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Abstract

The most important open conjecture in the context of the matroid secretary problem claims the
existence of an O(1)-competitive algorithm applicable to any matroid. Whereas this conjecture remains
open, modified forms of it have been shown to be true, when assuming that the assignment of weights
to the secretaries is not adversarial but uniformly at random [25, 22]. However, so far, no variant of the
matroid secretary problem with adversarial weight assignment is known that admits an O(1)-competitive
algorithm. We address this point by presenting a 4-competitive procedure for the free order model, a
model suggested shortly after the introduction of the matroid secretary problem, and for which no
O(1)-competitive algorithm was known so far. The free order model is a relaxed version of the original
matroid secretary problem, with the only difference that one can choose the order in which secretaries
are interviewed.

Furthermore, we consider the classical matroid secretary problem for the special case of laminar
matroids. Only recently, an O(1)-competitive algorithm has been found for this case, using a clever but
rather involved method and analysis [13] that leads to a competitive ratio of 16000/3. This is arguably
one of the most involved special cases of the matroid secretary problem for which an O(1)-competitive
algorithm is known. We present a considerably simpler and stronger 3

√
3e ≈ 14.12-competitive procedure,

based on reducing the problem to a matroid secretary problem on a partition matroid. Furthermore, our
procedure is order-oblivious, which, as shown in [1], allows for transforming it into a 3

√
3e-competitive

algorithm for single-sample prophet inequalities.

1 Introduction

The secretary problem is a classical online selection problem of unclear origin [7, 9, 10, 11, 19]. In its original
form, the task is to choose the best out of n secretaries, also called elements or items. Secretaries arrive
(or are interviewed) one by one in random order. As soon as a secretary arrives, she can be ranked against
all previously seen secretaries. Then, before the next one arrives, one has to decide irrevocably whether
to choose the current secretary or not. There is a classical algorithm that selects the best secretary with
probability 1/e [7], and this is known to be asymptotically optimal. In its initial form, the secretary problem
was essentially a stopping time problem, and not surprisingly, it mainly attracted the interest of probabilists.

Recently, secretary problems enjoyed a revival, and various generalizations have been studied. These
developments are strongly motivated by a close connection to online mechanism design, where a good is
sold to agents arriving online [16, 2]. Here, the agents correspond to the secretaries and they reveal prices
that they are willing to pay in exchange for goods. This leads to secretary problems where more than one
secretary can be chosen. The most canonical generalization asks to hire k out of n secretaries, each revealing
a non-negative weight upon arrival, and the goal is to hire a maximum weight subset of k secretaries. This
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1 INTRODUCTION 2

interesting variant was introduced and studied by Kleinberg [16], who presented a (1−O(1/
√
k))-competitive

algorithm for this setting. However, in many applications, additional constraints have to be imposed on the
elements that can be chosen. A very general class of constrained secretary problems, where the chosen
elements have to form an independent set of a given matroid M = (N, I), was introduced by Babaioff,
Immorlica and Kleinberg [2]1. This setting, now generally termed matroid secretary problem, covers at the
same time many interesting cases and has a rich structure that can be exploited to design algorithms with
strong competitive ratios.

To give a concrete example of a matroid secretary problem, and to motivate some of our results, consider
the following connection problem. Given is an undirected graph G = (V,E), representing a communication
network, with non-negative edge-capacities c : E → Z≥0 and a server r ∈ V . Clients, which are the equivalent
of candidates in the secretary problem, reside at vertices of the graph and are interested in being connected
to the server r via a unit-capacity path. The number of clients and their locations are known. Each client
has a price that she is willing to pay to connect to the server. These prices are unknown and no assumptions
are made on them except for being non-negative. Clients then reveal themselves one by one in random order,
announcing their price. Whenever a client reveals herself, the network operator has to decide irrevocably
before the next client appears whether to serve this client and receive the announced price. The goal is to
choose a maximum weight subset of clients that can be served simultaneously without exceeding the given
capacities c. It is well-known that the constraints imposed by the limited capacity on the clients that can
be chosen is a special type of matroid constraint, namely a gammoid constraint [23].

For the classical matroid secretary problem, as discussed above, the currently asymptotically best com-
petitive algorithm is an O(

√
log ρ)-competitive method by Chakraborty and Lachish [4], where ρ is the rank

of the matroid. This improved on an earlier O(log ρ)-competitive algorithm of Babaioff, Immorlica and
Kleinberg [2]. Babaioff et al. [2] asked about the existence of an O(1)-competitive algorithm for the matroid
secretary problem. This question remains open and is arguably the currently most important open question
regarding the matroid secretary problem.

Motivated by this conjecture, many interesting advances have been made to obtain O(1)-competitive
methods, either for special cases of the matroid secretary problem or variants thereof. In particular, O(1)-
competitive algorithms have been found for graphic matroids [2, 18] (currently best competitive ratio: 2e),
transversal matroids [2, 5, 18] (8-competitive), co-graphic matroids [25] (3e-competitive), linear matroids with
at most k non-zero entries per column [25] (ke-competitive), laminar matroids [13] (16000/3-competitive),
regular matroids (9e-competitive) [6], and some types of decomposable matroids, including max-flow min-cut
matroids [6] (9e-competitive). For most of the above special cases, strong competitive algorithms have been
found, typically based on very elegant techniques. However for the laminar matroid, only a considerably
higher competitive ratio is known due to Im and Wang [13], using a very clever but quite involved method
and analysis.

