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Abstract. The analysis of complex distributed systems requires dedi-
cated software tools. The mCRL2 language and toolset have been devel-
oped to support such analysis. We highlight changes and improvements
made to the toolset in recent years. On the one hand, these affect the
scope of application, which has been broadened with extended support
for data structures like infinite sets and functions. On the other hand,
considerable progress has been made regarding the performance of our
tools for state space generation and model checking, due to improvements
in symbolic reduction techniques and due to a shift towards parity game-
based solving. We also discuss the software architecture of the toolset,
which was well suited to accommodate the above changes, and we address
a number of case studies to illustrate the approach.

1 Introduction

Distributed systems and parallel programs are becoming increasingly common
as a result of easy access to cheap multi-core processors and the popularity
of paradigms such as cloud computing. These systems are notoriously difficult
to design correctly. To a large extent this is caused by the concurrency that
results in a lack of insight in the global configuration of a system, and the sheer
number of different configurations in which a system can be at any moment.
Design flaws may result in loss of data or hanging software. Race conditions are
a well-known example of such flaws. While an occasional hiccup may be tolerable
for non-critical applications, this may be unacceptable if an application causes
significant financial losses or increases safety risks.

The mCRL2 toolset is designed to reason about distributed and concurrent
systems. mCRL2 is based on the process algebra puCRL [7] and inherits its ax-
iomatic view on processes. In uCRL, various methodologies for manually proving
correctness of processes based on axiomatic reasoning were developed; these were
adopted in mCRL2. The mCRL2 language, like its predecessor, is designed in such
a way that it does not restrict the expressive freedom of the user. The data
theory is still rooted in the theory of ADTSs, but now comes with many built-
in data types. Compared to uCRL, the process language has changed slightly
but crucially, so semantics can be provided to languages with a notion of true
concurrency.



The introduction of parameterised boolean equation systems [23] in the mCRL2
toolset clearly marks the transition to a verification paradigm based on model
checking. The model checking approach complements the axiomatic verification
methodology offered in the toolset. Currently, the mCRL2 toolset consists of over
60 tools that together allow visualisation, simulation, minimisation and model
checking of complex systems. This paper aims to offer an overview of the toolset
and its usage. We highlight its conceptual and technical essentials, of which we
illustrate the domain of application, emphasising on recent developments.

First, we provide a cursory overview of the mCRL2 language. We then explain
the notions of linear process and equation system, which play a fundamental
role in many of the algorithms implemented in the mCRL2 toolset. The most
recent improvements and additions are highlighted, addressing amongst others
tool performance, support for analysing real-time systems, and solving equation
systems via parity games. To broaden the scope of application, mCRL2 interfaces
with other specification languages. We report on initial investigations to reduce
the work needed to keep these interfaces up-to-date.

As the code base of the mCRL2 toolset has expanded substantially over the last
few years, maintainability has become an important aspect in the development
of the toolset. We describe our efforts to reduce the amount of hand-written
code, and to improve readability and documentation of our software. These and
other concerns, such as interoperability, have led to architectural changes that
we mention briefly.

The uses of the language and tools are sketched by summarising a selection
of illustrative case studies conducted with mCRL2. We indicate where recently
added techniques were instrumental for these case studies. Finally, we position
our toolset in the broader context of verification tooling, and give an outlook on
the challenges ahead.

Documentation, sources and binaries of the mCRL2 toolset can be downloaded
from the mCRL2 website www.mcrl2.org. The toolset is open source; the associ-
ated boost license allows free use for any purpose. A user manual also containing
a tutorial can be found in the user documentation section of the website. The
tutorial introduces the reader to the basic concepts and syntax and provides
guidance for the tools most commonly used. Lecture notes used for a master
course at Eindhoven University of Technology and Delft University of Technol-
ogy, approaching a final draft, are available from the mCRL2 website too.

2 mCRL2: approach, applications and challenges

The mCRL2 language consists of three different sublanguages: a data language,
a process language, and a property language. Following the philosophy underly-
ing mCRL2, convenience of modelling and expressiveness have been leading in the
respective definitions. We briefly discuss the three sublanguages below. For an
in-depth treatment of the language, we refer to the website and the publications
and material mentioned there.



