

Dieses Dokument ist eine Zweitveröffentlichung (Postversion) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-830877

Tim Kiefer, Benjamin Schlegel, Wolfgang Lehner

MulTe: A Multi-Tenancy Database Benchmark Framework

Erstveröffentlichung in / First published in:

Selected Topics in Performance Evaluation and Benchmarking: 4th TPC Technology
Conference. Türkei, 27.08.2012. Springer, S. 92–107. ISBN 978-3-642-36727-4.

DOI: http://dx.doi.org/10.1007/978-3-642-36727-4 7

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-830877
http://dx.doi.org/10.1007/978-3-642-36727-4_7

MulTe: A Multi-Tenancy Database Benchmark

Framework

Tim Kiefer, Benjamin Schlegel, and Wolfgang Lehner

Dresden University of Technology
Database Technology Group

Dresden, Germany
{tim.kiefer,benjamin.schlegel,wolfgang.lehner}@tu-dresden.de

Abstract. Multi-tenancy in relational databases has been a topic of in-
terest for a couple of years. On the one hand, ever increasing capabilities
and capacities of modern hardware easily allow for multiple database
applications to share one system. On the other hand, cloud computing
leads to outsourcing of many applications to service architectures, which
in turn leads to offerings for relational databases in the cloud, as well.

The ability to benchmark multi-tenancy database systems (MT-
DBMSs) is imperative to evaluate and compare systems and helps to
reveal otherwise unnoticed shortcomings. With several tenants sharing
a MT-DBMS, a benchmark is considerably different compared to classic
database benchmarks and calls for new benchmarking methods and per-
formance metrics. Unfortunately, there is no single, well-accepted multi-
tenancy benchmark for MT-DBMSs available and few efforts have been
made regarding the methodology and general tooling of the process.

We propose a method to benchmark MT-DBMSs and provide a frame-
work for building such benchmarks. To support the cumbersome process
of defining and generating tenants, loading and querying their data, and
analyzing the results we propose and provide MulTe, an open-source
framework that helps with all these steps.

1 Introduction

Academia and industry have shown increasing interest in multi-tenancy in re-
lational databases for the last couple of years. Ever increasing capabilities and
capacities of modern hardware easily allow for multiple database applications
with moderate requirements to share one system. At the same time, cloud com-
puting leads to outsourcing of many applications to service architectures (IaaS,
SaaS), which in turn leads to offerings for relational databases hosted in the
cloud as well [1, 2]. We refer to any database system that accommodates mul-
tiple tenants by means of virtualization and resource sharing, either on a single
machine or on an infrastructure of machines, as a multi-tenancy database man-
agement system (MT-DBMS). All MT-DBMSs lead to interesting challenges like,
(1) assigning logical resources to physical ones; (2) configuring physical systems

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

(e.g., database design, tuning parameters); and (3) balancing load across phys-
ical resources, all of which require thorough testing to ensure scalability and
system quality.

Although there have been several works on how to build multi-tenancy sys-
tems, little work has been done on how to benchmark and evaluate these
systems—partly due to the diversity of the systems and the complexity of possi-
ble benchmark setups. There are many well-accepted database benchmarks, e.g.,
TPC benchmarks like TPC-C or TPC-H [3] or the XML benchmark TPoX [4].
These benchmarks concentrate on a certain scenario (e.g., OLTP or OLAP) and
measure a system’s peak performance with respect to the given scenario. The
key challenge for multi-tenancy systems is usually not to provide the highest
peak performance, but to scale well and deal with multiple changing workloads
under additional requirements like performance isolation and fairness. A first at-
tempt has been made to propose a benchmark for database-centric workloads in
virtual machines (TPC-V) [5]. This benchmark is still under development and
although it has the same goal as our work, i.e., to benchmark multi-tenancy
systems, the means and priorities differ significantly. TPC-V, like all other TPC
benchmarks, provides strict rules and conditions to ensure a comparable and
long-lasting benchmark. At the same time, many implementation details and
efforts are left to the benchmark sponsor. In contrast, our work provides a very
flexible environment and tools for rapid developments and implementations of
new multi-tenancy benchmarks. We will discuss our work’s relation to TPC-V
in more detail in Section 6.