Furthermore, variants of the matroid secretary problem have been investigated that assume random
instead of adversarial assignment of the weights, and for which O(1)-competitive algorithms can be obtained
without any restriction on the underlying matroid. Recall that the classical matroid secretary problem does
not make any assumptions on how weights are assigned to the elements, which means that we have to assume
a worst-case, i.e., adversarial, weight assignment. However, the order in which the elements reveal themselves
is assumed to be random. Soto [25] considered the variant where not only the arrival order of the elements
is assumed to be uniformly random but also the assignment of the weights to the elements, and presented
a 5.7187-competitive algorithm for this case. More precisely, in this model, the weights can still be chosen
by an adversary, but are then assigned uniformly at random to the elements of the matroid. Building upon
earlier work of Soto [24], Vondrák and Oveis Gharan [22] showed that a 40e/(e − 1)-competitive algorithm
can even be obtained when the arrival order of the elements is adversarial and the assignment of weights
remains uniformly at random. This was later improved to a 16e/(e− 1)-competitive algorithm by Soto [25].
Hence, this model is somehow the opposite of the classical matroid secretary problem, where assignment is
adversarial and arrival order is random.

However, so far, no progress has been made in variants with adversarial assignment. One such variant,
suggested shortly after the introduction of the matroid secretary problem [17], assumes that the appearance

1A matroid M = (N, I) consists of a finite set N , called the ground set, and a non-empty family I ⊆ 2N of subsets of N ,
called independent sets, satisfying: (i) I ∈ I, J ⊆ I ⇒ J ∈ I, and (ii) I, J ∈ I, |I| > |J | ⇒ ∃f ∈ I \ J with J ∪ {f} ∈ I. For
more information on matroids we refer the reader to [23].
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order of elements can be chosen by the algorithm. More precisely, in this model, which we call the free order
model, whenever a next element has to reveal itself, the algorithm can choose the element to be revealed. For
example, in the above network connection problem, one could decide at each step which is the next client to
reveal its price, by using for this decision the network structure and the elements observed so far. A main
further complication when dealing with adversarial assignments—as in the free order model—contrary to
random assignment, is that the knowledge of the initial structure of the matroid seems to be of little help.
This is due to the fact that an adversary can assign a weight of zero to most elements of the matroid, and
only give a non-negative weight to a selected subset A ⊆ N of elements. Hence, the problem essentially
reduces to the restriction M |A of the matroid M over the elements A. However, the structure of M |A is
essentially impossible to guess from M . This is in stark contrast to models with random assignment, e.g., in
the model considered by Soto, the mentioned 2e2/(e− 1)-competitive algorithm exploits the given structure
of the matroid M , by partitioning N and solving a standard single secretary problem on each part of the
partition. Different approaches are needed for adversarial weight assignments.

In this paper we are interested in the following two questions. First, is there an O(1)-competitive
algorithm for the free order model? Second, can we get a better understanding of the laminar case of the
classical secretary problem, with the goal to find considerably stronger and simpler procedures?

As is common in this context, we use competitive analysis to judge the quality of algorithms. More
precisely, an algorithm is c-competitive if it returns a (random) solution whose expected value is at least
1
c OPT, where OPT is the value of an offline optimum solution, i.e., a maximum weight independent set.
Hence, the goal is to find c-competitive algorithms with c ≥ 1 being as close as possible to 1.

Our results and techniques

We present a 4-competitive algorithm for the free order model, thus obtaining the first O(1)-competitive
algorithm for a variant of the matroid secretary problem with adversarial weight assignment, without any
restriction on the underlying matroid. This algorithm is in particular applicable to the previously mentioned
network connection problem, when the order, in which the network operator negotiates with the clients, can
be chosen.

On a high level, our algorithm follows a quite intuitive idea, which, interestingly, does not work in the
traditional matroid secretary problem. In a first phase, we draw each element with probability 0.5 to obtain
a set A ⊆ N , without selecting any element of A. Let OPTA be the best offline solution in A. We call
an element f ∈ N \ A good, if it can be used to improve OPTA, in the sense that either OPTA ∪{f} is
independent or there is an element g ∈ OPTA such that (OPTA \{g})∪{f} is independent and has a higher
value than OPTA. In the second phase, we go through the remaining elements N \ A, drawing element by
element in a well-chosen way to be specified soon. We accept an element f ∈ N \ A if it is good and does
not destroy independence when added to the elements accepted so far. Our approach fails if elements are
drawn randomly in the second phase. The main problem when drawing randomly, is that we may accept
good elements of relatively low value that may later block some high-valued good elements, in the sense that
they cannot be added anymore without destroying independence of the selected elements. To overcome this
problem, we determine after the first phase a specific order of how elements will be drawn in the second
phase. The idea is to first draw elements of N \A that are in the span of elements of A of high weight. More
precisely, let A = {a1, . . . , am} be the numbering of the elements of A according to decreasing weights. In
the second phase we start by drawing elements of (N \A) ∩ span({a1}), then (N \A) ∩ span({a1, a2}), and
so on2. One particular situation, where the above ordering becomes very intuitive, is if there is a set S ⊆ N
with a high density of high-valued elements. In this case it is likely that many elements of S are part of A.
Hence, high-valued elements of A span further high-valued elements in S. Thus, by the above order, we are
likely to draw high-valued elements of S early, before they can be blocked by the inclusion of lower-valued
elements.