In mCRL2 data and transformations on data are described using abstract data
types. This allows users to create their own data types by defining the appro-
priate constructors and by providing functions operating on the data types.
The mCRL2 data language has built-in support for commonly used data types,
like the booleans, natural numbers, integers and reals. The usual operations on
these data structures are predefined. Complex types can be constructed using
type constructors such as sets, lists, and functions over any data type. Notation
for built-in data types stays close to mathematics: numbers are written as se-
quences of decimals, without a limit on the size of the numbers. Sets are written
using set comprehension. Functions are first-class citizens, and can be used to
obtain concise models. The language allows in-line lambda abstraction as well
as function updates. For example, the function doubling every natural number
can be defined using the lambda abstraction lambda n:Nat.n+n. The function
that doubles every natural number, but maps the number 4 to 0 can be defined
using a function update ( lambdan:Nat.n+n)[4->01].

The behaviour of a system is described by processes, composed from a set
of user-defined actions and a set of operators on actions and processes. These
operators include multi-action composition, sequential, alternative and paral-
lel composition and abstraction operators. The language also offers primitives
to model real-time systems. Processes are defined in the context of data defi-
nitions describing the data types that are used and the operations upon them.
This permits the modelling of systems whose behaviour crucially depends on the
data that is exchanged: actions can be parameterised by data and if-then-else
constructs allow for specifying conditional process behaviour. The semantics of
processes is defined using a structural operational semantics, which associates
with every expression in the language a labelled transition system (LTS). Such a
labelled transition system is viewed as a graph consisting of vertices and edges,
where each edge is labelled with an action, which in turn can have data parame-
ters. The information contained in vertices is represented by a process expression
and a valuation of its data parameters, but is unobservable; behaviour is deter-
mined by the actions.

High-level properties can be described using an extension of Kozen’s propo-
sitional modal p-calculus. Least and greatest fixpoint operators, which may be
nested arbitrarily, can be used in combination with modal operators to describe
requirements of increasing complexity. In this manner it is for instance possible
to specify fairness properties, thereby staying true to the design philosophy that
the modeller should not be restricted in his or her expressive freedom. The prop-
erty language is equipped with constructs for reasoning about timed processes.
Semantically, expressions in the property language identify a set of states in a
given labelled transition system (namely, those states that satisfy the property).

Although unrestrictive, the p-calculus is an intricate formalism. Its usability
is improved by providing a set of powerful, intuitive macros, inspired by the
regular expressions found in PDL. In many practical situations, this eliminates
the need for fixpoint operators. For instance, safety properties asserting that
a system should not exhibit a sequence of actions matching the regular expres-



sion r simply becomes [r]false. The existence of such a sequence is expressed as
<r>true. By mixing regular expressions and fixpoints, one can build more com-
plex formulae that are still easy to read. For instance, the expression nu X.<r>X
asserts that there is an infinite path of action sequences matching the regular
expression r. If, for instance, r = a*.b, it says that there is a path consisting of
an infinite number of b actions, interrupted by finite sequences of a actions.

The ability to use parameterised actions in the process specification language
requires similar capabilities in the property language. Like processes, properties
are therefore interpreted in the context of a data specification. Fixpoint variables
and actions can be parameterised with data, boolean expressions may contain
data variables, and universal and existential quantification over (possibly infi-
nite) data types are allowed. Action formulae denote (potentially infinite) sets of
parameterised actions. For example, one may write true to denote the set of all
actions, or exists n:Nat.val(n>5)&& s(n) to denote the set of s(n) actions,
where n>5. The property [ true*. existsn: Nat.val(n>5) && s(n) 1false
then expresses that such an action never occurs.

The expressiveness of the mCRL2 property language makes it well-suited for
reasoning about complex distributed systems. Its expressivity is witnessed by
the fact that one can easily encode the counting p-calculus [26] in it, which
is known to be strictly more expressive than the propositional u-calculus. The
incorporation of data even enables succinct transformations from popular tem-
poral logics. In [12], we reported on a linear transformation from CTL* to our
p-calculus; the transformation of CTL* to the equational propositional modal
p-calculus is exponential [5].

The expressive power of the mCRL2 language also has serious consequences
as far as automation is concerned. Heuristics are required to work around the
general undecidability of the data theory. Quantifier elimination cannot simply
rely on exhaustive enumeration of all elements of a data type in case the carrier
of the latter is of infinite size. The ability to use unrestricted mixing of least
and greatest fixpoints in the p-calculus may lead to computationally intractable
decision problems. In the past years, we have made significant improvements in
the mCRL2 toolset to cope with the consequences of the expressive power of the
mCRL2 language.

