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Abstract. The classical LTL synthesis problem is purely qualitative: the given
LTL specification is realized or not by a reactive system. LTL is not expressive
enough to formalize the correctness of reactive systems with respect to some
quantitative aspects. This paper extends the qualitative LTL synthesis setting to a
quantitative setting. The alphabet of actions is extended with a weight function
ranging over the integer numbers. The value of an infinite word is the mean-
payoff of the weights of its letters. The synthesis problem then amounts to au-
tomatically construct (if possible) a reactive system whose executions all satisfy
a given LTL formula and have mean-payoff values greater than or equal to some
given threshold. The latter problem is called LTLMP synthesis and the LTLMP re-
alizability problem asks to check whether such a system exists. By reduction to
two-player mean-payoff parity games, we first show that LTLMP realizability is
not more difficult than LTL realizability: it is 2ExpTime-Complete. While infi-
nite memory strategies are required to realize LTLMP specifications in general,
we show that ε-optimality can be obtained with finite-memory strategies, for any
ε > 0. To obtain efficient algorithms in practice, we define a Safraless procedure
to decide whether there exists a finite-memory strategy that realizes a given spec-
ification for some given threshold. This procedure is based on a reduction to two-
player energy safety games which are in turn reduced to safety games. Finally, we
show that those safety games can be solved efficiently by exploiting the structure
of their state spaces and by using antichains as a symbolic data-structure. All our
results extend to multi-dimensional weights. We have implemented an antichain-
based procedure and we report on some promising experimental results.

1 Introduction

Formal specifications of reactive systems are usually expressed using formalisms like
the linear temporal logic (LTL), the branching time temporal logic (CTL), or automata
formalisms like Büchi automata. Those formalisms allow one to express Boolean prop-
erties in the sense that a reactive system either conforms to them, or violates them.
Additionally to those qualitative formalisms, there is a clear need for another family
of formalisms that are able to express quantitative properties of reactive systems. Ab-
stractly, a quantitative property can be seen as a function that maps an execution of a
reactive system to a numerical value. For example, in a client-server application, this
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numerical value could be the mean number of steps that separate the time at which a
request has been emitted by a client and the time at which this request has been granted
by the server along an execution. Quantitative properties are concerned with a large
variety of aspects like quality of service, bandwidth, energy consumption,... But quan-
tities are also useful to compare the merits of alternative solutions, e.g. we may prefer
a solution in which the quality of service is high and the energy consumption is low.
Currently, there is a large effort of the research community with the objective to lift
the theory of formal verification and synthesis from the qualitative world to the richer
quantitative world [15] (see related works for more details). In this paper, we consider
mean-payoff and energy objectives. The alphabet of actions is extended with a weight
function ranging over the integer numbers. A mean-payoff objective is a set of infinite
words such that the mean value of the weights of their letters is greater than or equal
to a given rational threshold [22], while an energy objective is parameterized by a non-
negative initial energy level c0 and contains all the words whose finite prefixes have a
sum of weights greater than or equal to −c0 [5].

In this paper, we participate to this research effort by providing theoretical com-
plexity results, practical algorithmic solutions, and a tool for the automatic synthesis
of reactive systems from quantitative specifications expressed in the linear time tempo-
ral logic LTL extended with (multi-dimensional) mean-payoff and (multi-dimensional)
energy objectives. To illustrate our contributions, let us consider the following specifi-
cation of a controller that should grant exclusive access to a resource to two clients.

Example 1. A client requests access to the resource by setting to true its request signal
(r1 for client 1 and r2 for client 2), and the server grants those requests by setting to true
the respective grant signal g1 or g2. We want to synthetize a server that eventually grants
any client request, and that only grants one request at a time. This can be formalized
in LTL as the conjunction of the three following formulas, where the signals in I =
{r1, r2} are controlled by the environment (the two clients), and the signals in O =
{g1, w1, g2, w2} are controlled by the server:

φ1 = �(r1 → X(w1Ug1)) φ2 = �(r2 → X(w2Ug2)) φ3 = �(¬g1 ∨ ¬g2)

Intuitively, φ1 (resp. φ2) specifies that any request of client 1 (resp. client 2) must be
eventually granted, and in-between the waiting signal w1 (resp. w2) must be high. For-
mula φ3 stands for mutual exclusion. Let φ = φ1 ∧ φ2 ∧ φ3.

The formula φ is realizable. One possible strategy for the server is to alternatively
assert w2, g1 and w1, g2, i.e. alternatively grant client 1 and client 2. While this strategy
is formally correct, as it realizes the formula φ against all possible behaviors of the
clients, it may not be the one that we expect. Indeed, we may prefer a solution that does
not make unsollicited grants for example. Or, we may prefer a solution that gives, in
case of request by both clients, some priority to client 2’s request. In the later case, one
elegant solution would be to associate a cost equal to 2 when w2 is true and a cost equal
to 1 when w1 is true. This clearly will favor solutions that give priority to requests from
client 2 over requests from client 1. We will develop other examples in the paper and
describe the solutions that we obtain automatically with our algorithms.
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Contributions – We now detail our contributions and give some hints about the proofs.
In Section 2, we define the realizability problems for LTLMP (LTL extended with mean-
payoff objectives) and LTLE (LTL extended with energy objectives). In Section 3, we
show that, as for the LTL realizability problem, both the LTLMP and LTLE realizability
problems are 2ExpTime-Complete. As the proof of those three results follow a similar
structure, let us briefly recall how the 2ExpTime upper bound of the classical LTL real-
izability problem is established in [19]. The formula is turned into an equivalent non-
deterministic Büchi automaton, which is then transformed into a deterministic parity
automaton using Safra’s construction. The latter automaton can be seen as a two-player
parity game in which Player 1 wins if and only if the formula is realizable. For the
LTLMP (resp. LTLE) realizability problem, our construction follows the same structure,
except that we go to a two-player parity game with an additional mean-payoff (resp.
energy) objective. By a careful analysis of these two constructions, we build, on the
basis of results in [8,11], solutions that provide the announced 2ExpTime upper bound.