Similar to previous secretary algorithms, we show that our algorithm is O(1)-competitive by proving
that each element f ∈ OPT of the global offline optimum OPT will be chosen with probability at least 1/4.
However, the way we prove this is based on a novel approach. Broadly speaking, we show that an element
f ∈ OPT gets selected if additionally to f 6∈ A, the following property holds: either f 6∈ span((N \A) \ {f}),
or the maximum value β ≥ 0 such that f is spanned by elements in (N \ A) \ {f} of weight ≥ β is smaller

2We recall that span(S) for S ⊆ N is the unique maximal set U ⊇ S with the same rank as S.
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than the maximum value α ≥ 0 such that f is spanned by elements in N ∩A of weight ≥ α. Exploiting that
the distributions of A and N \A are identical, we show that the above conditions happens with probability
at least 1/4.

In an earlier short version of this paper [14], we only proved that our algorithm is 9-competitive. Our
proof was later refined and simplified by Azar, Kleinberg and Weinberg [1] to show 4-competitiveness of our
procedure. Due to this recent development, we present here the refined analysis of [1]. We are thankful to
the authors of [1] for their agreement to include this analysis in the present paper.

Furthermore, we present a new approach to deal with laminar matroids in the classical matroid secretary
model. Our technique leads to a 3

√
3e ≈ 14.12-competitive procedure, thus considerably improving on the

16000/3 ≈ 5333-competitive algorithm of Im and Wang [13]. Our main contribution here is to present
a simple way to transform the matroid secretary problem on a laminar matroid M to one on a unitary
partition matroid3 MP by losing only a small constant factor of 3

√
3 ≈ 5.2. The secretary problem on

MP can then simply be solved by applying the classical e-competitive algorithm for the standard secretary
problem to each partition of MP . We first observe a constant fraction of all elements, on the basis of
which a partition matroid MP on the remaining elements is then constructed. To assure feasibility, MP is
defined such that each independent set of MP is also an independent set of M . To best convey the main
ideas of our procedure, we first present a very simple method to obtain a weaker 27e/2 ≈ 36.7-competitive
algorithm, which already improves considerably on the 16000/3-competitive algorithm of Im and Wang. The
3
√

3e-competitive algorithm is then obtained through a strengthening of this approach by using a stronger
partition matroid MP and a tighter analysis.

A further advantage of our procedure for laminar matroids is the fact that it leads to O(1)-competitive
algorithms in the context of single-sample matroid prophet inequalities, which in turn implies strong algo-
rithms for order-oblivious posted pricing mechanisms, as shown by Azar, Kleinberg and Weinberg [1]. More
precisely, prophet inequalities are a setting that is closely related to the matroid secretary problem. The key
difference is that the weight of each element comes from a distribution that depends on the element, and de-
pending on the setting may or may not be known in advance. In single-sample prophet inequalities, one only
knows a single sample from each distribution, and the order in which the elements arrive is adversarial, which
is another key difference to the classical matroid secretary problem. It was shown in [1] that an α-competitive
matroid secretary algorithm can be transformed into an α-competitive algorithm for single-sample prophet
inequalities, if the secretary algorithm is order-oblivious. Loosely speaking, an order-oblivious procedure is
one that consists of two phases, where in a first phase a subset of the elements is observed without choosing
any element, and furthermore, the competitive ratio does not dependent on the order in which elements
appear in the second phase. Hence, the algorithm does not need the random order assumption during the
second phase. Contrary to the previous O(1)-competitive laminar secretary algorithm [13], and also a subse-
quently introduced O(1)-competitive algorithm for this case [21], our algorithm is order-oblivious. We refer
the reader to [1] for more information on order-oblivious algorithms and single-sample prophet inequalities.
Furthermore, [1] also discusses the implications of our algorithm for laminar matroids in this context.

We remark that the algorithms we present do not need to observe the exact weights of the items when
they reveal themselves, but only need to be able to compare the weights of elements observed so far. This is
a common feature of many matroid secretary algorithms and matroid algorithms more generally.

To simplify the exposition, we assume that all weights are distinct, i.e., they induce a linear order on the
elements. This implies in particular, that there is a unique maximum weight independent set. The general
case with possibly equal weights easily reduces to this case by breaking ties arbitrarily between elements of
equal weight, to obtain a linear order.

Related work

Recently, matroid secretary problems with submodular objective functions have been considered. For this
setting, O(1)-competitive procedures have been found for knapsack constraints, uniform matroids, and, if the
submodular objective is furthermore monotone, for partition matroids, and more generally for intersections
of laminar matroids, and transversal matroids (see [3, 8, 12, 21]).