3 The mCRL2 toolset

The mCRL2 toolset consists of over 60 tools that together allow for analysing
complex system designs formally described in the mCRL2 language. Internally, the
toolset relies on two types of objects, viz. linear processes [21] and parameterised
boolean equation systems [23]. The toolset offers full control over these objects,
equipping users with tools to manipulate and transform them. Below, we explain
these concepts in more detail, and we indicate what progress was made in recent
years.

Linear Processes Any analysis on mCRL2 specifications is preceded by an au-
tomated transformation of the specification to the linear process format. Tech-



nically, a linear process is again an mCRL2 process specification adhering to a
restricted grammar, which essentially is a syntactic format for the single-step
transition relation that a process induces. That is, a linear process is a recursive
equation, in the untimed setting, of the following form:

P(d:D) =YY" cl(de) — ai(d,e;)  P(fi(d,e;))

i€l e;:D;

The state space is represented by variable d of sort D. In practice, this is a vec-
tor of variables of complex sorts. Each ¢ € I describes a condition-action-effect
expression, stating that a multi-action «;, consisting of actions with parame-
ters that depend on variable d and local variable e;, can be executed, provided
boolean condition ¢; evaluates to true for the values for d and e;. The result
of executing this multi-action is a state transition to f;(d,e;). The choice be-
tween the different condition-action-effect expressions from I is resolved non-
deterministically. The transformation to the linear process format is based on
the expansion laws of the parallel operator of the mCRL2 process specification lan-
guage. User control over linear processes is one of the distinguishing advantages
of the mCRL2 toolset.

Behaviour-preserving transformations on linear processes are useful for re-
ducing their complexity by either reducing the complexity of the data types
occurring in a linear process, reducing the number of data parameters of a pro-
cess, or by replacing data expressions with simpler ones. In some instances these
techniques even allow one to handle processes with infinite state spaces. Typical
situations in which such manipulations are very effective occur when verifying
data transfer protocols, where the payload of messages is not important.

More recently, an experimental tool was developed to transform linear pro-
cesses with real-valued data sorts, representing infinite state spaces such as timed
systems, into linear processes representing finite ones. The tool performs a form
of predicate abstraction, where the predicates are limited to linear equations
over the real-valued parameters of the process.

Linear processes can be simulated, and their state space can be explicitly
generated and stored. State space generation from a linear process is sped up
considerably by caching the evaluation of summands in the spirit of [6], and
by pruning parts of the linear process that do not contribute transitions. Typ-
ically these techniques speed up state space exploration by a factor 10 to 100.
Explicit state spaces can be reduced using behavioural equivalences like strong
and branching bisimulation. Implementations of simulation preorders and equiv-
alences, as well as a divergence preserving variant of branching bisimulation have
also been made available. Moreover, LTSs can be analysed using a variety of ad-
vanced, interactive visualisation techniques for both small and large state spaces
in 2D and 3D [24,39).

Parameterised Boolean Equation Systems (PBESs) or just equation systems, for
short, are essentially systems of least and greatest fixpoint equations over pred-
icates involving parameterised predicate variables. Typically, a single equation



has the form pX(d:D)=¢ or vX(d:D)=¢. Here, X is a predicate variable,
d is a formal variable of some sort D, and ¢ is a predicate formula in positive
form, containing boolean expressions, predicate variables, conjunctions, disjunc-
tions and existential and universal quantifications. The g and v sign indicate
whether, respectively, the least or largest solution for X satisfying the equation
is desired. Thus, An equation system is viewed as a finite, ordered sequence of
equations for distinct predicate variables.

The problem of deciding whether a given property expressed in the p-calculus
holds for a given process specification is automatically encoded in an equation
system such that the property holds for the specification if and only if the solu-
tion to the equation system is true [22]. Apart from model checking problems,
also the equivalence of two processes modulo a process equivalence can be de-
cided by encoding it into an equation system, following the encoding of [9]. This
transformation is interesting when comparing infinite state spaces. Comparing
finite state spaces is more efficient using traditional algorithms.