Winning mean-payoff parity games may require infinite memory strategies, but there
exist ε-optimal finite-memory strategies [11]. In contrast, for energy parity games,
finite-memory optimal strategies always exist [8]. Those results transfer to LTLMP (resp.
LTLE) realizability problems thanks to their reduction to mean-payoff (resp. energy)
parity games. Furthermore, we show that under finite-memory strategies, LTLMP realiz-
ability is in fact equivalent to LTLE realizability: a specification is MP-realizable under
finite-memory strategies if and only if it is E-realizable, by simply shifting the weights
of the signals by the threshold value. As finite-memory strategies are more interesting in
practice, we thus concentrate on the LTLE realizability problem in the rest of the paper.

Even if recent progresses have been made [21], Safra’s construction is intricate and
notoriously difficult to implement efficiently [1]. We develop in Section 4, follow-
ing [17], a Safraless procedure for the LTLE realizability problem, that is based on a
reduction to a safety game, with the nice property to transform a quantitative objec-
tive into a simple qualitative objective. The main steps are as follows. (1) Instead of
transforming an LTL formula into a deterministic parity automaton, we use a univer-
sal co-Büchi automaton as proposed in [17]. To deal with the energy objectives, we
thus transform the formula into a universal co-Büchi energy automaton for some initial
credit c0, which requires that all runs on an input word w visit finitely many accepting
states and the energy level of w is always positive starting from the credit c0. (2) By
strenghtening the co-Büchi condition into a K-co-Büchi condition as done in [20,14],
where at most K accepting states can be visited by each run, we then go to an energy
safety game. We show that for large enough value K and initial credit c0, this reduction
is complete. (3) Any energy safety game is equivalent to a safety game, as shown in [7].

In Section 5, our results are extended to the multi-dimensional case, i.e. tuples of
weights. Finally, we discuss some implementation issues in Section 6. Our Safraless
construction has two main advantages. (1) The search for winning strategies for LTLE

realizability can be incremental on K and c0 (avoiding in practice the large theoretical
bounds ensuring completeness). (2) The state space of the safety game can be partially
ordered and solved by a backward fixpoint algorithm. Since the latter manipulates sets
of states closed for this order, it can be made efficient and symbolic by working only
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on the antichain of their maximal elements. All the algorithms are implemented in our
tool Acacia+ [3], and promising experimental results are reported in Section 6.

Due to lack of space, some proofs are omitted or just sketched. The full version is
available at http://arxiv.org/abs/1210.3539.

Related Work – The LTL synthesis problem has been first solved in [19], Safraless
approaches have been proposed in [16,17,20,14], and implemented in prototypes of
tools [16,14,13,3]. All those works only treat plain qualitative LTL, and not the quanti-
tative extensions considered in this article.

Mean-payoff games [22] and energy games [5,7], extensions with parity condi-
tions [11,8,6], or multi-dimensions [10,12] have recently received a large attention from
the research community. The use of such game formalisms has been advocated in [2] for
specifying quantitative properties of reactive systems. Several among the motivations
developed in [2] are similar that our motivations for considering quantitative extensions
of LTL. All these related works make the assumption that the game graph is given ex-
plicitly, and not implicitly using an LTL formula, as in our case.

In [4], Boker et al. introduce extensions of linear and branching time temporal log-
ics with operators to express constraints on values accumulated along the paths of a
weighted Kripke structure. One of their extensions is similar to LTLMP. However the
authors of [4] only study the complexity of model-checking problems whereas we con-
sider realizability and synthesis problems.

2 Problem Statement

Linear Temporal Logic – The formulas of linear temporal logic (LTL) are defined over
a finite set P of atomic propositions. The syntax is given by the grammar:

φ ::= p | φ ∨ φ | ¬φ | Xφ | φUφ p ∈ P

LTL formulas φ are interpreted on infinite words u ∈ (2P )ω via a satisfaction relation
u |= φ defined as usual [18]. Given φ, we let [[φ]]= {u ∈ (2P )ω | u |= φ}.

LTL Realizability and Synthesis – The realizability problem for LTL is best seen as a
game between two players. Let φ be an LTL formula over the set P = I � O parti-
tioned into I the set of input signals controlled by Player I (the environment), and O
the set of output signals controlled by Player O (the controller). With this partition of
P , we associate the three following alphabets: ΣP = 2P , ΣO = 2O, and ΣI = 2I .
The realizability game is played in turns. Player O starts by giving o0∈ΣO , Player I re-
sponds by giving i0∈ΣI , then Player O gives o1∈ΣO and Player I responds by i1∈ΣI ,
and so on. This game lasts forever and the outcome of the game is the infinite word
(o0 ∪ i0)(o1 ∪ i1)(o2 ∪ i2) · · · ∈ Σω

P .
The players play according to strategies. A strategy for Player O is a mapping λO :

(ΣOΣI)
∗ → ΣO, while a strategy for Player I is a mapping λI : (ΣOΣI)

∗ΣO → ΣI .
The outcome of the strategies λO and λI is the word Outcome(λO, λI) = (o0∪i0)(o1∪
i1) . . . such that o0 = λO(ε), i0 = λI(o0) and for k ≥ 1, ok = λO(o0i0 . . . ok−1ik−1)
and ik = λI(o0i0 . . . ok−1ik−1ok). We denote by Outcome(λO) the set of all outcomes

http://arxiv.org/abs/1210.3539
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Outcome(λO, λI) with λI any strategy of Player I . We let ΠO (resp. ΠI ) be the set of
strategies for Player O (resp. Player I).

Given an LTL formula φ (the specification), the LTL realizability problem is to decide
whether there exists λO ∈ ΠO such that for all λI ∈ ΠI , Outcome(λO , λI) |= φ. If
such a winning strategy exists, we say that the specification φ is realizable. The LTL
synthesis problem asks to produce a strategy λO that realizes φ, when it is realizable.

Moore Machines – It is known that LTL realizability is 2ExpTime-Complete and that
finite-memory strategies suffice to witness realizability [19]. A strategy λO ∈ ΠO is
finite-memory if there exists a right-congruence∼ on (ΣOΣI)

∗ of finite index such that
λO(u)=λO(u

′) for all u ∼ u′. It is equivalent to say that it can be described by a Moore
machine M, i.e. a finite deterministic state machine with output [19]. If the machine
M describes λO , then Outcome(λO) is called the language of M, denoted by L(M).
The memory size of the strategy is the index of ∼.

Theorem 1 ([19]). The LTL realizability problem is 2ExpTime-Complete and any real-
izable formula is realizable by a finite-memory strategy with memory size 22

O(|φ| log(|φ|))
.

LTLMP Realizability and Synthesis – Consider a finite set P partitioned as I � O. Let
Lit(P ) be the set {p | p ∈ P}∪{¬p | p ∈ P} of literals over P , and let w : Lit(P ) → Z

be a weight function where positive numbers represent rewards1. For all S ∈ {I, O},
this function is extended to ΣS by: w(σ) = Σp∈σw(p)+Σp∈S\{σ}w(¬p) for σ ∈ ΣS .
It can also be extended to ΣP as w(o ∪ i) = w(o) + w(i) for all o ∈ ΣO and i ∈ ΣI .
In the sequel, we denote by 〈P,w〉 the pair given by the finite set P and the weight
function w over Lit(P ); we also use the weighted alphabet 〈ΣP , w〉.

Consider an LTL formula φ over 〈P,w〉 and an outcome u = (o0 ∪ i0)(o1 ∪ i1) · · · ∈
Σω

P produced by Players I and O. We associate a value Val(u) with u that captures the
two objectives of Player O of both satisfying φ and achieving a mean-payoff objective.
For each n ≥ 0, let u(n) be the prefix of u of length n. We define the energy level
of u(n) as EL(u(n)) =

∑n−1
k=0 w(ok) + w(ik). We then assign to u a mean-payoff

value equal to MP(u) = lim infn→∞ 1
nEL(u(n)). Finally we define the value of u as

Val(u) = MP(u) if u |= φ, and Val(u) = −∞ otherwise.
Given an LTL formula φ over 〈P,w〉 and a threshold ν∈Q, the LTLMP realizability

problem (resp. LTLMP realizability problem under finite memory) asks to decide whether
there exists a strategy (resp. finite-memory strategy) λO of Player O such that for all
strategies λI ∈ ΠI , Val(Outcome(λO, λI)) ≥ ν, in which case we say that φ is MP-
realizable (resp. MP-realizable under finite memory). The LTLMP synthesis problem is
to produce such a winning strategy λO . So the aim is to achieve two objectives: (i)
realizing φ, (ii) having a long-run average reward greater than the given threshold.

Optimality – Given φ an LTL formula over 〈P,w〉, the optimal value (for Player O) is
defined as νφ = supλO∈ΠO

infλI∈ΠI Val(Outcome(λO, λI)). For a real-valued ε ≥ 0,
a strategy λO of Player O is ε-optimal if Val(Outcome(λO, λI)) ≥ νφ − ε against all

1 We use weights at several places of this paper. In some statements and proofs, we take the
freedom to use rational weights as it is equivalent up to rescaling. However we always assume
that weights are integers encoded in binary for complexity results.
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strategies λI of Player I . It is optimal if it is ε-optimal with ε = 0. Notice that νφ is
equal to −∞ if Player O cannot realize φ.

Example 2. Let us come back to Example 1 of a client-server system with two clients
sharing a resource. The specification have been formalized by an LTL formula φ over
the alphabet P=I � O, with I={r1, r2}, O={g1, w1, g2, w2}. Suppose that we want
to add the following constraints: client 2’s requests take the priority over client 1’s
requests, but client 1’s should still be eventually granted. Moreover, we would like to
keep minimal the delay between requests and grants. This latter requirement has more
the flavor of an optimality criterion and is best modeled using a weight function and
a mean-payoff objective. To this end, we impose penalties to the waiting signals w1,
w2, with a larger penalty to w2 than to w1. We thus use the following weight function
w : Lit(P ) → Z: w(w1) = −1, w(w2) = −2 and w(l) = 0, ∀l �∈ {w1, w2}.

One optimal strategy for the server is as follows: it almost always grants the resource
to client 2 immediately after r2 is set to true by client 2, and with a decreasing frequency
grants request r1 emitted by client 1. Such a server ensures a mean-payoff value equal
to −1 against the most demanding behavior of the clients (where they are constantly
requesting the shared resource). Such a strategy requires the server to use an infinite
memory as it has to grant client 1 with an infinitely decreasing frequency. Note that a
server that would grant client 1 in such a way without the presence of requests by client
1 would still be optimal. No finite memory server can be optimal. Indeed, if the server
is allowed to count only up to a fixed positive integer k ∈ N, then the best that it can
do is : grant immediatly any request by client 2 if the last ungranted request of client 1
has been emitted less than k steps in the past, otherwise grant the request of client 1.
The mean-payoff value of this solution, in the worst-case (when the two clients always
emit their respective request) is equal to −(1 + 1

k ). So, even if finite memory cannot be
optimal, we can devise a finite-memory strategy that is ε-optimal for any ε > 0.

LTLE Realizability and Synthesis – For the proofs of this paper, we need to consider
realizability and synthesis with energy (instead of mean-payoff) objectives. With the
same notations as before, the LTLE realizability problem is to decide whether φ is E-
realizable, that is, whether there exists λO ∈ ΠO and c0 ∈ N such that for all λI ∈ ΠI ,
(i) u = Outcome(λO , λI) |= φ, (ii) ∀n ≥ 0, c0 + EL(u(n)) ≥ 0. We thus ask if there
exists an initial credit c0 such that the energy level of each prefix u(n) remains positive.
When φ is E-realizable, the LTLE synthesis problem is to produce such a winning strat-
egy λO . Finally, we define the minimum initial credit as the least value of c0 for which φ
is E-realizable. A strategy λO is optimal if it is winning for the minimum initial credit.

3 Computational Complexity of the LTLMP Realizability Problem

In this section, we solve the LTLMP realizability problem, and we establish its com-
plexity. Our solution relies on a reduction to a mean-payoff parity game. The same
complexity result holds for the LTLE realizability problem.

Theorem 2. The LTLMP realizability problem is 2ExpTime-Complete.

Before proving this result, we recall useful notions on game graphs.
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Game Graphs – A game graph G = (S, s0, E) consists of a finite set S = S1 � S2

partitioned into S1 the states of Player 1, and S2 the states of Player 2, an initial state s0,
and a set E ⊆ S×S of edges such that for all s ∈ S, there exists a state s′ ∈ S such that
(s, s′) ∈ E. A game on G starts from s0 and is played in rounds as follows. If the game
is in a state of S1, then Player 1 chooses the successor state among the set of outgoing
edges; otherwise Player 2 chooses the successor state. Such a game results in an infinite
path ρ = s0s1 . . . sn . . . (called a play), whose prefix s0s1 . . . sn is denoted by ρ(n).
We denote by Plays(G) the set of all plays in G and by Pref(G) the set of all prefixes of
plays in G. A turn-based game is a game graph G such that E ⊆ (S1×S2)∪(S2×S1),
meaning that each game is played in rounds alternatively by Player 1 and Player 2.

Objectives – An objective for G is a set Ω ⊆ Sω. Let p : S → N be a priority function
and w : E → Z be a weight function where positive weights represent rewards. The
energy level of a prefix γ = s0s1 . . . sn of a play is ELG(γ) =

∑n−1
i=0 w(si, si+1),

and the mean-payoff value of a play ρ = s0s1 . . . sn . . . is MPG(ρ) = lim infn→∞ 1
n ·

ELG(ρ(n)).2 Given a play ρ, we denote by Inf(ρ) the set of states s ∈ S that appear
infinitely often in ρ. The following objectives Ω are considered in the sequel:

– Safety objective. Given a set α ⊆ S, the safety objective is defined as SafetyG(α) =
Plays(G) ∩ αω.

– Parity objective. The parity objective is defined as ParityG(p) = {ρ ∈ Plays(G) |
min{p(s) | s ∈ Inf(ρ)} is even}.

– Energy objective. Given an initial credit c0 ∈ N, the energy objective is defined as
PosEnergyG(c0) = {ρ ∈ Plays(G) | ∀n ≥ 0 : c0 + ELG(ρ(n)) ≥ 0}.

– Mean-payoff objective. Given a threshold ν ∈ Q, the mean-payoff objective is
defined as MeanPayoffG(ν) = {ρ ∈ Plays(G) | MPG(ρ) ≥ ν}.

– Combined objective. The energy safety objective PosEnergyG(c0) ∩ SafetyG(α)
(resp. energy parity objective PosEnergyG(c0) ∩ ParityG(p), mean-payoff parity
objective MeanPayoffG(ν)∩ParityG(p)) combines the requirements of energy and
safety (resp. energy and parity, energy and mean-payoff) objectives.

When an objective Ω is imposed on G, we say that G is an Ω game. For instance, if Ω
is an energy parity objective, we say that 〈G,w, p〉 is an energy parity game, aso.

Strategies – Given a game graphG, a strategy for Player 1 is a function λ1 : S∗S1 → S
such that (s, λ1(γ · s)) ∈ E for all γ ∈ S∗ and s ∈ S1. A play ρ = s0s1 . . . sn . . .
starting from the initial state s0 is compatible with λ1 if for all k ≥ 0 such that sk ∈ S1

we have sk+1 = λ1(ρ(k)). Strategies and play compatibility are defined symmetri-
cally for Player 2. The set of strategies of Player i is denoted by Πi, i=1, 2. We
denote by OutcomeG(λ1, λ2) the play from s0, compatible with λ1 and λ2. We let
OutcomeG(λ1) = {OutcomeG(λ1, λ2) | λ2∈Π2}. A strategy λ1∈Π1 is winning for an
objective Ω if OutcomeG(λ1) ⊆ Ω. We also say that λ1 is winning in the Ω game G.

A strategy λ1 of Player 1 is finite-memory if there exists a right-congruence ∼ on
Pref(G) with finite index such that λ1(γ · s1) = λ1(γ

′ · s1) for all γ ∼ γ′ and s1 ∈ S1.
The size of the memory is the index of ∼.

2 Notation EL, MP and Outcome is here used with the index G to avoid any confusion with the
same notation introduced in the previous section.
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Optimal Value and ε-Optimality – Let us turn to mean-payoff parity games 〈G,w, p〉.
With each play ρ ∈ Plays(G), we associate a value ValG(ρ) defined as follows:

ValG(ρ) =

{
MPG(ρ) if ρ ∈ ParityG(p)
−∞ otherwise.

