there exists $y^{\prime \prime} \in \mathbb{R}^{q}$ such that $R^{\top} y^{\prime \prime}=c^{\prime \prime} \leqslant c$. Hence $y^{\prime \prime} \in P$ which shows that the dual LP is always feasible, strong duality holds and $h(r)=\sigma_{P}(r)$ for all $r \in$ cone R. In particular, $h(0)=0$ and $h(r)$ is finite for all $r \in$ cone R. Now let W be a finite set of points for which $P=\operatorname{conv} W+\operatorname{rec} P$. Observe that rec $P=(\operatorname{cone} R)^{\circ}$ and $r^{\top} u \leqslant 0$ for all $r \in \operatorname{cone} R$ and $u \in \operatorname{rec} P$. Therefore, $h(r)=\sigma_{P}(r)=\sigma_{W}(r)$ for all $r \in$ cone R which implies that h is piecewise-linear and sublinear on the domain cone R.

Lemma 2.4. Theorem 1.1 holds when cone $R=\mathbb{R}^{q}$.
Proof. In this case, h is finite everywhere. Let $V:=\left\{r \in \mathbb{R}^{q}: h(r) \leqslant 1\right\}$. Because the Slater condition is satisfied, we have $\operatorname{int} V=\left\{r \in \mathbb{R}^{q}: h(r)<1\right\}$ (see, e.g., [HUL04, Prop. D.1.3.3]). Thus V is a closed convex neighborhood of the origin and h represents V by definition.
Claim 2.1: V is S-free. Suppose this is not the case. Let $\bar{r} \in S$ be a point in int V. Then there exists $\bar{x} \geqslant 0$ such that $R \bar{x}=\bar{r} \in S$ and $c^{\top} \bar{x}=h(\bar{r})<1$. Because $\bar{x} \in X$, this contradicts the validity of $c^{\top} x \geqslant 1$.

Therefore, $\sum_{j=1}^{n} h\left(r_{j}\right) x_{j} \geqslant 1$ is an S-intersection cut that can be obtained from the closed convex S-free neighborhood V of the origin. By Remark $2.2, h\left(r_{j}\right) \leqslant c_{j}$ for all $j \in[n]$. This shows that $\sum_{j=1}^{n} h\left(r_{j}\right) x_{j} \geqslant 1$ dominates $c^{\top} x \geqslant 1$.

We now consider the case where cone $R \subsetneq \mathbb{R}^{q}$. We want to extend the definition of h to the whole of \mathbb{R}^{q} and show that this extension is a cut-generating function. We will first construct a function h^{\prime} such that 1) h^{\prime} is finite everywhere on $\left.\operatorname{span} R, 2\right) h^{\prime}$ coincides with h on cone R. If $\operatorname{dim}(R)<q$, we will further extend h^{\prime} to the whole of \mathbb{R}^{q} by letting $h^{\prime}(r)=h^{\prime}\left(r^{\prime}\right)$ for all $r \in \mathbb{R}^{q}$, $r^{\prime} \in \operatorname{span} R, r^{\prime \prime} \in(\operatorname{span} R)^{\perp}$ such that $r=r^{\prime}+r^{\prime \prime}$. Our proof of Theorem 1.1 will show that this procedure yields a function h^{\prime} that is the desired extension of h.

Let $r_{0} \in-\operatorname{ri}($ cone $R)$ where $\mathrm{ri}(\cdot)$ denotes the relative interior. Note that this guarantees cone $(R \cup$ $\left.\left\{r_{0}\right\}\right)=\operatorname{span} R$ since there exist $\epsilon>0$ and $d:=\operatorname{dim}(R)$ linearly independent vectors $a_{1}, \ldots, a_{d} \in$ span R such that $-r_{0} \pm \epsilon a_{i} \in$ cone R for all $i \in[d]$ which implies $\pm a_{i} \in \operatorname{cone}\left(R \cup\left\{r_{0}\right\}\right)$. Now we define c_{0} as

$$
\begin{equation*}
c_{0}:=\sup _{r \in \text { cone } R} \sup _{\alpha>0} \frac{h(r)-h\left(r+\alpha\left(-r_{0}\right)\right)}{\alpha} . \tag{5}
\end{equation*}
$$

Lemma 2.5. c_{0} is finite.
Proof. Any pair $\bar{r} \in$ cone R and $\bar{\alpha}>0$ yields a lower bound on c_{0} : Our choice of r_{0} ensures $\bar{r}+\bar{\alpha}\left(-r_{0}\right) \in$ cone R and $c_{0} \geqslant \frac{h(\bar{r})-h\left(\bar{r}+\bar{\alpha}\left(-r_{0}\right)\right)}{\bar{\alpha}}$. To get an upper bound on c_{0}, consider the LPs (3) and (4). Let $\tilde{r} \in$ cone R and $\tilde{\alpha} \geqslant 0$. Observe that $\tilde{r}+\tilde{\alpha}\left(-r_{0}\right) \in$ cone R and, as in the proof of Lemma 2.3, one can show that both LPs are feasible when we plug in $\tilde{r}+\tilde{\alpha}\left(-r_{0}\right)$ for r. Therefore,
strong duality holds and $h\left(\tilde{r}+\tilde{\alpha}\left(-r_{0}\right)\right)=\sigma_{P}\left(\tilde{r}+\tilde{\alpha}\left(-r_{0}\right)\right)$ where $P:=\left\{y \in \mathbb{R}^{q}: R^{\top} y \leqslant c\right\}$ is the feasible region of (4). Let W be a finite set of points for which $P=\operatorname{conv} W+\operatorname{rec} P$. Because $\operatorname{rec} P=(\text { cone } R)^{\circ}$, we have $\left(\tilde{r}+\tilde{\alpha}\left(-r_{0}\right)\right)^{\top} u \leqslant 0$ for all $u \in \operatorname{rec} P$. This implies $\sigma_{P}\left(\tilde{r}+\tilde{\alpha}\left(-r_{0}\right)\right)=$ $\sigma_{W}\left(\tilde{r}+\tilde{\alpha}\left(-r_{0}\right)\right)$ and we can write

$$
\begin{aligned}
c_{0} & =\sup _{r \in \operatorname{cone} R} \sup _{\alpha>0} \frac{\sigma_{W}(r)-\sigma_{W}\left(r+\alpha\left(-r_{0}\right)\right)}{\alpha} \\
& \leqslant \sup _{r \in \operatorname{cone} R} \sup _{\alpha>0} \frac{\sigma_{W}\left(\alpha r_{0}\right)}{\alpha} \\
& =\sigma_{W}\left(r_{0}\right)
\end{aligned}
$$

where we have used the sublinearity of σ_{W} in the inequality and the second equality. The conclusion follows now from the fact that W is a finite set.

We define a sublinear function h^{\prime} over $\operatorname{span} R$:

$$
\begin{array}{ll}
h^{\prime}(r):=\min & c_{0} x_{0}+c^{\top} x \\
& r_{0} x_{0}+R x=r \tag{6}\\
& x_{0} \geqslant 0, x \geqslant 0
\end{array}
$$

Lemma 2.6. The function h^{\prime} coincides with h on cone R. Furthermore, for any $r \in \operatorname{cone} R$, (6) admits an optimal solution of the form $(0, x) \in \mathbb{R} \times \mathbb{R}^{n}$.

Proof. It is clear that $h^{\prime} \leqslant h$. Let $\bar{r} \in$ cone R and suppose $h^{\prime}(\bar{r})<h(\bar{r})$. Then there exists $\left(\bar{x}_{0}, \bar{x}\right)$ satisfying $r_{0} \bar{x}_{0}+R \bar{x}=\bar{r}, \bar{x} \geqslant 0, \bar{x}_{0}>0$ and $c_{0} \bar{x}_{0}+c^{\top} \bar{x}<h(\bar{r})$. Rearranging the terms and using Remark 2.2, we obtain

$$
c_{0}<\frac{h(\bar{r})-c^{\top} \bar{x}}{\bar{x}_{0}} \leqslant \frac{h(\bar{r})-\sum_{j=1}^{n} h\left(r_{j}\right) \bar{x}_{j}}{\bar{x}_{0}}
$$

Finally, the sublinearity of h and the observation that $R \bar{x}=\bar{r}-r_{0} \bar{x}_{0}$ give

$$
c_{0}<\frac{h(\bar{r})-\sum_{j=1}^{n} h\left(\bar{x}_{j} r_{j}\right)}{\bar{x}_{0}} \leqslant \frac{h(\bar{r})-h(R \bar{x})}{\bar{x}_{0}}=\frac{h(\bar{r})-h\left(\bar{r}-r_{0} \bar{x}_{0}\right)}{\bar{x}_{0}}
$$

This contradicts the definition of c_{0} and proves the first claim. Now let \tilde{x} be an optimal solution to (3) for $r=\bar{r}$. We have $c^{\top} \tilde{x}=h(\bar{r})=h^{\prime}(\bar{r})$ and $(0, \tilde{x})$ is feasible to (6). This shows that $(0, \tilde{x})$ is an optimal solution to (6).

If $\operatorname{dim}(R)<q$, we extend the function h^{\prime} defined in (6) to the whole of \mathbb{R}^{q} by letting

$$
\begin{equation*}
h^{\prime}(r)=h^{\prime}\left(r^{\prime}\right) \text { for all } r \in \mathbb{R}^{q}, r^{\prime} \in \operatorname{span} R, r^{\prime \prime} \in(\operatorname{span} R)^{\perp} \text { such that } r=r^{\prime}+r^{\prime \prime} \tag{7}
\end{equation*}
$$

Proof of Theorem 1.1. Let h^{\prime} be defined as in (6) and (7) and let $V^{\prime}:=\left\{r \in \mathbb{R}^{q}: h^{\prime}(r) \leqslant 1\right\}$. Observe that V^{\prime} is a closed convex neighborhood of the origin because h^{\prime} is sublinear and finite everywhere. Furthermore, $\operatorname{int}\left(V^{\prime}\right)=\left\{r \in \mathbb{R}^{q}: h^{\prime}(r)<1\right\}$ by the Slater property.
Claim 2.2: V^{\prime} is S-free. Suppose this is not the case. Let $\bar{r} \in S$ be a point in $\operatorname{int}\left(V^{\prime}\right)$. By Lemma 2.6, there exists $\bar{x} \geqslant 0$ such that $R \bar{x}=\bar{r} \in S$ and $c^{\top} \bar{x}=h^{\prime}(\bar{r})<1$. Because $\bar{x} \in X$, this contradicts the validity of $c^{\top} x \geqslant 1$.

Now, by Remark 2.2 and Lemma $2.6, h^{\prime}\left(r_{j}\right)=h\left(r_{j}\right) \leqslant c_{j}$ for all $j \in[n]$. This shows that the S-intersection cut $\sum_{j=1}^{n} h^{\prime}\left(r_{j}\right) x_{j} \geqslant 1$ dominates $c^{\top} x \geqslant 1$.