We are primarily interested in the solution of a PBES, as it is also the answer to
the encoded problem. In many cases, however, manipulations and simplifications
are needed before the equation system can actually be solved within the available
memory and time. In the past years, we have added new tools implementing
solution-preserving manipulations. Inspired by a similar technique operating on
linear processes, an algorithm has been added that removes data parameters
from propositional variables if they do not affect the solution, see [34]. Other
tools implement the automated detection of invariants of equation systems [35]
and use these to simplify the predicates in the equations, again without affecting
the solution to the encoded verification problem. The computational complexity
of these techniques is low, operating at the level of the syntax, but their effects
on the time needed to solve the equation systems can be tremendous. Recently,
abstract interpretation technology for equation systems was added, allowing one
to reduce complex, potentially infinite data types to simpler, finite data types.
A recent theoretical analysis of the underlying theory [15] revealed that this
technique is more powerful than model checking based on abstractions using
modal transition systems, such as [38] and their generalisations using hyper-
transitions, see e.g. [42].

Solving a PBES typically proceeds by transforming it into an equation system
in which all data parameters and data expressions have been eliminated [36].
Such equation systems, which are systems of fixpoint equations over proposi-
tions, are called boolean equation systems or BESs [31]. Solving boolean equation
systems is known to be a decidable problem. The transformation process bears
many similarities to the computation of a state space from a specification. An
essential step in transforming equation systems to boolean equation systems is
the simplification of predicates. Quantifier elimination technology is essential to
make such transformations efficient. The approach taken here is that of construc-
tor induction, as outlined in [36], which works regardless of whether data types
are finite or infinite. Special rules, such as the one-point rule, help speeding up
the quantifier elimination, and are often necessary to ensure termination.



An intuitive method for solving boolean equation systems is through Gauss
elimination [31]. The algorithms for solving boolean equation systems that were
first offered in the toolset are based on this algorithm. While, technically, Gauss
elimination is independent of the alternation depth, in practice, this method
scaled poorly on verification problems obtained from fairness problems, which
require p-calculus formulae of alternation depth 2 or more. We therefore exploit
the tight connection between boolean equation systems and parity games [17,20].
To efficiently generate a parity game from a PBES, an alternative way of gen-
erating a PBES from an LPS and a p-calculus formula was recently introduced.
Several algorithms for solving parity games have been made available to users of
the toolset. Most notably, implementations of the Small Progress Measures [27)
algorithm and the Recursive Algorithm [50] are available. For most model check-
ing problems, these are very competitive, even for u-calculus formulae of alterna-
tion depth 2 and beyond. Moreover, bisimulation-inspired reductions for boolean
equation systems [29] and parity games [14] have been instrumental in solving
PBESs where more direct approaches failed.

4 Interfacing with other languages

The state space exploration facilities and model checking capabilities of the
mCRL2 toolset can be used in combination with various other specification lan-
guages.

So-called narration and annotation of security protocols can be expressed in
the process algebra LySA, a variant of the 7-calculus that uses pattern matching
to deal with encrypted data, cf. [8]. Static analysis of LySa processes has been
applied to find authenticity and authentication issues. The conversion of a LySa
specification into mCRL2, which in particular reflects the treatment of data, makes
it possible to do complementary behaviour-oriented analysis.

Using the channel-based coordination language Reo, so-called connectors can
be defined to orchestrate the interaction in a component-based system or a
service-oriented application [1]. A transformation of Reo connectors into mCRL2
adds model checking to the extensive tool suite for Reo. The synchronicity of
ports that is typical for Reo fits well with the notion of multi-action incorporated
in mCRL2 and lies at the heart of the efficiency of the transformation.

The mCRL2 toolkit accepts a number of other languages for input. These in-
clude the Petri net mark-up language PNML [48], the discretely timed part of
the hybrid process algebra y [3], a subset of executable UML [32], as well as a
number of domain specific languages like SML, a control language based on finite
state machines used at CERN [18], and TRECS, a language that manages resource
availability [33] in the wafer steppers manufactured by ASML.

Not only the many differences between these languages, but also the evolution
of their syntax and their semantics makes it difficult to maintain the dedicated
tools that implement the various transformations. In fact, some of the front-
ends mentioned have been marked deprecated in the latest releases of the mCRL2



toolset. To alleviate part of the burden, we are investigating a generic method to
transform external specification formalisms into mCRL2 using Plotkin’s structural
operational semantics (SOS) as a common representation format.

Using this method, specifications in any language with a structural opera-
tional semantics can be transformed into a linear process. This is done by trans-
forming the SOS into an mCRL2 data specification, and the specification under
study into an mCRL2 data structure, which are then embedded in a process. This
results in an mCRL2 process that encodes the semantics of the specification, and
that can be analysed with all the means provided by the mCRL2 toolset. In [44],
the underlying algorithm is explained for rules in the De Simone format [16],
which is one of the most elementary rule formats for S0S. Extensions to the rule
format, e.g. to include predicates, look-aheads and negative premises, can be
handled in a similar manner [43].