In this work, we propose and provide methodology, workflow, and associ-
ated tools to benchmark MT-DBMSs. A great variety of MT-DBMSs exists and
different systems are complex and diverse. Hence, we do not propose a single
benchmark that fits all systems, but rather provide the framework MulTe1

that allows for generating specific benchmarks quickly and easily. As shown in
Figure 1, our approach is to re-use existing benchmarks, including their schemas,
data, and queries/statements and to generate instances of these benchmarks to
represent different tenants. Each tenant is given an individual, time-dependent
workload that reflects a user’s behavior. A workload driver is used to run all
tenants’ workloads against any multi-tenancy database system and to collect all
execution statistics and benchmark metrics. All steps are supported with tools
which together form our multi-tenancy benchmark framework MulTe.

Legacy Benchmark 3

 s

Legacy Benchmark 2

 s

Legacy Benchmark 1
- schema
- data
- queries/statements

t

t
Tenant

1

size/
query mix

workload Workload
Driver

Multi-
Tenant
DBMS

Fig. 1. Multi-Tenancy Benchmark Workflow

1 http://wwwdb.inf.tu-dresden.de/research-projects/projects/multe/

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://wwwdb.inf.tu-dresden.de/research-projects/projects/multe/

To demonstrate the ability to create meaningful benchmarks, we will sketch
the process of building three different exemplary benchmarks throughout the
paper. We will try to answer the following three questions related to MT-DBMSs:

1. ScalabilityBenchmark: Does the system scale well with the number of
tenants? How many tenants are able run in parallel? What is the individual
performance? What is the overall performance?

2. FairnessBenchmark: How fair is the system, i.e., are the available re-
sources equally available to all tenants? If tenants have different priorities,
how well are they implemented?

3. IsolationBenchmark: How well are tenants isolated from one another
with respect to performance? How do individual tenants influence other ten-
ants’ performance?

MulTe is flexible enough that many other aspects and components, e.g., for
load balancing, of MT-DBMSs can be tested as well.

To summarize, our key contributions in this paper are:

– MulTe, an easy-to-use, extensible framework to build and run benchmarks
for MT-DBMSs.MulTe comes with an example implementation for all com-
ponents (e.g., TPC-H is supported as benchmark type), but is designed to
allow for future extensions.

– The introduction of time-dependent workloads to allow for realistic, dynamic
tenants and the analysis of effects caused by them. This includes a brief
discussion of how time-dependent workloads should be defined.

– A new performance metric relative execution time for multi-tenancy bench-
marks that considers time-dependent workloads.

The rest of the paper is organized as follows: In Section 2, we recapitulate the
fundamentals of MT-DBMSs before we introduce our multi-tenancy benchmark
concept in Section 3. Following in Section 4, we provide an overview of design
and implementation decisions for MulTe. In Section 5, we describe the process
of building and running exemplary benchmarks with MulTe before we reference
related work and conclude in Sections 6 and 7, respectively.

2 Multi-Tenancy Database Management Systems

In this section, we briefly recap the fundamentals of MT-DBMSs for the inter-
ested reader. We further demonstrate the range of multi-tenancy systems that
can be evaluated with MulTe by naming some examples.

The layered system stack of a DBMS—from the database schema to the op-
erating system—allows for consolidation at different levels. Previous works have
classified virtualization schemes, leading to classes like private process, private
database, or private schema [6, 7]. A variety of specific MT-DBMSs can be built
following this classification, all of which can be tested with MulTe. Figure 2
shows three possible Systems Under Test (SUT). The topmost two layers (Ten-
ant Workload and Workload Driver) are provided by MulTe and are the same

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Tenant
Workload

Tenant
Workload

Tenant
Workload

Tenant
Workload

Workload Driver

DBMS Interface

Middleware
(routing, load balancing, ...)

SUT

(a) Private Schema

Tenant
Workload

Tenant
Workload

Tenant
Workload

Tenant
Workload

Workload Driver

DBMS Interface

SUT

(b) Private Database

Tenant
Workload

DBMS
Interface

DBMS
Interface

DBMS
Interface

DBMS
Interface

Tenant
Workload

Tenant
Workload

Tenant
Workload

Workload Driver

Virtual Machine Monitor

SUT

(c) Private OS

Fig. 2. MT-DBMSs Under Test

for all systems, whereas the implementation of the multi-tenancy functionality
differs significantly.

Private Schema: The system shown in Figure 2a is an example for a pri-
vate schema virtualization. A middleware is responsible for the routing and
load balancing of different tenants. Each tenant is implemented as a schema
in any of a small number of physical databases. In this setup, MulTe can
be used to test the performance of the middleware with respect to rout-
ing and load balancing as well as each backend DBMS. All three exemplary
benchmarks—ScalabilityBenchmark, FairnessBenchmark, and Isola-
tionBenchmark—are of great interest in this scenario.