We define νG = supλ1∈Π1
infλ2∈Π2 ValG(OutcomeG(λ1, λ2)) as the optimal value

for Player 1. For a real-valued ε ≥ 0, a strategy λ1 ∈ Π1 is ε-optimal if we have
ValG(OutcomeG(λ1, λ2)) ≥ νG − ε for all strategies λ2 ∈ Π2. It is optimal if it
is ε-optimal with ε = 0. If Player 1 cannot achieve the parity objective, then νG =
−∞, otherwise optimal strategies exist [11] and νG is the largest threshold ν for which
Player 1 can hope to achieve MeanPayoffG(ν).

Theorem 3 ([11,6,12]). The optimal value of a mean-payoff parity game 〈G,w, p〉 can
be computed in time O(|E| · |S|d+2 ·W ), where |E| (resp. |S|) is the number of edges
(resp. states) of G, d is the number of priorities of p, and W is the largest absolute
weight used by w. When νG �= −∞, optimal strategies for Player 1 may require infinite
memory; however for all ε > 0, Player 1 has a finite-memory ε-optimal strategy.

Proof (of Theorem 2). The classical realizability procedure for plain LTL first trans-
forms the LTL formula into a non-deterministic Büchi automaton and then into a deter-
ministic parity automaton. This deterministic automaton directly defines a parity game
in which Player 1 has a strategy iff Player O has a strategy to realize the LTL speci-
fication. For a LTLMP specification φ, we follow the same path but extend the parity
game into a mean-payoff parity game using the weight function w. It can be shown that
the game we obtain has the following size: 22

O(|φ| log |φ|)
states and 2O(|φ|) priorities. By

Theorem 3, we get the 2ExpTime upper bound for LTLMP realizability. The lower bound
is a direct consequence of 2ExpTime-hardness of (qualitative) LTL realizability. ��

Based on Theorem 3 and the proof of Theorem 2 we get the following results on ε-
optimality and finite-memory strategies:

Corollary 4. Let φ be an LTL formula. If φ is MP-realizable, then for all ε > 0,
Player O has an ε-optimal winning strategy that is finite-memory, that is

νφ = sup
λO∈ΠO

λO finite-memory

inf
λI∈ΠI

Val(Outcome(λO, λI)).

Motivated by this result, we focus on finite-memory strategies in the sequel.

Solution to the LTLE Realizability Problem – We solve the LTLE realizability problem
with a reduction to energy parity games for which the following theorem holds:

Theorem 5 ([8]). Whether there exist an initial credit c0 and a winning strategy for
Player 1 in a given energy parity game 〈G,w, p〉 for c0 can be decided in time O(|E| ·
d · |S|d+3 ·W ). Moreover if Player 1 wins, then he has a finite-memory winning strategy
with a memory size bounded by 4 · |S| · d ·W .
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As for LTLMP, one can reduce LTLE realizability to energy parity games and show that
LTLE realizability is 2ExpTime-Complete based on Theorem 5.

Theorem 6. The LTLE realizability problem is 2ExpTime-Complete. Moreover, if a for-
mula φ over 〈P,w〉 is E-realizable, then it is E-realizable by a finite-memory strategy
with a memory size at most doubly-exponential in the size of the input, i.e. the LTL
formula and the function w (with weights encoded in binary).

The constructions proposed in Theorems 2 and 6 can be easily extended to the more
general case where the weights assigned to executions are given by a deterministic
weighted automaton, as proposed in [9], instead of a weight function w over Lit(P )
as done here. Indeed, given an LTL formula φ and a deterministic weighted automaton
A, we first construct from φ a deterministic parity automaton and then take the syn-
chronized product with A. Finally this product can be turned into a mean-payoff (resp.
energy) parity game.

4 Safraless Algorithm

In the previous section, we have proposed an algorithm for solving the LTLMP realiz-
ability of a given LTL formula φ, which is based on a reduction to a mean-payoff parity
game denoted by Gφ. This algorithm has two main drawbacks. First, it requires the use
of Safra’s construction to get a deterministic parity automaton Aφ such that L(Aφ) =
[[φ]], a construction which is resistant to efficient implementations [1]. Second, strategies
for the game Gφ may require infinite memory (for the threshold νGφ

, see Theorem 3).
This is also the case for the LTLMP realizability problem, as illustrated by Example 2.
In this section, we show how to circumvent these two drawbacks.

The second drawback has been already partially solved by Corollary 4, when the
threshold given for the LTLMP-realizability is the optimal value νφ. Indeed it states the
existence of finite-memory winning strategies for the thresholds νφ − ε, for all ε > 0.
We here show that we can go further by translating the LTLMP realizability problem
under finite memory into an LTLE realizability problem, and conversely, by shifting the
weights by the threshold value [8]:

Theorem 7. An LTL formula φ over a weighted alphabet 〈P,w〉 is MP-realizable un-
der finite memory for a threshold ν ∈ Q iff φ over the weighted alphabet 〈P,w − ν〉 is
E-realizable.

It is important to notice that when we want to synthesize ε-optimal strategies for LTLMP

by reduction to LTLE, the memory size of the strategy increases as ε decreases. Indeed,
if ε = a

b , then the weight function (for LTLE realizability) must be multiplied by b in
a way to have integer weights (see footnote 1). The largest absolute weight W is thus
also multiplied by b.

To avoid the Safra’s construction needed to obtain a deterministic parity automaton
for the underlying LTL formula, we adapt a Safraless construction proposed in [20,14]
for the LTL synthesis problem, in a way to deal with weights and efficiently solve the
LTLE synthesis problem. Instead of constructing a mean-payoff parity game from a
deterministic parity automaton, we propose a reduction to a safety game. In this aim,
we need to define the notion of energy automaton.
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Energy Automata – Let 〈P,w〉 with P a finite set of signals and w a weight function
over Lit(P ). We are going to recall several notions of automata on infinite words over
ΣP and introduce the related notion of energy automata over the weighted alphabet
〈ΣP , w〉. An automaton A over the alphabet ΣP is a tuple (ΣP , Q, q0, α, δ) such that
Q is a finite set of states, q0 ∈ Q is the initial state, α ⊆ Q is a set of final states
and δ : Q × ΣP → 2Q is a transition function. We say that A is deterministic if
∀q ∈ Q, ∀σ ∈ ΣP , |δ(q, σ)| ≤ 1. It is complete if ∀q ∈ Q, ∀σ ∈ ΣP , δ(q, σ) �= ∅.

A run of A on a word u = σ0σ1 · · · ∈ Σω
P is an infinite sequence of states ρ =

ρ0ρ1 · · · ∈ Qω such that ρ0 = q0 and ∀k ≥ 0, ρk+1 ∈ δ(ρk, σk). We denote by
RunsA(u) the set of runs of A on u, and by Visit(ρ, q) the number of times the state q
occurs along the run ρ. We consider the following acceptance conditions:

Non-deterministic Büchi: ∃ρ ∈ RunsA(u), ∃q ∈ α,Visit(ρ, q) = ∞
Universal co-Büchi: ∀ρ ∈ RunsA(u), ∀q ∈ α,Visit(ρ, q) < ∞
Universal K-co-Büchi: ∀ρ ∈ RunsA(u),

∑
q∈α Visit(ρ, q) ≤ K .

A word u ∈ Σω
P is accepted by a non-deterministic Büchi automaton (NB) A if u

satisfies the non-deterministic Büchi acceptance condition. We denote byLnb(A) the set
of words accepted by A. Similarly we have the notion of universal co-Büchi automaton
(UCB)A (resp. universalK-co-Büchi automaton (UK CB) 〈A,K〉) and the set Lucb(A)
(resp. Lucb,K(A)) of accepted words.

We now introduce energy automata. Let A be a NB over the alphabetΣP . The related
energy non-deterministic Büchi automaton (eNB) Aw is over the weighted alphabet
〈ΣP , w〉 and has the same structure as A. Given an initial credit c0 ∈ N, a word u is
accepted by Aw if (i) u satisfies the non-deterministic Büchi acceptance condition and
(ii) ∀n ≥ 0, c0 + EL(u(n)) ≥ 0. We denote by Lnb(Aw, c0) the set of words accepted
by Aw with the given initial credit c0. We also have the notions of energy universal co-
Büchi automaton (eUCB) Aw and energy universal K-co-Büchi automaton (eUK CB)
〈Aw,K〉, and the related sets Lucb(Aw, c0) and Lucb,K(Aw, c0). Notice that if K ≤ K ′

and c0 ≤ c′0, then Lucb,K(Aw, c0) ⊆ Lucb,K′(Aw, c′0).
The interest of UK CB is that they can be determinized with the subset construc-

tion extended with counters [14,20]. This construction also holds for eUK CB by using
counting functions F . Intuitively, for all states q of Aw, with F (q) we count (up to
K + 1) the maximal number of accepting states which have been visited by runs end-
ing in q. The counter F (q) is equal to −1 when no run ends in q. The final states are
counting functions F such that F (q)>K for some state q (accepted runs avoid such F ).

It results in a deterministic automaton that we denote det(Aw,K) and which has the
following properties:

Proposition 8. Let K∈N and 〈Aw,K〉 be an eUK CB. Then
det(Aw,K) is a deterministic and complete energy automaton such that
Lucb,0(det(Aw,K), c0)=Lucb,K(Aw, c0) for all c0 ∈ N.

Our Safraless solution relies on the following theorem:

Theorem 9. Let φ be an LTL formula over 〈P,wP 〉. Let 〈Gφ, w, p〉 be the associated
energy parity game with |S| being its the number of states, d its number of priorities and
W its largest absolute weight. Let A be a UCB with n states such that Lucb(A) = [[φ]].
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Let K = 4 · n · |S|2 · d ·W and C = K · W . Then φ is E-realizable iff there exists a
Moore machine M such that L(M) ⊆ Lucb,K(Aw , C).

Proof. Theorem 6 tells us that φ is E-realizable iff there exists a Moore machine M
such that L(M) ⊆ Lucb(Aw, c0) for some c0 ≥ 0 and |M| = 4 · |S|2 · d ·W . Consider
now the product of M and Aw: in any accessible cycle of this product, there is no
accepting state of Aw (as shown similarly for the qualitative case [14]) and the sum
of the weights must be positive. The length of a path reaching such a cycle is at most
n · |M|, therefore one gets L(M) ⊆ Lucb,n·|M|(Aw , n · |M| ·W ). ��
As we have seen before, the eUK CB Aw can be easily determinized and thus converted
into an energy safety objective. By memorizing the energy levels up toC [7], this energy
safety objective can be converted into a safety objective, and so we get:

Theorem 10. Let φ be an LTL formula. Then one can construct a safety game in which
Player 1 has a winning strategy iff φ is E-realizable.

5 Extension to Multi-dimensional Weights

Multi-Dimensional LTLMP and LTLE Realizability Problems – The LTLMP and LTLE

realizability problems can be naturally extended to multi-dimensional weights. Given
P , we define a weight function w : Lit(P ) → Z

m, for some dimension m ≥ 1. The
concepts of energy level EL, mean-payoff value MP, and value Val are defined similarly.
Given an LTL formula φ over 〈P,w〉 and a threshold ν ∈ Q

m, the multi-dimensional
LTLMP realizability problem under finite memory asks to decide whether there exists a
Player O’s finite-memory strategy λO such that Val(Outcome(λO, λI)) ≥3 ν against
all strategies λI ∈ ΠI . The multi-dimensional LTLE realizability problem asks to decide
whether there exists λO ∈ ΠO and an initial credit c0 ∈ N

m such that for all λI ∈ ΠI ,
(i) u = Outcome(λO , λI) |= φ, (ii) ∀n ≥ 0, c0 + EL(u(n)) ≥ (0, . . . , 0).

Computational Complexity – The 2ExpTime-completeness of the LTLMP and LTLE

realizability problems have been stated in Theorem 2 and 6 in one dimension. In the
multi-dimensional case, we have the next result.

Theorem 11. The multi-dimensional LTLMP realizability problem under finite memory
and the multi-dimensional LTLE realizability problem are in co-N2ExpTime.

Proof. As for the one-dimensional case, LTLMP realizability problem under finite mem-
ory and the multi-dimensional LTLE realizability problem are inter-reducible by sub-
stracting the threshold to the weight values. So let us focus on LTLE realizability. From
the LTL formula we follow the same path as the one-dimensional case by constructing
an equivalent deterministic parity automaton, that can be seen as a parity game. We
add multi-weights to this game and so the LTLE realizability problem amounts to solve
a multi-energy parity game. Such games have been studied in [12], where it is shown
how to remove the parity condition by adding extra dimensions in the game. This leads

3 With a ≥ b, we mean ai ≥ bi for all i, 1 ≤ i ≤ m.
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to resolving a multi-energy game, which can be done with a co-NPTime procedure, as
shown in [10]. As this procedure executes on a doubly exponential game, we get the
co-N2ExpTime upper bound. ��
The Safraless procedure that we propose in one dimension can be extended to this
multi-dimensional setting using recent results obtained in [12].

6 Implementation and Experiments

In the previous sections, in one or several dimensions, we have shown how to reduce the
LTLMP under finite memory and LTLE realizability problems to safety games. We first
discuss how antichain techniques can be used to symbolically solve those safety games.
This approach has been implemented in our tool Acacia+. We then briefly present this
tool and give some experimental results.

Antichain-Based Algorithm – Safety games with the objective SafetyG(α) can be solved
backwardly by computing the fixpoint of the following sequence:W0=α and for all k ≥
0, Wk+1=Wk ∩ {{s∈S1 | ∃(s, s′)∈E, s′ ∈ Wk} ∪ {s∈S2 | ∀(s, s′)∈E, s′ ∈ Wk}}.

Therefore one needs to manipulate sets of states. The states of the safety game in
our Safraless procedure are tuples (F, c) where F is a counting function as described
before Proposition 8 and c is an energy level. They can be ordered as follows: (F1, c1) �
(F2, c2) iff F1(q) ≤ F2(q) for all automata state q and c1 ≥ c2. Intuitively, if Player 1
can win from (F2, c2) then he can win from (F1, c1), as he has seen more accepting
states and has less energy in (F2, c2) than in (F1, c1). The sets of the sequence (Wk)k
are all closed for that partial order, and can thus be represented by the antichain of
their maximal elements, following ideas of [14]. We also exploit this order in a forward
algorithm for solving safety games as done in [14].

Incrementality Approach – The size of the parameters K and C ensuring completeness
(see Theorem 9) are doubly exponential, and this is clearly impractical. Nevertheless,
we can use the following property: Lucb,K1(Aw, C1) ⊆ Lucb,K2(Aw , C2) for all C1 ≤
C2 and K1 ≤ K2. This inclusion tells us that if there exists a Moore machine M such
that L(M) ⊆ Lucb,K1(Aw , C1) then the formula is E-realizable without considering
the huge theoretical bounds K and C of Theorem 9. This means that we can adopt
as in [14], an incremental approach that first uses small values for parameters K and
C and increments them when necessary (if the more constrained specification is not
realizable).

Tool Acacia+ – In [3] we present Acacia+, a tool for LTL synthesis using antichain-
based algorithms. Its main advantage, regarding other LTL synthesis tools, is to generate
compact strategies that are usable in practice. This can be very useful in applications like
control code synthesis from high-level LTL specifications, debugging of unrealizable
LTL specifications by inspecting compact counter strategies, and generation of small
deterministic Büchi or parity automata from LTL formulas (when they exist) [3].

Acacia+ is now extended to the synthesis from LTL specifications with mean-payoff
objectives in the multi-dimensional setting. As explained before, it solves incrementally
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Table 1. Acacia+ on the specification of Example 2 with increasing threshold values ν. The
column K (resp. C) gives the minimum value (resp. vector) required to obtain a winning strategy,
M the size of the finite-memory strategy, time the execution time (in seconds) and mem the total
memory usage (in megabytes). Note that the running time is the execution time of the forward
algorithm applied to the safety game with values K and C (and not with smaller ones).

ν −1.2 −1.02 −1.002 −1.001 −1.0002 −1.0001 −1.00005

K 4 49 499 999 4999 9999 19999
C 7 149 1499 2999 14999 29999 99999
M 5 50 500 1000 5000 10000 20000

time (s) 0.01 0.05 0.34 0.89 15.49 59.24 373
mem (MB) 9.75 9.88 11.29 12.58 30 48.89 86.68

a family of safety games, depending on some values K and C, to test whether a given
specification φ is MP-realizable under finite memory. The tool takes as input an LTL
formula φ with a partition of its set P of atomic signals, a weight functionw : Lit(P ) �→
Z
m, a threshold value ν ∈ Q

m, and two bounds K ∈ Z and C ∈ Z
m (the user

can specify additional parameters to define the incremental policy). It then searches
for a finite-memory winning strategy for Player O, within the bounds K and C, and
outputs a Moore machine if such a strategy exists. The last version of Acacia+, a web
interface for using it online, some benchmarks and experimental results can be found at
http://lit2.ulb.ac.be/acaciaplus/.