3 Constructing the S-Free Convex Neighborhood of the Origin

We now give a geometric interpretation for the proof of Theorem 1.1. Again let $c^{\top} x \geqslant 1$ be a valid inequality separating the origin from X. Assume without any loss of generality that the vectors r_{1}, \ldots, r_{n} have been normalized so that $c_{j} \in\{0, \pm 1\}$ for all $j \in[n]$. Define the sets $J_{+}:=\left\{j \in[n]: c_{j}=+1\right\}, J_{-}:=\left\{j \in[n]: c_{j}=-1\right\}$ and $J_{0}:=\left\{j \in[n]: c_{j}=0\right\}$. Let $C:=\operatorname{conv}\left(\{0\} \cup\left\{r_{j}: j \in J_{+}\right\}\right)$and $K:=\operatorname{cone}\left(\left\{r_{j}: j \in J_{0} \cup J_{-}\right\} \cup\left\{r_{j}+r_{i}: j \in J_{+}, i \in J_{-}\right\}\right)$. Let $Q:=C+K$ and h be defined as in (3). One can show $Q=\left\{r \in \mathbb{R}^{q}: h(r) \leqslant 1\right\}$. However, when cone $R \neq \mathbb{R}^{q}$, the origin lies on the boundary of Q. In the proof of Theorem 1.1, we overcame this difficulty by extending h into a function h^{\prime} which is defined on the whole of \mathbb{R}^{q} and coincides with h on cone R. We can also follow a similar approach here. Let $r_{0} \in-\operatorname{ri}($ cone $R)$ and let c_{0} be as defined in (5). When $c_{0} \neq 0$, scale r_{0} so that $c_{0} \in\{ \pm 1\}$. Introduce r_{0} into the relevant subset of $[n]$ according to the sign of c_{0} : If $c_{0}=+1$, let $J_{+}^{\prime}:=J_{+} \cup\{0\}, J_{0}^{\prime}:=J_{0}$ and $J_{-}^{\prime}:=J_{-}$; otherwise, if $c_{0}=0$, let $J_{+}^{\prime}:=J_{+}, J_{0}^{\prime}:=J_{0} \cup\{0\}$ and $J_{-}^{\prime}:=J_{-}$; otherwise $\left(c_{0}=-1\right)$, let $J_{+}^{\prime}:=J_{+}$, $J_{0}^{\prime}:=J_{0}$ and $J_{-}^{\prime}:=J_{-} \cup\{0\}$. Finally, let $C^{\prime}:=\operatorname{conv}\left(\{0\} \cup\left\{r_{j}: j \in J_{+}^{\prime}\right\}\right), K^{\prime}:=\operatorname{cone}\left(\left\{r_{j}: j \in\right.\right.$ $\left.\left.J_{0}^{\prime} \cup J_{-}^{\prime}\right\} \cup\left\{r_{j}+r_{i}: j \in J_{+}^{\prime}, i \in J_{-}^{\prime}\right\}\right)$ and $Q^{\prime}:=C^{\prime}+K^{\prime}+(\operatorname{span} R)^{\perp}$. The following proposition shows that h^{\prime} represents Q^{\prime} and Q^{\prime} can be used to generate an S-intersection cut that dominates $c^{\top} x \geqslant 1$.

Proposition 3.1. $Q^{\prime}=\left\{r \in \mathbb{R}^{q}: h^{\prime}(r) \leqslant 1\right\}$ where h^{\prime} is defined as in (6) and (7).
Proof. Let $V^{\prime}:=\left\{r \in \mathbb{R}^{q}: h^{\prime}(r) \leqslant 1\right\}$. Note that V^{\prime} is convex by the sublinearity of h^{\prime}. We have $h^{\prime}\left(r_{j}\right) \leqslant c_{j}=1$ for all $j \in J_{+}^{\prime}, h^{\prime}\left(r_{j}\right) \leqslant c_{j} \leqslant 0$ for all $j \in J_{0}^{\prime} \cup J_{-}^{\prime}$ and $h^{\prime}\left(r_{j}+r_{i}\right) \leqslant h^{\prime}\left(r_{j}\right)+h^{\prime}\left(r_{i}\right) \leqslant$ $c_{j}+c_{i}=0$ for all $j \in J_{+}^{\prime}$ and $i \in J_{-}^{\prime}$. Moreover, $h^{\prime}(r)=h^{\prime}\left(r+r^{\prime}\right)$ for all $r \in \mathbb{R}^{q}$ and $r^{\prime} \in(\operatorname{span} R)^{\perp}$ by the definition of h^{\prime}. Hence $C^{\prime} \subseteq V^{\prime}, K^{\prime} \subseteq \operatorname{rec}\left(V^{\prime}\right)$ and $(\operatorname{span} R)^{\perp} \subseteq \operatorname{lin}\left(V^{\prime}\right)$ which together give us $Q^{\prime}=C^{\prime}+K^{\prime}+(\operatorname{span} R)^{\perp} \subseteq V^{\prime}$.