Private Database: The system shown in Figure 2b implements a private database
virtualization. Here, a single large machine hosts a number of private databases—
a common setup for many database servers. MulTe, especially the Scalabili-
tyBenchmark, can be used to test the system’s ability to scale with the number
of tenants and hence databases. The DBMS is the main focus for benchmarks
in such MT-DBMSs.

Private Operating System: The system shown in Figure 2c implements a private
OS virtualization where each tenant is implemented with a complete stack of
virtual machine, operating system, and database management system. Conse-
quently, MulTe can not only test DBMSs in virtualized environments, but also
provide insights on the performance of the virtual machine monitor and its abil-
ity to balance and isolate multiple virtual machines that run database workloads
(cf. Soror et al. [8]). Again, all three exemplary benchmarks are relevant for such
systems.

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

3 Benchmark Framework Conception

To explain our concepts of multi-tenancy benchmarks, we introduce the general
workflow first. The idea of time-dependent workloads is described in Section 3.2.
Finally, the metric that we propose for multi-tenant benchmarks is presented in
Section 3.3.

3.1 General Benchmark Workflow

Based on the idea to re-use existing database benchmarks, the general workflow
of benchmarks built with MulTe is shown in Figure 3. The characteristics of
a tenant are defined with a basic set of parameters. This includes, e.g., the
benchmark type (like TPC-H), the size of the raw data, and the query mix. Based
on these descriptions, instances of the benchmarks are generated and loaded as
tenants into the MT-DBMS. All three steps are supported by a set of Python
scripts. Once populated, a Java workload driver runs the tenants’ workloads
against the MT-DBMS and collects all relevant performance statistics. These
statistics are analyzed, evaluated, and visualized with Python and R.

t

y

(1) define (2) generate/ (3) populate (4) execute (5) evaluate/
visualize
results

Python Java Python/R

materialize
tenants

tenants databases workloads

Fig. 3. MulTe—General Benchmark Workflow

3.2 Time Dependent Workloads—Activities

One approach to test MT-DBMSs is to let all tenants execute constant (peak)
workload over a period of time. While this is perfectly valid to evaluate the
system’s ability to scale with the number of tenants in extreme load situations,
e.g., for the ScalabilityBenchmark, it presents a somewhat pathologic sce-
nario and more importantly does not help to evaluate system characteristics like
fairness and performance isolation. A key assumption for multi-tenancy systems
is that at no time, all tenants are working simultaneously. Figure 4 shows two
tenants’ activities, i.e., their workload over time, and it can be seen that their
peak loads are at different times. However, the aggregated workload for the en-
tire system, which is less than the sum of both peak workloads, dictates each
tenant’s performance. A MT-DBMS should take the specific behavior of its ten-
ants into account (as much as possible) and provision for realistic, average load
scenarios. In our work, we would like to acknowledge that tenants are different to
one another and over time. To relate the concept of activities to our exemplary

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

time

ac
tiv

ity
Tenant 1 activity Tenant 2 activity Aggregated system activity

time

ac
tiv

ity

time

ac
tiv

ity

Fig. 4. Time Dependent Tenant Workloads—Activities

benchmarks, we briefly discuss their need in context of the benchmark purposes.
All three benchmarks will be further discussed in Section 5.

1. ScalabilityBenchmark: A simple constant workload is sufficient to test
a system’s scalability.

2. FairnessBenchmark: To evaluate fairness, tenants can execute constant
load over time. However, to evaluate how resources are split among tenants,
they must execute possibly different workloads at different stress-levels.

3. IsolationBenchmark: To evaluate performance isolation, a tenant’s work-
load must change over time. For example, Tenant 1 can run a constant work-
load while Tenant 2 executes resource-intensive queries sporadically. The
reaction of the first tenant’s performance to the second tenant’s activity
gives an important insight into the MT-DBMS.

To support varying tenant loads, we introduce time-dependent workloads or ac-
tivities in our benchmarks. As indicated before, we understand a tenant’s activity
as the combination of the queries that the tenant executes and the timeline that
defines, when queries are executed. A design decision inMulTe is that activities
are defined per tenant (as opposed to for the whole system) so that tenants can
be driven independently and possibly in a distributed fashion.