While the approach is promising from a maintenance point of view, the en-
coding described above yields models that currently require too much time to
verify in practice. Further research is therefore needed to make the technique
usable on a larger scale.

5 Architecture and implementation

The mCRL2 toolset is a collection of tools written in portable C++. Development
started around eight years ago, and the code base has steadily grown since then.
At present it has more than 200K lines of code, is open source, is supported on 32-
bit and 64-bit platforms and runs on most popular operating systems, including
Linux, FreeBSD, Windows and Apple Mac OS X. Over the years development
and testing of the mCRL2 toolset has matured. The code has been refactored and
set up as a collection of libraries with well-defined interfaces. Code has been
documented, and regression and performance tests are now run on a daily basis.
Recently, commercial spin-off activities based on the mCRL2 toolset have started.

The toolset accommodates two kinds of users. End-users use the toolset for
verification and validation of formal models, while the toolset also serves as
a vehicle for experimental research. For end-users, correctness of the code and
high-performance are the most important. Experimental researchers on the other
hand require a high degree of flexibility, since they frequently want to test new
ideas and algorithms. Many algorithms have been (re-)written to make the code
correspond closely to pseudo-code specifications of the algorithms. This greatly
improves the communication between experimental researchers and developers,
which is often challenging in academic environments. The pseudo-code is also
instrumental in establishing correctness of the algorithms, and in localising bugs.

A number of techniques are employed to support these different kinds of
usage. Generic programming is applied to improve adaptability of the code. No-
tably, a universal framework for traversing the tree-like data structures in mCRL2
has been developed, which lies at the heart of many algorithms in the toolset.
This framework uses static polymorphism, both for efficiency reasons and to
support a modular design. Code generation from concise specifications makes it



easier to incorporate changes, and increases code reuse, which in turn reduces
errors. Most of the traversal framework, and many classes and their operations
consist of generated code. Currently about 17% of the code is generated, and
this number is expected to increase further.

The mCRL2 toolset has a highly expressive input language. Therefore, test
coverage has always been a problem. Recently, random testing has been applied
to increase coverage. Randomly generated PBESs have proven to be successful
in discovering otherwise hard to find bugs, like subtle cases where name clashes
between quantifier variables in formulas were handled incorrectly. Currently the
random generation of LPSs and state spaces is under development.

In the backend, mCRL2 provides interfaces to other tools. On the one hand,
standardised file formats such as Aldebaran (.aut) and Binary Coded Graphs
(.bcg) are used to export labelled transition systems to other tools such as
CADP [19]. In the mCRL2 toolset, stable interfaces are provided for state space
exploration. These have been designed in such a way that compile and link
dependencies of tools using an interface can be kept to a bare minimum, to
prevent API breakage. In close collaboration with its developers a coupling has
been established with LTSmin [6], that enables symbolic and parallel state space
generation of LPSs. Recently, an interface has also been added that enables in-
stantiation of equation systems into parity games using LTSmin. As a result, the
parallel and symbolic exploration techniques from LTSmin can now also be used
to solve PBESs.

6 Applications and case studies

The purpose of the mCRL2 toolset is twofold. On the one hand, it aims to provide
a set of state-of-the-art tools for the analysis of distributed systems. On the other
hand, it serves as a platform to test research ideas in practice.

Below, we briefly report on three case studies conducted using the toolset,
to offer a glimpse into the application domains of mCRL2. The first case study
illustrates that the recent integration with LTSmin tool can help to reduce ver-
ification times substantially. The second case study illustrates that the mCRL2
multi-action can be essential for modelling systems and that parity game re-
duction techniques can be crucial for conducting the verification. The third case
study demonstrates that case studies can be instrumental in improving the qual-
ity of the toolset.

DIRAC: a distributed community grid solution The high-energy experiments
conducted at the large hadron collider of CERN generate a massive amount of
raw data. A computing grid solution called DIRAC offers users uniform and reli-
able access to storage and computing resources. Despite a decade of continuous
investment in developing and maintaining DIRAC, parts of the system occasion-
ally enter inconsistent states, leading to a loss of efficiency and a potential loss of
data. In an effort to tackle the problem at its root, the critical DIRAC subsystems
have been modelled and analysed in mCRL2 [40]. The models of the subsystems



were verified using model checking. