Scalable Generation of Synthetic GPS Traces
with Real-life Data Characteristics *

Konrad Bésche! Thibault Sellam? Holger Pirk?
René Beier! Peter Mieth! Stefan Manegold?

! TomTom, Berlin, Germany
{first.last}@tomtom. com

2 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{first.last}@cwi.nl

Abstract. Database benchmarking is most valuable if real-life data and
workloads are available. However, real-life data (and workloads) are often
not publicly available due to IPR constraints or privacy concerns. And
even if available, they are often limited regarding scalability and vari-
ability of data characteristics. On the other hand, while easily scalable,
synthetically generated data often fail to adequately reflect real-life data
characteristics. While there are well established synthetic benchmarks
and data generators for, e.g., business data (TPC-C, TPC-H), there is
no such up-to-date data generator, let alone benchmark, for spatiotem-
poral and/or moving objects data.

In this work, we present a data generator for spatiotemporal data. More
specifically, our data generator produces synthetic GPS traces, mimick-
ing the GPS traces that GPS navigation devices generate. To this end,
our generator is fed with real-life statistical profiles derived from the user
base and uses real-world road network information. Spatial scalability is
achieved by choosing statistics from different regions. The data volume
can be scaled by tuning the number and length of the generated trajec-
tories. We compare the generated data to real-life data to demonstrate
how well the synthetically generated data reflects real-life data charac-
teristics.

1 Introduction

Performance is one of the major selling points of Database Management Systems
(DBMSs). However, objectively capturing DBMS performance is hard. The data
management community has defined many benchmarks to capture DBMS per-
formance in a single, or at least few, numbers. However, designing a representa-
tive benchmark, i.e., one that makes it easy for potential users to extrapolate a
DBMS'’s performance for their application from the benchmark results, is hard.
A representative benchmark must contain at least a) a representative query set
and b) a representative database that the queries are performed on. A reasonably

* This publication was supported by the Dutch national program COMMIT

small, yet representative set of queries is hard to find and beyond the focus of
this paper. A representative dataset for applications of a given domain, however,
may be achievable. We focus entirely on the generation of such a representative
dataset for the domain of (historical) moving objects data management.
Traditionally, there have been two ways to achieve such a representative
dataset. The first is to start with a real-life dataset and stripping it down to
the minimal database that is still representative for the application. The second
is to synthetically generate a representative dataset from scratch. Both of these
approaches have their merits and problems that we discuss in the following.

Real-Life Data is a good basis for a representative dataset because it has the
desired characteristics. The distribution and correlation of the values, e.g., can
have a large impact on the performance of applications on top of the data. These
effects will be discovered when evaluating a system using a real-life dataset.
However, a real-life dataset lacks the configurability of a synthetic dataset, most
importantly, regarding its size. Since a real-life dataset is always a snapshot of
the application data at a given time, it can not be used for what-if-analysis. This
makes it hard to detect, e.g., future scalability problems. In addition, real-life
data is often sensitive with respect to user privacy. Especially when tracking
user positions, a dataset could be used to generate presence/absence profiles of
people. It could even be matched to an address database to identify individuals.
Both of these problems can be addressed by synthetically generating data.

Synthetic Data is naturally anonymized since it never contains data about real
users. In addition to that, synthetic data can, usually, be generated at any scale-
factor (i.e., dataset size). However, care must be taken to generate data that
resembles the characteristics of real-life data of the targeted applications. This
is usually achieved by encoding domain specific rules into the data generator.
However, these rules are not only tedious to create. The manual creation of rules
is also error prone and might not consider all relevant characteristics of the data.

To resolve the conflict between
realistic and scalable represen- Dataset
tative datasets, we propose to
use a hybrid approach that is il-
lustrated in Figure 1. Datasets
are based on a “sample” dataset.
Statistics are extracted from this

sample dataset and combined
with a model of the domain to

produce a scalable dataset that

closely resembles real-life data. In Fig. 1: Overview Hybrid Dataset Generation
our case we distinguish a user

model and a physical model. The user model represents the intention of a user
(e.g., the route a user takes between two points). The physical model captures
constraints that are given by the real world (speed limits, traffic lights, ...).

Dataset
Statistics

Data Representative
Generator Dataset

System Model

Physical

To present our approach, we structured the rest of this paper as follows: In Sec-
tion 2 we present the requirements for realistic Global Positioning System (GPS)
data and other approaches to generate data that fulfills these requirements. In
Section 3 we describe our approach to generate GPS data from sample data and
a physical model. We evaluate the quality of the generated data as well as the
generator performance in Section 4 and conclude in Section 5.

2 Background

2.1 Use cases and requirements

Traffic data is the basis for many applications. To illustrate the benefit of our
data generator, we want to briefly discuss the range of applications that can
be evaluated using the generated data. We target at least two types of applica-
tions that can be classified into the well known domains of Online Transaction
Processing (OLTP) and Online Analytical Processing (OLAP): Location Based
Services and Traffic Monitoring and Analysis.

Location Based Services aim at providing end-users with answers to geo-
spatial queries that involve their current position. Typical queries are: “What
are the three closest restaurants to me?”, “What is the best route to avoid this
traffic jam?” or “Where can I meet up with my husband within half an hour?”.
Low query latency is critical to achieve a good end user experience. However,
few queries require historical data which limits the amount of considered data.

Traffic Monitoring and Analysis applications have very different character-
istics. The goal is to provide an insight into the traffic at a macro scale, often
focusing on trends that develop over time. Queries such as “ Which were the busi-
est routes in Europe this year?” or “What is the impact of a new road on regional
traffic?” naturally involve data acquired over a period of time. On the one hand,
the large data volume of traffic monitoring applications poses a challenge. On
the other hand, low query latency is less critical.

While targeting all of these cases, we limit our simulation to road-bound
vehicles that are tracked using GPS. There are no restrictions on the streets
(city or highway), time, or region. However, the generator should produce data
that resembles real GPS data, including factors like precision and noise.

In practice, GPS devices produce fizes (i.e., samples) that are defined by four
attributes: trace_id, longitude, latitude and time. The first field is a code
that identifies the GPS device for a certain period of time, e.g., one day. The
next two fields are the GPS coordinates in degrees at a precision of 5 decimals.
The time is the unix timestamp, i.e., time at a resolution of one second.

2.2 Spatio-temporal data generation

Moving objects For the last decade, the interest for Moving Objects databases
has led to the creation of several dedicated generators.

The GSTD algorithm (Generate_Spatio_Temporal_Data) [11] is one of the
first contributions. It generates a set of points or rectangular regions according

to a predefined distribution (e.g., Gaussian). These objects are then translated
and resized by random functions with user-defined parameters. This algorithm is
extended in [7] to create more realistic data. New parameters affect the direction
shifts, and some objects move in clusters. More importantly, an infrastructure is
introduced. The system generates a set of rectangles in which the objects cannot
enter. This is the first attempt to impose constraints on the movements. The
Oporto generator [10] is based on an other approach. It simulates swarms of fish
and ships using attraction and repulsion between the moving objects.

These projects offer different levels of control over the trajectories, and several
refinements were introduced to avoid a fully chaotic behavior. Nevertheless, none
of them can simulate environment constraints such as road networks.

Traffic simulators Many traffic simulators have been proposed, with vari-
ous objectives. The transportation engineering community makes heavy use of
micro-scale simulators, that aim at generating short term traffic conditions with
physical models. For instance, DRACULA [8] creates urban mobility patterns.
The work presented in [9] generates highway traffic with a parallel architecture.
Our objective is different. First, we aim at creating large amounts of data in
a short time. These micro-simulators target high precision rather than volume.
Second, we require realistic data about collective behaviors over large periods
of time (e.g., the Netherlands during a month). These solutions target short
term vehicle movements at a local scale. The intentions of the travelers (where
they come from, where they are going, when the next trip will be) may not be
accurate [3].

The data management community proposed several large scale generators.
The closest project to ours is presented by Brinkhoff [1]. It is based on network
information and routing functions defined by the user. Each edge of the network
has a user-specified maximum capacity and speed. Moving objects are created at
each timestamp, travel, then ”disappear” when they reached their destination.
The speed of object creation and their routing is defined by user functions. Our
approach differs on two points. First, the data generation does not depend on ar-
bitrary user defined functions or parameters: we use historical data. Second, we
maintain consistency between the trips of a same vehicle. The benchmark Berlin-
MOD [3] contains a realistic data generation algorithm. Nevertheless, it relies
on several rules fine-tuned for the benchmark use-case (the traffic of Berlin).

3 Generating Trajectory Data

The simulated GPS data is generated in three steps. First we gather statistics
about real world historical GPS data collected from in-car navigation devices
and use these to randomly generate Origin-Destination (OD) pairs with similar
characteristics. These OD pairs describe the geographical start and end of a
sequence of GPS points (i.e., a trip). In the next step, we calculate a trajectory
between the two points of each OD pair using a route finding algorithm. We use
a digital map of the road network in the considered area to compute the fastest

route. In the last step, we apply time dependent speed limitations for each edge
of the map. In the rest of this section we describe each of these steps in detail.

3.1 Generating Origin-Destination Pairs

Gathering Statistics The collection of statistics is the first step of the syn-
thetic trace generation. We used the TomTom GPS archive that contains more
than 4 billion hours of GPS data from in-car navigation devices. First, the real-
life traces are divided into trips. This is done by simply checking the temporal
gaps between each pair of succeeding GPS fixes against a threshold of 15 min-
utes. If a gap is larger than this threshold the trace is split between the respective
fixes. In addition, we use meta-data, namely device events of type ”suspend”,
which are assigned to a certain GPS fix within the belonging trace. Of each
trip, we use the first and the last point (origin and destination) for subsequent
processing. We build a set of histograms on these points:

— A two dimensional equi-width histogram on the origin coordinates.

— A two dimensional equi-width histogram on the destination coordinates.
Note: Naturally, a finer resolution of the histogram yields better results but
comes at a performance penalty. During our experiments, we found that a
histogram covering the target area at a resolution of 400 by 500 cells (a.k.a.
bins or buckets) yields good results at acceptable performance.

— An equi-width (1 km) histogram on the euclidean distance between origin
and destination.

— A set of histograms of the discrete values for the time and date components
(year, month, day of week, minute of day) of the origins of the traces.

— A histogram of the discrete values for the GPS sampling rate.

— A histogram of the discrete values for the number of trips per device per day
(trips per trace).

— A histogram of the discrete values for the pause between two trips of a device
in minutes.

The Digital Road Network In addition to the histograms of the GPS data
samples, we use a Digital Road Network to simulate vehicles on real roads. In its
essence, the network is a directed graph with labels on nodes and edges. Edges
represent road segments and are, thus, attributed with labels that describe, e.g.,
speed limits, road classes or average speeds. Nodes in the digital road network
are largely defined by a geographical position. However, the exact definition of
a node is hard. Intersections of roads are, naturally, represented as nodes in the
digital network. However, a node could also be a change of direction of the road:
If two nodes are connected, we assume the connection to represent a straight
road. A bent road is, therefore, represented by multiple nodes and edges. Whilst
TomTom’s digital road network is not disclosed, projects like OpenStreetMap [4]
provide publicly available digital road networks that follow the same idea.

Trace generation \

/| Choose origin ‘
Determine fix interval for next trace /!

/
’
/
/
/

I Determine number of trips in next trace

/
/
/
/
/

/
l Set trip count to 0 | /,’
/

/
/
/
/

I Choose origin | B _ yes

|

I Choose destination v

Choose origin cell I

!

Pick random map node in cell

Map node found ?

Choose destination
l \ —>| Sample air-line distance
\

\\
I Append O/D pair to buffer | | l
l \ | Select destination cell I

Destination cell found ?

yes

\
\
I Increase trip count | \

no

Trip count <= number

of trips in trace ?

Pick random map node in cell

Map node found ?

Determine planning time for O/D pair \

| |

Fig. 2: Trace generation algorithm

Generating OD Pairs As basis for the trip generation, we generate OD pairs
(see Figure 2 for an overview). We will describe this process in the following.
The first step of the trace generation is setting the trace related parameters!.
These values are sampled according to the respective histograms and form the
basis for the trip simulation. Since, in reality, trips that are acquired using the
same GPS device are often correlated, we have to take care to reproduce such
correlations in the generated data. To illustrate this, consider the following ex-
ample: a commuter generates a trip in the morning on the way to work and one
trip in the evening on the way home. We call such a set of correlated trips a
trace. Thus, we generate trips such that all trips of a given device on a given
day form a trace?. The origin of the first trip of a trace is selected as follows: a

! GPS sampling interval, number of trips, date and time of first trip
2 In practice, our synthetically generated traces can span more than one day, which
explains the bias towards an earlier time of day in Figure 5b.

random cell (aka. bucket) is selected according to its relative frequency in the
origin histogram. From all the nodes of the digital road network that fall into the
selected cell we randomly (uniform) select one to be the start point of the trip.
If the cell contains no nodes, we resample a cell. The time of the first (origin)
sample of the trip is chosen according to the respective distribution.

The destination of a trip is generated as follows: we randomly select an ap-
proximate value for the air-line distance between origin and destination accord-
ing to the respective distribution. As the origin is already fixed we generate a set
of candidate destination cells. This set contains all cells that intersect a circle
around the origin with a radius of the set distance. From these, we randomly se-
lect one according to the relative frequency in the destination histogram. Within
the selected destination cell we randomly (uniform) select one map node as des-
tination. If we fail in one of the described steps, i.e., if there is no map node in
the cell selected or the frequencies of the destination cell candidates are all zero,
resample a new air-line distance and restart the process.

To determine the starting time of subsequent trips, we add a random idle
time to the end time of the previous trip. The idle time is set according to the
respective histogram.

3.2 Routing

Given the origin and destination of a trip our algorithm will generate GPS points
along the fastest path on the digital road network. We utilize TomTom’s routing
kernel that is also used in their navigation devices. It uses several heuristics for
accelerating the search including A* [5] and arc-flags [6]. Accelerating shortest
path computations in road network has received some attention from the scien-
tific community in recent years [2].

3.3 Physical Modeling

Symbol| Value

Simulating a journey As the last step we sim- ssfi 3
ulate a journey on the calculated route. The idea ssfn 1.2
is to virtually drive along the route and sample Dse 1
the position at uniform time intervals. Dstop 02
To generate GPS data that closely matches Dstop@end 9
the individual speed characteristics of vehicles ts 5s
on each street of the network, we use the speed tsn 40s
profiles from the digital road network combined Oshift 3 meters
with a physical model based on a set of parame- Dshift 05
ters that we manually selected (see Table 1). As Darift .03
a basis for the speed, we use the average speed Odrift 10 meters

on a road segment at the given time of day and
day of week. To add a realistic variance to the Table 1: Model Parameters
speed we multiply the traveling speed on each

road segment with a stretch factor ssf. With a probability ps., ssf is set to a

random value between ssf; and ssfj, for a road segment. With probability 1 —ps.
it is set to the same value as the previous road segment in the trip.

In addition to the variance of the speed, vehicles occasionally have to stop,
e.g., for traffic lights. Hence we occasionally stop the virtual journey at likely
spots. We simulate a stop on a road segment with a probability ps. The position
of the stop on the road segment is determined randomly but biased towards the
end of the segment. With a probability pstop@end, the stop will occur in the last
20% of the segment (and with 1 — pgiopaend in the first 80%). The duration of
the stop is set randomly between ts; and ts;, seconds.

Simulating GPS noise The last step of the simulation covers GPS signal
noise. To achieve a realistic noise, a semi-random perturbation is applied to each
of the sampled GPS points. Two components make up the simulated noise:

— A random shift for each individual GPS point.
— A random drift over a sub-sequence of GPS points.

The former is simulated by adding a Gaussian noise to each of the two dimensions
(longitude and latitude) of each GPS point. We use a distribution with mean
value of 0 and with a standard deviation of ogp;f:. However, this may lead to
successive GPS points having different deviation directions. They would appear
to “jump” from one side of a road to the other which is untypical for real GPS
samples. To limit this effect we apply such shifts only with a probability of psp;f:
per second>. With probability 1 — pgn; ft per second®, we add the deviation of
the previous point to the calculated deviation of the current point.

The second noise component, the random drift, is initiated with a proba-
bility of parife per second®. “Drift” means a shift along the orthogonal of the
current driving direction. More precisely, a shift along the orthogonal of the line
defined by the predecessor and the successor of the considered point. Whenever
a drift is initiated, a new maximal drift distance is determined according to a
Gaussian distribution with mean 0 and standard deviation of o4,; ¢+ meters. The
determined maximal drift distance will then be reached from the current drift
distance (0 if there is no incomplete preceding drift) within exactly 30 seconds
(in case no new drift is initiated along the way). For example, this corresponds
to 3 GPS points in case of GPS point interval of 10 seconds. After the maximal
drift distance has been reached, the drift distance decreases to zero within 30
seconds again.

4 Evaluation

In order to evaluate how well our data generation approach mimics real-life data,
we compare the synthetically generated data with real-life data. We do so from

3 The probability is normalized by time between two GPS fixes in order to avoid
simulating less/biased noise and drift for traces with a higher GPS sampling rate.

(c) Trips generated with Brinkhoff (d) Trips generated with BerlinMOD

Fig. 3: Spatial distribution of departures

two different angles. First, we compare various statistical properties of both syn-
thetically generated and real-life data. This is mainly a sanity check that the
statistics extracted from real-life data are correctly used during the data gen-
eration process and thus correctly reflected in the generated data. Second, we
compare the spatial distribution of real-life and synthetically generated data.
Mostly visual inspection of density plots suggests that our synthetically gener-
ated data ”looks very similar to” real-life data for various geographical regions
at different resolutions. Finally, we assess the performance of our generator to
ensure that we can generate large volumes of data in adequate time.

4.1 Statistical properties of the trips
To assess the quality of the generated data, we compare four sets of trips:

1. An archive of user traces provided by TomTom from February 2011, region
of Berlin. There are 217,165 traces. We cropped the dataset to a smaller
region to make comparisons possible 4.

2. A set of 135,000 traces containing 289,716 trips generated with our system.
The input statistics are extracted from the first set (Berlin area, February
2011) and the generator was setup to cover the baseline region.

45242 °N - 52.56 °N, 13.22 °E - 13.50 °E

Trip Air-line Distance Trip Air-line Distance

0.6] 0.6
0.5 .
0.4 .
0.3 .
0.2 .
0.1 .
0 e L Il
0 10 20 30 40 50 0 10 20 30 40 50
km km
(a) Real life trips (b) Generated trips
Trip Air-line Distance Trip Air-line Distance
0.6 ‘ ‘ 0.6 ‘ ‘]
0.5 .
0.4 .
0.3 .
0.2 .
0.1 .
0 L L L
0 10 20 30 40 50 0 10 20 30 40 50
km km
(c) Trips generated with Brinkhoff (d) Trips generated with BerlinMOD

Fig. 4: Distribution of air-line distances

3. 28 days of data provided with the BerlinMOD generator. The set is publicly
available . We removed all the traces that did not belong to our region. The
dataset is made of 111,114 trips, generated by 1589 vehicles.

4. A set of 302,400 trips generated by the Brinkhoff generator over the same
region. The transportation network was generated from the roads layer of
OpenStreetMaps . We used the class DefaultDataGenerator. The parame-
ters were set in a best effort way.

Geographical validation Figure 3 describes the distributions of departures
in the Berlin area for each set of trips. Our data is very close to the TomTom
archive. The two other datasets exhibit fairly similar distributions.

We represent the distributions of trip air-line distances in Figure 4. The
data created by our generator seems fairly realistic. One major difference is the
distribution of very small values (less than 1km). There is a small but distinct
peak in the real data, which is not present in our dataset. This can be explained
by the grid that we apply on the network for data generation. A side effect of
this method is that very small values are often over-approximated.

® http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html
5 http://www.openstreetmap.org/

The authors of BerlinMOD assume that two kind of trips may be defined.
Work trips are very short and frequent. They are described by the first peak.
Oppositely, additional trips are longer, less common and there is more variance
in the distribution of their lengths. The same type of behavior appears in the
Brinkhoff dataset. This might add realism in more urban regions.

Scheduling of the trips An abstract timestamp represents time in the default
Brinkhoff generator. There is no notion of hour of the day or calendar, the
system has a uniform behavior at each unit of time. Also, it does not group trips
in traces. Therefore, we do not consider the Brinkhoff generator in this section.

Figure 5 illustrates the time and day of the trip departures. The shape of
the real-life distributions matches an urban traffic scenario: we can identify the
early morning rush hours, the weekdays are busier than weekends.

Regarding the distribution of traces among the days of the week, our data is
close the the real distribution. Similarly, there are less traces during the weekend
in the dataset generated with BerlinMOD. However, the distribution of traces
between Saturday and Sunday is different.

The overall shape of the distribution of trips during the day in our dataset
is similar to the original. However, it shows a slight bias to the earlier hours
as explained in Footnote 2 in Section 3.1. The distributions of the BerlinMOD
trips is a direct consequence of how the data is generated. The authors specify
several specific times in the day, then distribute departure hours around those
with Gaussian distributions. This is represented by the three peaks in the graph.

Figure 6 describes the distribution of trip durations. They are directly related
to the distributions of air-line distances (Figure 4). The trips are slightly shorter
in our dataset. The fact that simulated vehicles always take the shortest way
explains the difference. The BerlinMOD dataset also contains shorter trips. This
is a consequence of the shorter air-line distances.

4.2 Spatial comparison

In order to support a spatial comparison of the generated traces with the real
world traces we generate density plots at different resolutions. These are pictures
where the color of each pixel encodes the number of GPS-points falling into the
area represented by the pixel. In case each pixel represents a small area (less
than 3 x 3 square meters) we give each GPS point a circular shape with radius 3
meter. Remember that the path taken between the origin and the destination of
a trip depends exclusively on the digital road map and the weight function of its
edges (speeds). Hence, the correctness and precision of the map used has a vital
influence on the produced GPS points. As the density of regions differs largely
we use a logarithmic scale for the colors. The density plots have been generated
on a synthetic trace archive covering whole Europe with 1 million traces.

The first example in Figure 7 shows two pictures with density of GPS points
for whole Germany. The left picture is generated from the real world data archive
whereas the right picture is made from the synthetic trace archive. The different

Trace Begin - Day of Week Trip Begin - Time of Day

40000 7000 T T T T T
35000 6000
23000 5000
20000 ggog
15000 0
10000 2000
5000 1000
0 0
2 3 4 5 6 7 8 0 200 400 600 800 1000 1200 1400 1600
1=Sunday to 7=Saturday minutes since 00:00 UTC
(a) Real life trips
Trace Begin - Day of Week Trip Begin - Time of Day
25000 T T 4000 T T T
3500
20000 3000
15000 2500
2000
10000 1500
5000 1000
500 I
0 0
2 3 4 5 6 7 8 0 200 400 600 800 1000 1200 1400 1600
1=Sunday to 7=Saturday minutes since 00:00 UTC
(b) Synthetic trips
Trace Begin - Day of Week Trip Begin - Time of Day
6000 T T 1000 T T T
900
5000 800 -
700 -
4000 600 -
3000 500
400 -
2000 300 |-
200 -
1000 Too [
0 0
0 2 3 4 5 6 7 8 0 200 400 600 800 1000 1200 1400 1600
1=Sunday to 7=Saturday minutes since 00:00 UTC

(c¢) Generated with BerlinMOD

Fig. 5: Trip departure schedules

densities of the real world data are well reflected in the picture of the synthetic
traces. In fact, we think it is hard to tell them apart.

The same is true also for the pictures in Figure 8 which show the densities
for the region of Amsterdam. In order to use approximately the same number of
traces we used real world GPS-data for the left picture that has been collected
during one day only. The small differences in the pictures mainly come from
standing or parking cars that generate a high density as they do not move
(uniform sampling in time).

Trip Duration Trip Duration

10000 T 16000 T
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

0 100200300400500600 0 100200300400500600

minutes minutes

(a) Real life trips (b) Synthetic trips

Fig. 6: Trip durations

Trip Duration
60000 T
50000 | B
40000 Bl
30000 | B
20000 | Bl
10000 |- B

0 1 1 1 1 1
0 100200300400500600

minutes

(c) BerlinMOD trips

Fig. 7: Density of GPS points for Germany. Left: real world data. Right: synthetic data.
Color coding with logarithmic scale.

A more detailed view for an urban area in Berlin is shown in the pictures of
Figure 9. The high densities on the left picture (real world data) are due to a
large percentage of vehicles that have to wait in front of the traffic light. The
street with largest density on the right side (synthetic traces) has no density in

the left picture as the road is closed in reality.

Figure 10 shows a big motorway junction south of Berlin. We observe that the
real world GPS points exhibit a much smaller deviation from the center of the

Fig. 8: Density of GPS points for Amsterdam. Left: real world data. Right: synthetic
data. Color coding with logarithmic scale.

3; \ y?; :
. d

Fig.9: Density of GPS points. Left (real world data): Standing cars in front of traffic
lights produce higher density. Right (synthetic data): Many routes use street which is
closed in reality.

street compared to the synthetic traces. This is due to the local conditions (no
building or trees, wide open sky) that allow much better GPS reception leading
to lower noise levels. An opposite situation is shown in Figure 11 covering an
urban canyon in Frankfurt/Main with large buildings impairing the GPS quality.

4.3 Performance evaluation

Finally, we measure how much data our generator can generate per time.

Setup The experiments were run on a machine equipped with a 3.4 GHz quad-
core Intel(R) Core(TM) i7-2600 CPU (8 hardware threads, 8 MB L3 cache),
8 GB of main memory, and a 7200 RPM 1TB Seagate Barracuda ES.2 SATA
hard disk connected via USB 2.0. To evaluate the performance of our current
implementation, we generated 100,000 traces with simulated GPS noise within
the bounding box of Germany”. For this purpose, we used the following input:

T 47.26784°N - 55.13216 °N, 5.7344 °E - 15.07328 °E

Fig. 10: Density of GPS points for motorway junction south of Berlin. Left: real world
data, Right: synthetic data. Due to good GPS reception is the noise level of real world
data smaller than for the synthetic traces.

Fig.11: Density of GPS points in urban canyon (Frankfurt/Main). Left: real world
data. Right: synthetic data. Due to bad GPS reception, the real world data exhibits
more noise than the synthetic traces.