Given these pre-requisites, the question rises how activities should be defined;
an interesting research topic on its own. We shortly introduce how we solve the
problem in our implementation of MulTe. However, the framework is flexible
enough to support other, more complex approaches in future releases.

Aggregated or disaggregated workload definition: The overall goal of the activi-
ties is to simulate a system of multiple tenants to get a realistic global view on
the system. However, there seem to be two general approaches to achieve this.
The aggregation approach—which we decided to implement—defines tenants’ ac-
tivities individually such that the resulting aggregated workload fulfills certain
requirements or shows certain characteristics. The challenge is to define individ-
ual activities that aggregate to the expected global workload. The disaggregation
approach on the other hand starts with a global load characteristic for the whole
multi-tenancy system. Here, the challenge is then to split (or disaggregate) this
global workload in a meaningful way to a set of local tenant activities.

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Set of parameters: A second challenge when defining activities is to find a com-
promise between the complexity and the expressiveness of the description. To
provide a function definition to calculate the activity at any point in time would
be one extreme. Although most powerful, this approach seems to be hard to
implement. Defining detailed activity functions for tens or possibly hundreds of
clients is not a feasible task. The other extreme would be to rigorously simplify a
tenant’s activity so that it results in a constant or possibly random workload—
only one or two parameters are necessary to implement that, but the possibilities
for interesting workloads are limited.

We decided to pick the query to execute randomly (with weights). To describe
the timeline of an activity, we use four parameters: meansleeptime, paral-
lelusers, activity, and activityconstraint—their meanings are shown in
Figure 5. This simple set of parameters allows to model tenants with an on/off
behavior, i.e., tenants that are active periodically and idle (for a certain amount
of time, meansleeptime) in between. When tenants are active, multiple par-
allel users (parallelusers) run queries against the database, either constraint
by a number of transactions or by an amount of time (depending on activity
and activityconstraint). In our opinion, this approach is a good compro-
mise between complexity and expressiveness but we continuously work on new
methods.

qu
er

ie
s

ex
ec

ut
ed

 in
 p

ar
al

le
l

execution timeline

PARALLELUSERS = 3 ACTIVITYCONSTRAINT = TIME

MEANSLEEPTIME = 3 ACTIVITY = 2

0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

3

} }

Fig. 5. Workload Parameters

Independent or correlated parameters: Once the method for describing activities
is chosen, the question remains how to determine good values for the parameters.
Again, the challenge is to find a compromise between expressiveness and the
feasibility of the task to come up with parameters for possibly hundreds of
instances. Our approach is to pick parameter values independently from one
another. For example, the meansleeptime may follow a Gaussian distribution
over all tenants while the raw data size is evenly distributed between a minimum
and a maximum. However, a tenants’s meansleeptime is independent from its
raw data size and the other parameters. In the future, more complex extensions
of MulTe may find it useful to correlate certain parameters, e.g., to simulate
that larger tenants access data more often.

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

3.3 A Performance Metric for Multi-Tenant Database Systems

We argue that MT-DBMSs are so diverse and complex that different aspects need
to be considered when a benchmark is designed. A single, classic performance
metric, like transactions executed per second, is valid for peak performance eval-
uations and hence can be used for the ScalabilityBenchmark and the Fair-
nessBenchmark. However, it is not sufficient to answer the question of how
well tenants are isolated from one another, which is the intention of the Iso-
lationBenchmark. Hence, with tenants that have activities, a multi-tenancy
benchmark needs a new performance metric. Since the tenants’ activities are
time-dependent, it follows that the new metric should also be time-dependent,
i.e., it may differ over the run of the benchmark. Depending on the intention
of the executed benchmark, this time-dependent metric may be aggregated to
a single value. We propose the relative execution time over time as the basic
metric for MT-DBMSs.

Relative execution time: To learn about a query’s execution time under optimal
conditions, a baseline run is performed in a simulated single-tenant environment.
During this baseline run, each tenant is allowed to execute its workload on the
otherwise idle system (possibly a couple of times) to collect information about
its best-case execution time. During actual test runs, each query’s execution time
is recorded and compared to the baseline execution time. This leads to a relative
execution time for this query, i.e., a penalty caused by the current overall system
load, compared to the best-case scenario. Obviously, this relative execution time
can differ significantly for a single query over time depending on the system
load and configuration at that time. To reason about a tenant’s performance
or the overall system performance, individual relative execution times from the
queries/transactions can be aggregated.