To prove the converse, let $\bar{r} \in \mathbb{R}^{q}$ be such that $h^{\prime}(\bar{r}) \leqslant 1$. We consider two distinct cases: $h^{\prime}(\bar{r}) \leqslant 0$ and $0<h^{\prime}(\bar{r}) \leqslant 1$. First, let us suppose $h^{\prime}(\bar{r}) \leqslant 0$. Then the definition of h^{\prime} implies that there exist $\left(\bar{x}_{0}, \bar{x}\right) \in \mathbb{R} \times \mathbb{R}^{n}$ and $\bar{r}^{\prime} \in(\operatorname{span} R)^{\perp}$ such that $\left(\bar{x}_{0}, \bar{x}\right) \geqslant 0, \sum_{j \in J_{+}^{\prime}} \bar{x}_{j}-\sum_{i \in J_{-}^{\prime}} \bar{x}_{i} \leqslant 0$ and $r_{0} \bar{x}_{0}+R \bar{x}=\bar{r}-\bar{r}^{\prime}$. It can be verified by inspection that the first two sets of inequalities define a cone generated by the rays $\left\{e_{j}: j \in J_{0}^{\prime} \cup J_{-}^{\prime}\right\} \cup\left\{e_{j}+e_{i}: j \in J_{+}^{\prime}, i \in J_{-}^{\prime}\right\}$. This shows $\bar{r} \in K^{\prime}+(\operatorname{span} R)^{\perp} \subseteq$ Q^{\prime}. Now suppose $0<h^{\prime}(\bar{r}) \leqslant 1$. Then there exist $\left(\bar{x}_{0}, \bar{x}\right) \in \mathbb{R} \times \mathbb{R}^{n}$ and $\bar{r}^{\prime} \in(\operatorname{span} R)^{\perp}$ such that $\left(\bar{x}_{0}, \bar{x}\right) \geqslant 0,0<\sum_{j \in J_{+}^{\prime}} \bar{x}_{j}-\sum_{i \in J_{-}^{\prime}} \bar{x}_{i} \leqslant 1$ and $r_{0} \bar{x}_{0}+R \bar{x}=\bar{r}-\bar{r}^{\prime}$. Define $\bar{x}_{i}^{j}:=\bar{x}_{i} \frac{\bar{x}_{j}}{\sum_{j \in J_{+}^{\prime}} \bar{x}_{j}}$ for all $i \in J_{-}^{\prime}$ and $j \in J_{+}^{\prime}$. These values are well-defined since $0 \leqslant \sum_{i \in J_{-}^{\prime}} \bar{x}_{i}<\sum_{j \in J_{+}^{\prime}} \bar{x}_{j}$. Observe that $\sum_{j \in J_{+}^{\prime}} \bar{x}_{i}^{j}=\bar{x}_{i}$ and $r_{0} \bar{x}_{0}+R \bar{x}=\sum_{j \in J_{+}^{\prime}}\left(\bar{x}_{j}-\sum_{i \in J_{-}^{\prime}} \bar{x}_{i}^{j}\right) r_{j}+\sum_{i \in J_{-}^{\prime}} \sum_{j \in J_{+}^{\prime}} \bar{x}_{i}^{j}\left(r_{i}+r_{j}\right)+\sum_{j \in J_{0}^{\prime}} \bar{x}_{j} r_{j}$. We have $\sum_{j \in J_{+}^{\prime}}\left(\bar{x}_{j}-\sum_{i \in J_{-}^{\prime}} \bar{x}_{i}^{j}\right)=\sum_{j \in J_{+}^{\prime}} \bar{x}_{j}-\sum_{i \in J_{-}^{\prime}} \bar{x}_{i} \leqslant 1$ together with $\bar{x}_{j}-\sum_{i \in J_{-}^{\prime}} \bar{x}_{i}^{j}>0$ which is true for all $j \in J_{+}^{\prime}$ because $\sum_{i \in J_{-}^{\prime}} \bar{x}_{i}^{j}=\bar{x}_{j} \frac{\sum_{i \in J_{-}^{\prime}} \bar{x}_{i}}{\sum_{j \in J_{+}^{\prime}} \bar{x}_{j}}<\bar{x}_{j}$. Hence $\sum_{j \in J_{+}^{\prime}}\left(\bar{x}_{j}-\sum_{i \in J_{-}^{\prime}} \bar{x}_{i}^{j}\right) r_{j} \in C^{\prime}$. Moreover, $\sum_{i \in J_{-}^{\prime}} \sum_{j \in J_{+}^{\prime}} \bar{x}_{i}^{j}\left(r_{i}+r_{j}\right)+\sum_{j \in J_{0}^{\prime}} \bar{x}_{j} r_{j} \in K^{\prime}$. These yield $\bar{r} \in C^{\prime}+K^{\prime}+(\operatorname{span} R)^{\perp}=Q^{\prime}$.