Experiments – We now present some experiments. They have been done on a Linux
platform with a 3.2GHz CPU (Intel Core i7) and 12GB of memory.

(1) Approaching the optimal value. Consider the specification φ of Example 2 and
its 1-dimensional mean-payoff objective. We have shown that infinite memory strategies
are required for the optimal value −1, but finite-memory ε-optimal strategies exist for
all ε>0. In Table 1, we present the experiments done for some values of −1−ε.

The strategies for the system output by Acacia+ are: grant the second client (M −1)
times, then grant once client 1, and start over. Thus, the system almost always plays
g2w1, except every M steps where he has to play g1w2. Obviously, these strategies
are the smallest ones that ensure the corresponding threshold values. They can also be
compactly represented by a two-state automaton with a counter that counts up to M .
Let us emphasize the interest of using antichains. With ν = −1.001, the underlying
state space manipulated by our symbolic algorithm has a huge size: around 1027, since
K = 999, C = 2999 and the number of automata states is 8. However the fixpoint
computed backwardly is represented by an antichain of size 2004 only.

(2) No unsollicited grants. The major drawback of the strategies presented in Table 1
is that many unsollicited grants might be sent as the strategies do not take into account
client requests, and just grant the resource access to the clients in a round-robin fashion
(with a longer access for client 2). It is possible to express in LTL the absence of unsol-
licited grants, but it is cumbersome. Alternatively, the LTLMP specification can be easily
rewritten with a multi-dimensional mean-payoff objective. The specification of Exam-
ples 1 and 2 can be indeed extended with a new dimension per client, such that a request

http://lit2.ulb.ac.be/acaciaplus/
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Table 2. Acacia+ on the Shared Resource Arbiter benchmark parameterized by the number of
clients, with the forward algorithm. The column c gives the number of clients, ν the threshold, K
(resp. C) the minimum value (resp. vector) required to obtain a winning strategy, M the size of
the finite-memory strategy, time the total execution time (in seconds) and mem the total memory
usage (in megabytes).

c ν K C |M| time (s) mem (MB)
2 (−1.2, 0, 0) 4 (7, 1, 1) 11 0.02 10.04
3 (−2.2, 0, 0, 0) 9 (19, 1, 1, 1) 27 0.22 10.05
4 (−3.2, 0, 0, 0, 0) 14 (12, 1, 1, 1, 1) 65 1.52 12.18
5 (−4.2, 0, 0, 0, 0, 0) 19 (29, 1, 1, 1, 1, 1) 240 48 40.95
6 (−5.2, 0, 0, 0, 0, 0, 0) 24 (17, 1, 1, 1, 1, 1, 1) 1716 3600 636

(resp. grant) signal of client i has a reward (resp. cost) of 1 on his new dimension. More
precisely, the weight function is now w : Lit(P ) → Z

3 such that w(r1) = (0, 1, 0),
w(r2) = (0, 0, 1), w(g1) = (0,−1, 0), w(g2) = (0, 0,−2), w(w1) = (−1, 0, 0),
w(w2) = (−2, 0, 0) and w(l) = (0, 0, 0), ∀l ∈ Lit(P ) \ {r1, r2, g1, g2, w1, w2}. For
ν = (−1, 0, 0), there is no hope to have a finite-memory strategy (see Example 2). For
ν = (−1.2, 0, 0), Acacia+ outputs a finite-memory strategy of size 8 (with the back-
ward algorithm) that prevents unsollicited grants. Moreover, this is the smallest strategy
that ensures this threshold.

From the latter example we derive a benchmark of multi-dimensional examples pa-
rameterized by the number of clients making requests to the server. Some experimental
results of Acacia+ on this benchmark are reported in Table 2.

(3) Approching the Pareto curve. As last experiment, we consider again the 2-client
request-grant example with the weight function w(w1) = (−1, 0, 0, 0) and w(w2) =
(0,−2, 0, 0). For this new specification there are several optimal values (w.r.t. the pair-
wise order), corresponding to trade-offs between the two objectives that are (i) to
quickly grant client 1 and (ii) to quickly grant client 2. We try to approach, by hand,
the Pareto curve, which consists of all those optimal values, i.e. to find finite-memory

Table 3. Acacia+ to approach Pareto values. The column ν gives the threshold, relatively close
to the Pareto curve, K (resp. C) the minimum value (resp. vector) required to obtain a winning
strategy, M the memory size of the strategy.

ν K C M

(−0.001,−2, 0, 0) 999 (1999, 1, 1, 1) 2001
(−0.15,−1.7, 0, 0) 55 (41, 55, 1, 1) 42
(−0.25,−1.5, 0, 0) 3 (7, 9, 1, 1) 9
(−0.5,−1, 0, 0) 1 (3, 3, 1, 1) 5

(−0.75,−0.5, 0, 0) 3 (9, 7, 1, 1) 9
(−0.85,−0.3, 0, 0) 42 (55, 41, 1, 1) 9
(−1,−0.01, 0, 0) 199 (1, 399, 1, 1) 401
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strategies that are incomparable w.r.t. the ensured thresholds, these thresholds being as
large as possible. We give some such thresholds in Table 3, along with minimum K and
C and strategy sizes. It is difficult to automatize the construction of the Pareto curve.
Indeed, Acacia+ cannot test (in reasonable time) whether a formula is MP-unrealizable
for a given threshold, since it has to reach the huge theoretical bound on K and C. This
raises two interesting questions that we let as future work: how to decide efficiently that
a formula is MP-unrealizable for a given threshold, and how to compute points of the
Pareto curve efficiently.
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