Having this metric, the question remains how to interpret it to answer different
performance questions. We discuss our exemplary benchmarks to illustrate the
usage of the new performance metric.

1. ScalabilityBenchmark: To evaluate a system’s ability to scale with the
number of tenants, different (average) relative execution times measured
with different numbers of tenants can be compared.

2. FairnessBenchmark: When multiple tenants run their individual work-
loads, the differences of the relative execution times can be used to reason
about the fairness of the system. Similar relative execution times can indi-
cate a fair system. Large differences can indicate the absence (or poor per-
formance) of a load-balancing component. However, large differences may be
intentional, e.g., because different tenants have different service levels.

3. IsolationBenchmark: To evaluate how well tenants are isolated from one
another, all tenants execute a steady, moderate workload. At some point in
time, a single tenant starts to execute heavy workload. The changes of other
tenants’ relative execution times after the workload change indicate how well
they are isolated from the respective tenant.

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

4 Benchmark Implementation

In this section, we give an overview of design and implementation decisions that
we made for the implementation of MulTe. Detailed information about the
implementation can be found in the framework package and a related technical
report (to appear with this paper).

4.1 Framework Design Principles

Our intention is to provide MulTe as a framework for MT-DBMSs that will
be widely used and extended by the community. We committed our work to a
number of design principles that shall help to increase the value of the framework.

Easy-to-use: We provide an example implementation to create tenants that run
the TPC-H benchmark against MySQL or PostgreSQL databases. A user only
needs to provide a small number of configuration parameters (e.g., host, port,
paths, ...) and a workload definition, e.g., following one of the provided example
scripts. The framework then generates and loads tenants. The Java workload
driver can be used with a provided sample configuration to run the workload.

Component Re-use: We re-use existing components wherever possible to increase
a benchmark’s acceptance and reliability. From the given database benchmark,
we re-use, e.g., data generators and schema definitions. The Java workload driver
in MulTe is a modification of the workload driver of the TPoX database bench-
mark [4]. Hence, the strengths of this well-tested tool as well as the experiences
and improvements gathered from using it help to improve MulTe.

Extensibility: The framework components to generate and load tenants can be
replaced such that both, other benchmarks and other database systems can be
supported. Python as the scripting language allows users to easily adopt our ex-
ample implementations and modify them to fit their needs. The workload driver
is designed to be able to run a wide variety of workloads, thus supports differ-
ent benchmarks. Extending the workload driver to support different database
systems is also easily possible as long as they provide a JDBC interface.

4.2 Python Scripts—Define, Generate, and Load Tenants

The Python scripts/classes to define, generate, and load tenants follow the struc-
ture shown in Figure 6. The full Python functionality can be used to define a
tenant’s set of activity parameters. We provide two implementations that ei-
ther specify the parameters’ values explicitly or pick them randomly (following
a distribution) but independent from one another. Given the tenants’ defini-
tions, instances of the respective database benchmarks are generated using both,
provided data generators and templates. Other instance generators for other
benchmark types can be added by implementing the methods generateData,
generateSchema, and generateWorkload. A DBMS-specific database executor

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

GenericTenantGenerator
 < abstract>

TPCHTenantGenerator

generateData
generateSchema
generateWorkload

GenericDatabaseExecutor
 < abstract>

MySQLDatabaseExecutor

RandomIndependent-
SetupBuilder

ManualSetupBuilder

executeCommandFromString
executeCommandFromFile
bulkLoadCSVFile

 < > < >

execution timeline

Fig. 6. Python Scripts Overview

is used to load all tenants’ data into the databases. Our example implementation
uses the command line interfaces of MySQL and PostgreSQL to execute SQL
statements and to bulk-load data from CSV-files.

4.3 Java Workload Driver

As mentioned before, the Java workload driver, which executes all tenants’ work-
loads against a MT-DBMS, is a modification and extension of the workload
driver provided with the TPoX database benchmark. A detailed documentation
of the original workload driver and its capabilities can be found on the TPoX
website. Here, we would like to briefly show some of the modifications that we
made (Figure 7). The class structure is closely coupled to the framework con-
ception. The WorkloadSuite uses GlobalSuiteParameters for the benchmarks,
taken from a simple configuration file (here suite.xml). The WorkloadSuite

furthermore drives multiple tenants (WorkloadInstance) that in turn use mul-
tiple ConcurrentUsers to execute statements in the database. All of a tenant’s
parameters—stored in WorkloadInstanceParameters—are taken from an XML
configuration file that is automatically generated by MulTe.

WorkloadSuite

1
N

1
N

1
1

WorkloadInstance
 Thread<< >>

DatabaseOperations
(DBMS specific)

ConcurrentUser
 Thread<< >>

WorkloadInstanceAdministration
 Singleton<< >>

GlobalSuiteParameters
 Singleton<< >>

WorkloadInstanceParameters

1
N

init
suite.xml

init

use

use

use

use

instance??.xml

Fig. 7. Java Workload Driver Overview

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

5 Exemplary Benchmark Development and Execution

To show the ability of MulTe to help with the development of multi-tenancy
benchmarks, we have implemented the three exemplary benchmarks Scala-
bilityBenchmark, FairnessBenchmark, and IsolationBenchmark on a
dual-socket AMD Opteron machine running Ubuntu 11.10 server, Java, Python,
R, and MySQL. We used MulTe to generate up to 8 tenants that all run the
TPC-H benchmark with 500MB of raw data. All tenants’ data is loaded to pri-
vate databases in a single MySQL server.

In the following, we are only interested in the process of building and execut-
ing a benchmark and not the particular results, which is why we do not further
detail the system under test and only show relative results without baselines.
We do not intent to make any statement about MySQL’s multi-tenancy capa-
bilities.

5.1 A Multi-Tenancy Scalability Benchmark

Our first benchmark is the ScalabilityBenchmark described earlier. To run
the benchmark, we generated and loaded 8 identical tenants that run constant
workload with the parameters denoted in Table 1.

Table 1. Tenant Parameters for the ScalabilityBenchmark

Parameter Value

type TPC-H
size 500MB
query TPC-H Query 1
meansleeptime 0
parallelusers 5
activity 300
activityconstraint seconds

We then collected a baseline for the execution time of TPC-H Query 1 in
single-tenant mode. Afterwards, we used the workload driver to run 1, 2, 4, 6,
or 8 tenants at the same time and to collect the execution times of all queries.
Last, we computed the average relative execution time, an aggregate of our basic
metric, the relative execution time over time, as an indicator for the system’s
ability to scale. The results are shown in Figure 8.

5.2 A Multi-Tenancy Fairness Benchmark

The second benchmark that we built is the FairnessBenchmark. We gener-
ated and executed two different flavors of the benchmark: one with identical
tenants, the other one with two different (groups of) tenants that differ in the

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

1 2 3 4 5 6 7 8

0
1

2
3

4

number of tenants

a
v
e

ra
g

e
 r

e
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

baseline

Fig. 8. Scalability Benchmark

query they execute. In FairnessBenchmark 1, shown in Figure 9a, all tenants
execute TPC-H Query 1. In FairnessBenchmark 2, shown in Figure 9b, half of
the tenants execute TPC-H Query 1 while the other half executes TPC-H Query
8. The metric shown in the bar charts is the average relative execution time per
tenant (note the different scales of the y-axes). It can be seen that, on the one
hand, with identical queries the relative execution time goes up with the number
of tenants, but the available resources are distributed evenly. On the other hand,
with tenants running different queries, one group observes a considerably higher
relative execution time.

2 tenants 4 tenants 8 tenants

number of tenants

a
v
e

ra
g

e
 r

e
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0
1

2
3

4

(a) Fairness Benchmark 1

2 tenants 4 tenants 8 tenants

number of tenants

a
v
e

ra
g

e
 r

e
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0
5

1
0

1
5

(b) Fairness Benchmark 2

Fig. 9. Fairness Benchmarks

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

5.3 A Multi-Tenancy Isolation Benchmark

The last of our exemplary benchmarks is the IsolationBenchmark. To evalu-
ate whether and how much a tenant can influence another tenant’s performance
we generated two different tenant types using the parameters shown in Table 2.

Table 2. Tenants used for the IsolationBenchmark

Parameter Tenant 1 Tenant 2

type TPC-H TPC-H
size 500MB 500MB
query TPC-H Query 1 TPC-H Query 8
meansleeptime 0 60 seconds
parallelusers 5 20
activity 50 10
activityconstraint transactions seconds

It can be seen that both tenants have different activities. While Tenant 1 is
running a constant workload, Tenant 2 is idle for 60 second intervals interrupted
by short bursts of heavy query execution. The resulting individual loads imposed
on the DBMS as well as the aggregated load are shown in Figures 10a–10c. To
learn more about the system’s ability to isolate tenants, we collected and charted
the relative execution times. The results are shown in Figures 10d and 10e.