Additionally, variations of the matroid secretary problem have been studied with restricted knowledge
on the underlying matroid type. This includes the case where no prior knowledge of the underlying matroid

3A unitary partition matroid is a partition matroid where at most one element can be chosen in each set of the partition.
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is assumed except for the size of the ground set. Or even more extremely, the case without even knowing the
size of the ground set. For more information on such variations we refer to the excellent overview in [22].

Subsequent results

We would like to highlight that very recently, after a previous version [15] of this article, Ma, Tang and
Wang [20, 21] further improved the competitive ratio for the secretary problem on laminar matroids by
presenting a 9.6-competitive algorithm. They use an interesting and natural algorithmic idea, including
elements only if they are part of the offline optimum of all elements seen so far. The description of their
algorithm is nice and elegant, however, its analysis is somewhat involved. Unfortunately, their algorithm is
not order-oblivious and therefore cannot be used in the context of single-sample prophet inequalities.

Organization of the paper

Our 4-competitive algorithm for the free order model is presented in Section 2. Section 3 discusses our
algorithms for the classical matroid secretary problem. We start by presenting in Section 3.1 our simple
27e/2-competitive method, and then show in Section 3.2 how to strengthen the algorithm and its analysis
to obtain the claimed 3

√
3e-competitiveness.

2 A 4-competitive algorithm for the free order model

To simplify the writing we use “+” and “−” for the addition and subtraction of single elements from a
set, i.e., S + f − g = (S ∪ {f}) \ {g}. Furthermore, for k ∈ Z≥1 we use the shorthand [k] := {1, . . . , k}.
Algorithm 1 describes our 4-competitive algorithm for the free order model.

Algorithm 1 A 4-competitive algorithm for the free order model.

1. Draw each element with probability 0.5 to obtain A ⊆ N , without selecting any element of A. We
number the elements of A = {a1, . . . , am} in decreasing order of weights. Define Ai = {a1, . . . , ai},
with A0 = ∅.
Initialize: I ← ∅.

2. For i = 1 to m:
draw one by one (in any order) all elements f ∈ (span(Ai) \ span(Ai−1)) \A:

if I + f ∈ I and w(f) > w(ai), then I = I + f .
For all remaining elements f ∈ N \ span(A) (drawn in any order):

if I + f ∈ I, then I = I + f .
Return I

To analyze Algorithm 1, we introduce some additional notation. Let {e1, . . . , en} = N be the numbering
of the elements of the ground set satisfying w(e1) > · · · > w(en). Furthermore, for each j ∈ [n], we define
Nj := {e1, . . . , ej}.

As mentioned previously, a good element f ∈ N \A is an element that allows for improving the maximum
weight independent set in A, i.e., the unique maximum weight independent set in A+f includes f . An element
f being good thus means that it gets selected when applying the greedy algorithm to A+f . Hence, f is good
if and only if f 6∈ span({a ∈ A | w(a) > w(f)}), which can be rephrased as f is good if either f 6∈ span(A),
or if there is an index i ∈ [m] such that f ∈ span(Ai) \ span(Ai−1) and w(f) > w(ai). Hence, our algorithm
indeed only accepts good elements. Furthermore, whenever any element f of the offline optimum OPT is
considered in some iteration i ∈ [m] in the first for-loop of step 2—i.e., f ∈ (span(Ai) \ span(Ai−1)) \ A—
then we always have w(f) > w(ai). Hence, an element f ∈ OPT gets selected by Algorithm 1 if and only if
I + f ∈ I, where I is the set of already selected elements at the time when f is considered.
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To show that Algorithm 1 is 4-competitive, we show that each element f ∈ OPT will be contained in the
set I returned by the algorithm with probability at least 1/4. Hence, let f ∈ OPT, and define

j1 := argmin{j ∈ [n] | f ∈ span((Nj ∩A)− f)},
j2 := argmin{j ∈ [n] | f ∈ span((Nj \A)− f)},

where, if f 6∈ span(A − f) we set j1 = ∞, and and f 6∈ span((N \ A) − f) then j2 = ∞. Notice that both
j1 and j2 are random variables that depend on the random set A. The following lemma provides a simple
property under which f gets selected.

Lemma 1. If j1 ≤ j2 and f 6∈ A then f gets selected by Algorithm 1.

Proof. We first handle the case j2 = ∞. Consider the moment when f is considered in the second step of
Algorithm 2, either in the first or second for-loop, and let I be the elements selected so far by the algorithm.
As discussed above, since f ∈ OPT, we only have to show I+f ∈ I for f to be selected, which holds because

f
j2=∞
6∈ span((N \A)− f)

I⊆(N\A)−f
⊇ span(I),

and hence, f 6∈ span(I).
Now assume j2 <∞, and therefore also j1 <∞ since j1 ≤ j2. Consider the moment when f is considered

in the second step of Algorithm 1, and let I be the set of elements selected so far by the algorithm. Notice
that since j1 < ∞, we have f ∈ span(A − f), and therefore, f is considered at some iteration i ∈ [m]
during the first for-loop of step 2 of the algorithm. Furthermore, i is the smallest index in [m] such that
f ∈ span(Ai), and thus, ai = ej1 . Hence, I only contains elements of weight strictly larger than w(ej1), i.e.,
I ⊆ Nj1−1. Furthermore, since I ⊆ N \A, this implies I ⊆ Nj1−1 \A. Again we have I + f ∈ I since

f
def. of j2
6∈ span((Nj2−1 \A)− f)

j1≤j2
⊇ span((Nj1−1 \A)− f)

I⊆(Nj1−1\A)−f
⊇ span(I).

Leveraging Lemma 1, we can now prove the correctness of the algorithm by showing that j1 ≤ j2 with
probability at least 0.5.

Theorem 2. Algorithm 1 selects each element f ∈ OPT with probability at least 1/4, and is therefore
4-competitive.

Proof. The key observation is that for every S ⊆ N , either j1 ≤ j2 for A = S or j1 ≤ j2 for A = N \ S.
Since the two events A = S and A = N \ S occur with the same probability, we obtain Pr[j1 ≤ j2] ≥ 0.5.
Furthermore, whether f ∈ A or not is independent of the two random variables j1 and j2. Thus,

Pr[f 6∈ A and j1 ≤ j2] = Pr[f 6∈ A] · Pr[j1 ≤ j2] ≥ 1

2
· 1

2
=

1

4
,

and by Lemma 1, the probability of f being selected by Algorithm 1 is at least 1/4.

3 Classical secretary problem for laminar matroids

Let M = (N, I) be a laminar matroid whose constraints are defined by the laminar family L ⊆ 2N with
upper bounds bL for L ∈ L on the number of elements that can be chosen from L, i.e., I = {I ⊆ N |
|I ∩L| ≤ bL ∀L ∈ L}. Without loss of generality we assume bL ≥ 1 for L ∈ L, since otherwise we can simply
remove all elements of L from M . Furthermore, we assume N ∈ L, since otherwise a redundant constraint
|I ∩N | ≤ bN can be added by choosing a sufficiently large right-hand side bN .



3 CLASSICAL SECRETARY PROBLEM FOR LAMINAR MATROIDS 7

Figure 1: An example of a numbering of the elements of the ground set such that each set L ∈ L =
{L1, . . . , L6} of the laminar family contains consecutively numbered elements.

3.1 A simple 27e/2-competitive algorithm for the laminar secretary problem

To reduce the matroid secretary problem on M to a problem on a partition matroid, we first number the
elements N = {f1, . . . , fn} such that for any set L ∈ L, the elements in L are numbered consecutively, i.e.,
L = {fp, . . . , fq} for some 1 ≤ p < q ≤ n. Figure 1 shows an example of such a numbering.

For the sake of exposition, we start by presenting a conceptually simple algorithm and analysis, based on
the introduced numbering of the ground set, that leads to a competitive ratio of 27e/2. The claimed 3

√
3e-

competitive algorithm follows the same ideas, but strengthens both the approach and analysis. Algorithm 2
describes our 27e/2-competitive procedure. Notice that applying a standard secretary algorithm to the sets

Algorithm 2 A 27e/2-competitive algorithm for laminar matroids.

1. Observe Binom(n, 2/3) elements of N , which we denote by A ⊆ N .
Determine maximum weight independent set OPTA = {fi1 , . . . , fip} in A where 1 ≤ i1 < · · · < ip ≤
n. Define Pj = {fk | k ∈ {ij−1, . . . , ij}} \A for j ∈ {1, . . . , p+ 1}, where we set i0 = 0, ip+1 = n. Let

Podd(A) = {Pj | j ∈ [p+ 1], j odd},
Peven(A) = {Pj | j ∈ [p+ 1], j even}.

If OPTA = ∅ then set P = {N \A},
else set P = Podd(A) with probability 0.5, otherwise set P = Peven(A).

2. Apply to each set P ∈ P an e-competitive classical secretary algorithm to obtain an element gP ∈ P .
Return {gP | P ∈ P}.

of P in step 2 can easily be performed by running |P| many e-competitive secretary algorithms in parallel,
one for each set P ∈ P. Elements are drawn one by one in the second phase, and they are forwarded to
the secretary algorithm corresponding to the set P that contains the drawn element, and are discarded if no
set of P contains the element. Furthermore, observe that A contains each element of N independently with
probability 2/3.

We start by observing that Algorithm 2 returns an independent set.

Lemma 3. Let A ⊆ N with OPTA 6= ∅ and let P ∈ {Peven(A),Podd(A)}. For each P ∈ P, let gp be any
element in P . Then {gP | P ∈ P} ∈ I.

Proof. Let I = {gP | P ∈ P} be a set as stated in the lemma. Notice that for any two elements fk, f` ∈ I
with k < ` we have |OPTA ∩{fk, fk+1, . . . , f`}| ≥ 2. Now consider a set L ∈ L corresponding to one of
the constraints of the underlying laminar matroid. By the above observation and since L is consecutively
numbered, at least one of the following holds: (i) |L∩ I| = 1, or (ii) |L∩OPTA | ≥ |L∩ I|. If case (i) holds,
then the constraint corresponding to L is not violated since we assumed bL ≥ 1. If (ii) holds, then L is also
not violated since |L ∩ I| ≤ |L ∩OPTA | ≤ bT because OPTA ∈ I. Hence I ∈ I.