The proof of Theorem 1.1 shows that $V^{\prime}:=\left\{r \in \mathbb{R}^{q}: h^{\prime}(r) \leqslant 1\right\}$ is a closed convex S-free neighborhood of the origin. Proposition 3.1 shows that $Q^{\prime}=V^{\prime}$. Therefore, $\sum_{j=1}^{n} h^{\prime}\left(r_{j}\right) x_{j} \geqslant 1$ is an S-intersection cut obtained from Q^{\prime}.

References

[ALWW07] K. Andersen, Q. Louveaux, R. Weismantel, and L.A. Wolsey. Cutting planes from two rows of a simplex tableau. In Proceedings of IPCO XII, volume 4513 of Lecture Notes in Computer Science, pages 1-15, Ithaca, New York, June 2007.
$\left[\mathrm{CCD}^{+} 13\right]$ M. Conforti, G. Cornuéjols, A. Daniilidis, C. Lemaréchal, and J. Malick. Cut-generating functions and S-free sets. February 2013. Working Paper.
[CCZ10] M. Conforti, G. Cornuéjols, and G. Zambelli. Equivalence between intersection cuts and the corner polyhedron. Operations Research Letters, 38:153-155, 2010.
[GJ72] R.E. Gomory and E.L. Johnson. Some continuous functions related to corner polyhedra. Mathematical Programming, 3:23-85, 1972.
[Gom69] R.G. Gomory. Some polyhedra related to combinatorial problems. Linear Algebra and Applications, 2:451-558, 1969.
[HUL04] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Grundlehren Text Editions. Springer, Berlin, 2004.
[Joh81] E.L. Johnson. Characterization of facets for multiple right-hand side choice linear programs. Mathematical Programming Study, 14:112-142, 1981.
[JSRF06] J.J. Júdice, H. Sherali, I.M. Ribeiro, and A.M. Faustino. A complementarity-based partitioning and disjunctive cut algorithm for mathematical programming problems with equilibrium constraints. Journal of Global Optimization, 136:89-114, 2006.
[Roc70] R.T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, New Jersey, 1970.

[^0]: *This work was supported in part by NSF grant CMMI1024554 and ONR grant N00014-09-1-0033.
 ${ }^{\dagger} \mathrm{gc} 0 \mathrm{v} @$ andrew.cmu.edu
 ${ }^{\ddagger}$ laurence.wolsey@uclouvain.be
 ${ }^{\text {§ }}$ syildiz@andrew.cmu.edu