6 Related Work

There are several standardized benchmarks like TPC-C, TPC-E, TPC-DS, and
TPC-H that are provided by the Transaction Processing Performance Council
(TPC) [3]. All of these benchmarks aim at benchmarking database servers for
different scenarios; TPC-C, for example, provides a database schema, data pop-
ulation, and workload for a typical OLTP scenario. Unfortunately, none of the
TPC benchmarks can be used directly to measure the performance of a MT-
DBMS. All of them use a fixed schema for only a single tenant. The queries,
schema, and data of these benchmarks, however, can be re-used to create load
for multiple tenants. Thus, they can form the foundation for any MT-DBMS
benchmark that is built and run using MulTe.

Aulbach et al. [9] describe a testbed that is tailor-made for benchmarking MT-
DBMSs. The workload relies on a fixed schema (i.e., a customer-relationship
schema) and provides OLTP and OLAP queries for multiple tenants that are
hosted on a service provider. Curino et al. [10] define multiple fixed workloads
to benchmark their MT-DBMS. The workloads are based on TPC-C and have
certain time-varying patterns. MulTe allows to use arbitrary and mixed work-
loads and schemas, hence allows to build more elaborate benchmarks.

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

13

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Timestamp

q
u

e
ri

e
s
 e

x
e

c
u

te
d

 i
n

 p
a

ra
lle

l

14:23:52 14:28:53

0
2

4
6

8
1

1
1

4
1

7
2

0
2

3

(a) Tenant 1 Activity

Timestamp

q
u

e
ri

e
s
 e

x
e

c
u

te
d

 i
n

 p
a

ra
lle

l

14:23:52 14:25:04 14:26:30 14:27:56 14:29:01

0
2

4
6

8
1

1
1

4
1

7
2

0
2

3

(b) Tenant 2 Activity

Timestamp

q
u

e
ri

e
s
 e

x
e

c
u

te
d

 i
n

 p
a

ra
lle

l

14:23:52 14:25:04 14:26:30 14:27:56 14:28:53

0
3

6
9

1
2

1
5

1
8

2
1

2
4

(c) Aggregated Activity

● ● ● ● ●●●

●●●

●●● ●●● ●● ●●● ●●●
●●●●

●● ●●●● ●●● ●●●● ●●● ●●●●
● ●●●●

●●● ●●● ●●● ●●●

Timestamp

re
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

14:23:52 14:25:01 14:26:01 14:27:00 14:27:56 14:28:50

0
3

6
9

1
2

1
5

1
8

2
1

2
4 ● Tenant 1

Tenant 2

(d) Relative Execution Times

●●●●● ● ● ● ●
●

●●
●●

●
●●

●●
●

●● ●●● ●●●

●
●

●●

●

●
●●
●

●

●●● ●●●
●

●●●● ●●●●

●
●
●
●

●
●

●
●
●

●

●●●● ●●
●

●●●● ●●

Timestamp

re
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

14:23:52 14:25:01 14:26:01 14:27:00 14:27:56 14:28:50

0
1

2
3

4

● Tenant 1

Tenant 2

(e) Relative Execution Times (zoomed)

Fig. 10. Performance Isolation Benchmark—Activities and Relative Execution Times

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

14

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

TPC-V [5] is a benchmark under development of the TPC suite. It is in-
tended to benchmark databases that are hosted in virtual environments. The
main focus lies on virtual machines (cf. Figure 2c), but the same concepts
are applicable to other multi-tenancy implementations as well. TPC-V uses
different database sizes and numbers of queries to emulate tenants with dif-
ferent loads. Furthermore, the load is varied within twelve 10-minute periods
to shift the tenants’ peak load to different periods as it is usually the case in
real-life applications. Although TPC-V aims for the same direction as MulTe
does, it has significantly different priorities. Like other TPC benchmarks, it
provides strict guidelines to ensure a comparable and long-lasting benchmark.
Consequently it is less flexible with respect to the tested scenarios, executed
workloads, and other aspects of the benchmark. Moreover, TPC-V rather con-
centrates on the benchmark specification than the actual implementation which
is left to the benchmark sponsor. In contrast, our goal is to support building
benchmarks for all classes of MT-DBMSs (cf. Figure 2) and benchmarks that
can be adapted to certain scenarios and questions. With the tools provided
by MulTe, new benchmarks can be implemented very fast. This flexibility
allows users to quickly expose performance, fairness, and other issues in MT-
DBMSs.

7 Summary

We introduced and provided MulTe, a framework to help with the process
of building and running benchmarks for MT-DBMSs. A multi-tenancy bench-
mark consists of multiple tenants, each running an arbitrary database bench-
mark. MulTe provides extensible tools to define, generate, and load all tenants
as well as drive workloads and analyze results. Our example implementation of
the MulTe components supports the TPC-H benchmark on MySQL or Post-
greSQL.

In contrast to classic database management systems, multi-tenancy systems
have additional requirements for, e.g., fairness and isolation, that need to be
addressed in benchmarks. We introduced activities, i.e., time-dependent work-
loads, and a related performance metric (relative execution time) to account for
these new requirements. We showed the necessity for the time-dependent work-
loads and a new performance metric as well as the capabilities of MulTe with
the three exemplary benchmarks ScalabilityBenchmark, FairnessBench-
mark, and IsolationBenchmark.

We would like the community to actively extend MulTe. Additionally, we
are also working on extensions for further benchmarks and database systems. To
allow all components of the framework to run in a distributed fashion is another
planned extension of MulTe that shall ensure its scalability to arbitrarily large
MT-DBMSs.

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

15

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

References

[1] Microsoft: Microsoft Windows Azure (2012),
http://www.windowsazure.com/en-us/

[2] Amazon: Amazon Relational Database Service (2012),
http://aws.amazon.com/rds/

[3] TPC: Transaction Processing Performance Council (2012), http://www.tpc.org/
[4] TPoX: Transaction Processing over XML (TPoX) (2012),

http://tpox.sourceforge.net/
[5] Sethuraman, P., Reza Taheri, H.: TPC-V: A Benchmark for Evaluating the Per-

formance of Database Applications in Virtual Environments. In: Nambiar, R.,
Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 121–135. Springer, Heidel-
berg (2011)

[6] Jacobs, D., Aulbach, S.: Ruminations on Multi-Tenant Databases. In: Fachtagung
für Datenbanksysteme in Business, Technologie und Web - BTW 2007, Aachen,
Germany, pp. 5–9 (2007)

[7] Kiefer, T., Lehner, W.: Private Table Database Virtualization for DBaaS. In:
Proceedings of the 4th IEEE International Conference on Utility and Cloud Com-
puting - UCC 2011, vol. 1, pp. 328–329. IEEE, Melbourne (2011)

[8] Soror, A.A., Minhas, U.F., Aboulnaga, A., Salem, K., Kokosielis, P., Kamath, S.:
Automatic Virtual Machine Configuration for Database Workloads. ACM Trans-
actions on Database Systems (TODS) 35(1), 1–47 (2010)

[9] Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multi-Tenant
Databases for Software as a Service: Schema-Mapping techniques. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data -
SIGMOD 2008, pp. 1195–1206. ACM, Vancouver (2008)

[10] Curino, C., Jones, E.P., Madden, S., Balakrishnan, H.: Workload-Aware Database
Monitoring and Consolidation. In: Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of Data - SIGMOD 2011, pp. 313–324. ACM,
Athens (2011)

Final edited form was published in "Selected Topics in Performance Evaluation and Benchmarking:
4th TPC Technology Conference. Türkei 2012", S. 92–107, ISBN 978-3-642-36727-4

http://dx.doi.org/10.1007/978-3-642-36727-4_7

16

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://www.windowsazure.com/en-us/
http://aws.amazon.com/rds/
http://www.tpc.org/
http://tpox.sourceforge.net/

	MulTe: A Multi-Tenancy Database Benchmark Framework
	Introduction
	Multi-Tenancy Database Management Systems
	Benchmark Framework Conception
	General Benchmark Workflow
	Time Dependent Workloads—Activities
	A Performance Metric for Multi-Tenant Database Systems

	Benchmark Implementation
	Framework Design Principles
	Python Scripts—Define, Generate, and Load Tenants
	Java Workload Driver

	Exemplary Benchmark Development and Execution
	A Multi-Tenancy Scalability Benchmark
	A Multi-Tenancy Fairness Benchmark
	A Multi-Tenancy Isolation Benchmark

	Related Work
	Summary
	References

	ADP2B7F.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postversion) /
	This is a self-archiving document (accepted version):
	Tim Kiefer, Benjamin Schlegel, Wolfgang Lehner