Theorem 4. Algorithm 2 is 27e/2-competitive for the laminar matroid secretary problem.

Proof. Let OPT ∈ I be the maximum weight independent set in N , i.e., the offline optimum. Furthermore,
let I be the set returned by Algorithm 2, and let f ∈ OPT. We say that f is solitary if ∃ P ∈ P with
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P ∩ OPT = {f}. Similarly we call P ∈ P solitary if |P ∩ OPT | = 1. We prove the theorem by showing
that each element f ∈ OPT is solitary with probability ≥ 2/27. This indeed implies the theorem since we
can do the following type of accounting. Let Xf be the random variable which is zero if f is not solitary,
and otherwise equals the weight of the element g ∈ I that was chosen by the algorithm from the set P that
contains f . By only considering the weights of elements chosen in solitary sets P we obtain

E[w(I)] ≥
∑

f∈OPT

E[Xf ]. (1)

However, if each element f ∈ OPT is solitary with probability 2/27, we obtain E[Xf ] ≥ 2w(f)
27e , because the

classical secretary algorithm will choose with probability 1/e the maximum weight element of the set P that
contains the solitary element f . Combining this with (1) yields E[w(I)] ≥ 2

27ew(OPT) as desired. Let us
then show that each f ∈ OPT is solitary with probability ≥ 2/27.

Let fi ∈ OPT. We assume that OPT contains an element with a lower index than i and one with a higher
index than i. The cases of fi being the element with highest or lowest index in OPT follow analogously. Let
fj ∈ OPT by the element of OPT with the largest index j < i. Similarly, let fk ∈ OPT be the element of
OPT with the smallest index k > i. One well-known matroidal property that we use is OPT∩A ⊆ OPTA.
Hence, if fj , fk ∈ A then fj , fk ∈ OPTA, and if furthermore fi 6∈ A, then fi will be the only element of OPT
in the set P ∈ Podd(A)∪Peven(A) that contains fi. Hence, if the coin flip in Algorithm 2 chooses the family
P ∈ {Podd(A),Peven(A)} that contains P , then fi is solitary. To summarize, fi is solitary if fj , fk ∈ A,

fi 6∈ A and the coin flip for P turns out right. This happens with probability
(
2
3

)2 · (1− 2
3

)
· 12 = 2

27 .

3.2 A 3
√

3e-competitive algorithm for the laminar matroid secretary problem

One conservative aspect of the proof of Theorem 4 is that we only consider the contribution of solitary
elements. Additionally, a drawback of Algorithm 2 itself is that about half of the elements of N \ A are
ignored as we only select from either Podd(A) or Peven(A). In this section, we address these two weaknesses
to obtain a 3

√
3e-competitive algorithm.

We start by describing a stronger way to define a partition P of N \ A and reduce the problem to a
matroid secretary problem on the unitary partition matroid defined on P.

For any independent set I ∈ I, we define a partition P̃(I) of N as follows. If I = ∅, we set P̃(I) = {N}.
Otherwise P̃(I) contains a set Nf ⊆ N for each element f ∈ I, i.e., P̃(I) = {Nf | f ∈ I}. To define the

partition P̃(I), we specify to which set Nf an element fi ∈ N belongs. Let L ∈ L be the smallest set that
contains fi and such that L ∩ I 6= ∅. Such a set must exist since N ∈ L by assumption. If L ∩ I contains at
least one element fj with j ≤ i, then let j be the largest index such that j ≤ i and fj ∈ L ∩ I. Otherwise
let j be the smallest index satisfying j > i and fj ∈ L ∩ I. We assign the element fi to Nfj .

Notice that in any case, j is either the largest index j ≤ i with fj ∈ I or the smallest index j > i with
fj ∈ I. Again, we are interested to define a partition only on elements N \ A not drawn in the first phase.

We therefore define for any A ⊆ N the partition P(A) = {P̃ \ A | P̃ ∈ P̃(OPTA)}. Algorithm 3 describes
our 3

√
3e-competitive procedure.

Algorithm 3 A 3
√

3e-competitive algorithm for laminar matroids.

1. Observe Binom(n, 1/
√

3) elements of N , which we denote by A ⊆ N .
Determine maximum weight independent set OPTA in A.

2. Apply to each set P ∈ P(A) an e-competitive classical secretary algorithm to obtain gP ∈ P .
Return {gP | P ∈ P(A)}.

We first show that the set returned by Algorithm 3 is indeed independent. For this, we start by observing
a basic property of the sets Nf forming the underlying partition P̃(OPTA) = {Nf | f ∈ OPTA}.

Lemma 5. Let I ∈ I with I 6= ∅. Each set Nfi of the partition P̃(I) = {Nfi | fi ∈ I} is of the form
Nfi = {fj , fj+1, . . . , fk} for some 1 ≤ j ≤ i ≤ k ≤ n.
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Proof. By definition of Nfi , we clearly have fi ∈ Nfi . Hence, all that remains to be shown is that whenever
fp ∈ Nfi , then fq ∈ Nfi for any q between i and p, i.e., either i < q < p or p < q < i. In the following
we distinguish these two cases. For any element f ∈ N , we denote by Lf ∈ L the smallest set L ∈ L that
contains f and satisfies I ∩ L 6= ∅.

Case p < q < i. Since fp ∈ Nfi , there is no element f` ∈ Lfp ∩ I with ` < i. Furthermore, fp, fi ∈ Lfp

implies fq ∈ Lfp , because Lfp contains a sequence of consecutively numbered elements. As a consequence,
there is also no element f` ∈ Lfq ∩ I with ` < i, because Lfq ⊆ Lfp due to laminarity and the fact that Lfq

is the smallest set in L containing fq and satisfying I ∩ Lfq 6= ∅. Hence fq ∈ Nfi .
Case i < q < p. As in the previous case we have fi ∈ Lfq ⊆ Lfp , and there is no ` with i < ` < p such

that f` ∈ I, using again fp ∈ Nfi . Thus, fq ∈ Nfi .

The next lemma implies that Algorithm 3 returns an independent set.

Lemma 6. Let I ⊆ I and let J ⊆ N with |J ∩ P̃ | ≤ 1 ∀P̃ ∈ P̃(I). Then J ∈ I.

Proof. To show J ∈ I we fix any L ∈ L and show that J satisfies the constraint imposed on L, i.e.,
|J ∩ L| ≤ bL. If I ∩ L = ∅, then all elements in L belong to the same set of the partition P̃(I). Hence
|J ∩ L| ≤ 1, and the constraint corresponding to L is not violated since by assumption bL ≥ 1. Hence,
assume I ∩L 6= ∅. Notice that in this case every element in L will be assigned to a set Nf for f ∈ I ∩L, i.e.,

L ⊆
⋃

f∈I∩L

Nf . (2)

Since at most one element is chosen out of each Nf we have

|J ∩ L| ≤ |I ∩ L| ≤ bL,

where the second inequality follows from I ∈ I.

As the family P(A) consists of subsets of the partition P̃(OPTA), the above lemma implies:

Corollary 7. Algorithm 3 returns an independent set.

It remains to show the claimed competitiveness.

Theorem 8. Algorithm 3 is 3
√

3e-competitive for the laminar matroid secretary problem.

Proof. Let OPTP(A) be the optimum solution of the matroid secretary problem on N \ A constrained by
the partition matroid P(A). Let I be the solution returned by Algorithm 3. Since Algorithm 3 applies an
e-competitive secretary algorithm to each set of P(A), we have

E[w(I)] ≥ 1

e
·E[w(OPTP(A))]. (3)

For f ∈ N \A, we denote by Pf the set in the family P(A) that contains f . We have,

E[w(OPTP(A))] = E

 ∑
P∈P(A)

max
f∈P

w(f)

 ≥ E

 ∑
P∈P(A),
|P∩OPT |≥1

max
f∈P

w(f)



≥ E

 ∑
P∈P(A),
|P∩OPT |≥1

∑
f∈P∩OPT

w(f)

|P ∩OPT |


= E

 ∑
f∈OPT \A

w(f)

|Pf ∩OPT |

 . (4)
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Similar to the proof of Theorem 4 we use an accounting based on the elements of the offline optimum
OPT. For each f ∈ OPT we define a random variable Z(f) as follows:

Z(f) =

{
0 if f ∈ A,

1
|Pf∩OPT | otherwise.

Together with (3) and (4) we thus obtain

E[w(I)] ≥ 1

e

∑
f∈OPT

w(f)E[Z(f)].

Hence, to show that Algorithm 3 is 3
√

3e-competitive, is suffices to show

E[Z(f)] ≥ 1

3
√

3
∀f ∈ OPT . (5)

For proving (5), we want to be able to treat all elements fi ∈ OPT the same way, independently of the
index i. In particular, we want to avoid special treatments for indices i that are close to the border, i.e.,
either close to 1 or n. Therefore we make the following assumptions, which do not change the way in which
the algorithm behaves: assume that there are infinitely many dummy coloop4 elements (with zero weight)
denoted as C = {. . . , f−2, f−1, f0} ∪ {fn+1, fn+2, . . . }. The new (infinite) laminar matroid M ′ is associated
to the laminar family L′ = L ∪ {N ∪ C}, where N ∪ C has no bound on the cardinality.

The optimum OPT′ of M ′ equals C union the optimum OPT = {fi1 , . . . , fip} of the original matroid. If
we run the algorithm on this modified infinite matroid—assuming that every element, original or dummy,
belongs to A with probability 1/

√
3—and then remove the dummy elements from its output, we recover the

output that we would have obtained had we used the real matroid.
We fix an element fir ∈ OPT and prove (5) for this element in the following. To have fij defined for

every integer j, even outside of {1, . . . p}, we set ij = j for j ≤ 0, and ij = n − p + j for j > p. Hence,
OPT′ = {fij | j integer}. Furthermore, to simplify the exposition and to explain later why 1/

√
3 was chosen

to be the probability of including elements in A, we denote by q the probability that an element is contained
in A.

For every pair of natural numbers s, t ≥ 0, define Es,t as the event that the following occurs simultaneously:
(i) fir /∈ A,

(ii) fir−1−s
is the last element of OPT′ before fir that is in A, and

(iii) fir+1+t
is the first element in OPT′ after fir that is in A.

In other word, Es,t is the event that fir−(s+1)
∈ A; fir−s , . . . , fir+t 6∈ A; and fir+(t+1)

∈ A.
From this point on we condition on the event Es,t. Consider L′fir = {L ∈ L′ | fir ∈ L}. Since L′ is

a laminar family, L′fir is a chain. Let L ∈ L′fi be the smallest set in L′fi with (L ∩ OPT′) \ A 6= ∅; or

equivalently, {fir−(s+1)
, fir+(t+1)

} ∩ L 6= ∅. We claim that

E[Z(fir ) | Es,t] ≥ q
∞∑
k=0

1

s+ t+ 1 + k
(1− q)k. (6)

To prove (6), we distinguish two cases: (a) fir−(s+1)
6∈ L and (b) fir−(s+1)

∈ L.
In the first case, let K ≥ 0 be the random variable counting the number of consecutive elements in (fij )j

immediately after fir+t+1
that are not contained in A. In other words, fir+(t+1)+K+1

is the first element of

OPT′ after fir+(t+1)
that is in A. Note that conditioned on Es,t and on the variable K, the set P ∈ P(A) to

which fir belongs must be a subset of Q = {fir−(s+1)+1, . . . , fir+t+K+2−1}.
In particular, Q ∩ OPT′ ⊆ {fir−s

, . . . , fir+t+K+1
}. Recalling that fir+t+1

∈ A and P (fir ) ⊆ N \ A, we
conclude |P (fir ) ∩OPT′ | ≤ |Q ∩OPT′ | − 1, and hence

Z(fir ) =
1

|P (fir ) ∩OPT′ |
≥ 1

|Q ∩OPT | − 1
=

1

t+ s+ 1 +K
.

4A coloop is an element that is in every base of the matroid, or in other words, a coloop element can be added to any
independent set without destroying independence.
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Therefore,

E[Z(fir ) | Es,t] ≥
∞∑
k=0

E[Z(fir ) | Es,t,K = k] · Pr(K = k)

≥
∞∑
k=0

1

t+ s+ 1 + k
q(1− q)k,

which proves (6) for case (a). The proof of the claim in case (b) is analogous, but in that case we define
K ≥ 0 as the random variable counting the number of consecutive elements in (fij )j immediately before
fir−(s+1)

that are outside A.
Based on (6), we can conclude the proof of the theorem as follows. Since all events (Es,t)s,t≥0 are disjoint

and Pr(Es,t) = q2(1− q)s+t+1, we have

E[Z(fir )] =

∞∑
s=0

∞∑
t=0

E[Z(fir ) | Es,t] Pr(Es,t) (7)

≥ q3
∞∑
s=0

∞∑
t=0

∞∑
k=0

1

s+ t+ k + 1
(1− q)s+t+k+1

= q3
∞∑
`=0

(
`+ 2

2

)
1

`+ 1
(1− q)`+1 =

q3

2

∞∑
`=0

(`+ 2)(1− q)`+1

(?)
=

q3

2

(1− q)(1 + q)

q2
=

1

2
q(1− q2), (8)

where equality (?) is obtained by setting x = 1− q in

∞∑
`=0

(`+ 2)x`+1 =
d

dx

( ∞∑
`=0

x`+2

)
=

d

dx

x2

1− x
=
x(2− x)

(1− x)2
.

Finally, q = 1/
√

3 is chosen to maximize q(1− q2)/2 among all values in [0, 1], and implies by (8),

E[Z(fir )] ≥ 1

3
√

3
,

thus proving (5).

4 Conclusions

We presented a 4-competitive algorithm for the free order model, which is a relaxed version of the classical
matroid secretary problem. To the best of our knowledge, this is the first O(1)-competitive algorithm of
a variant of the matroid secretary problem with adversarial weight assignments. The central question of
whether there is a O(1)-competitive algorithm for the classical matroid secretary problem remains open.

Furthermore, a new approach to design O(1)-competitive algorithms for the classical version of the
matroid secretary problem restricted to laminar matroids was presented. For this special case, a 16000/3-
competitive algorithm has been found only very recently, using a rather involved method and analysis.
Whereas relatively elegant and simple O(1)-competitive procedures have been known for a variety of special
cases of the matroid secretary problem, the O(1)-competitive algorithm for the laminar case was one of
the most sophisticated procedures. Our approach leads to simpler procedures with considerably better
competitiveness. Furthermore, contrary to the previous approach for laminar matroid [13] and the very
recent 9.6-competitive algorithm [21], our algorithm is order-oblivious, and therefore implies a constant-
competitive algorithm for single-sample prophet inequalities as shown in [1]. A straightforward application
of our high-level idea already leads to a competitiveness of 27e/2. Additionally, we presented an improved
version of the algorithm and its analysis to obtain a 3

√
3e ≈ 14.12-competitive algorithm.
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