— Trace/trip statistics (O/D grid cell size: 0.02°x0.02°) gathered from all
traces within the bounding box of Germany contained in TomTom’s real-
life GPS data archive for 2010.

— A digital map of the entire road network of Europe.

Results The generated data (100,000 traces) consists of 216,875 trips, with 404
GPS fixes per trip on average, i.e., a total of 87.6 million GPS fixes, resulting
in a ~4GB CSV file. With an overall execution time of just under 105 min-
utes (6279.644 seconds), our generator created on average 15.92 traces per sec-
ond, respectively 34.54 trips per second (13,954 GPS fixes per second). In other
words, it took on average 62.80 ms per trace, respectively 28.96 ms per trip (72 us
per GPS fix). The total execution time breaks down as follows. Generating the
216,875 OD pairs (one pair per trip) took 6 minutes and 49 seconds (6.5 %).
Generating the location queries took 7.5 minutes (7.2%). Planning the routes
between all 216,875 OD pairs took 57.5 minutes, i.e., about 55 % of the total
execution time. Generating the 100,000 traces took 6 minutes and 9 seconds
(5.8 %). Writing the results to disk took 26.5 minutes (~25%).

While we believe that these are rather reasonable performance results, we
point out that our initial implementation of our generator is purely sequential,
i.e., it uses only a single CPU core.

Given that the whole process is for more than 75% of the time “IO-free”
and thus CPU-bound, parallelization is straight-forward, e.g., using spatial par-
titioning. The given region can be split into sub-regions (e.g., one per available
CPU core / hardware thread), and independent generator processes can be run
concurrently, one per sub-region.

5 Conclusion

We set out to resolve the conflict of real-life and synthetic representative data
in the domain of traffic monitoring. To resolve this conflict, we introduced a
hybrid data generation technique: Statistics that are gathered from a real-life
application set are combined with a system model to generate a scalable dataset
that preserves real-life data characteristics. We evaluated the generated dataset
against our real life input data using visual inspection as well as statistic analysis.
We found that the generated data closely resembles the real-life data and is, thus,
a good basis for the evaluation of data management solutions.

References

1. T. Brinkhoff. A framework for generating network-based moving objects. Geoln-
formatica, 6(2):153-180, 2002.

2. D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning
algorithms. In Algorithmics of Large and Complexr Networks, pages 117-139, 2009.

3. C. Diintgen, T. Behr, and R. Giiting. Berlinmod: a benchmark for moving object
databases. The VLDB Journal, 18:1335-1368, 2009. 10.1007/s00778-009-0142-5.

4. M. Haklay and P. Weber. Openstreetmap: User-generated street maps. Pervasive
Computing, IEEE, 7(4):12-18, 2008.

5. P. E. Hart, N. J. Nilsson, B. Raphael, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. pages 100-107, 1968.

6. M. Hilger, E. Kohler, R. Mohring, and H. Schilling. Fast point-to-point shortest
path computations with arc-flags. The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, 74:41-72, 2009.

7. D. Pfoser and Y. Theodoridis. Generating semantics-based trajectories of moving
objects. Computers, Environment and Urban Systems, 27(3):243-263, 2003.

8. D. V. V. R. Liu and D.P.Watling. Dracula: Dynamic route assignment combining
user learning and microsimulation. PTRC, E, 1994.

9. M. Rickert, P. Wagner, and C. Gawron. Real-time simulation of the german auto-
bahn network, 1997.

10. J.-M. Saglio and J. Moreira. Oporto: A realistic scenario generator for moving
objects. In DEXA Workshop, pages 426—432, 1999.

11. Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On the generation of
spatiotemporal datasets. In R. H. Giiting, D. Papadias, and F. H. Lochovsky,
editors, SSD, volume 1651 of Lecture Notes in Computer Science, pages 147-164.
Springer, 1999.

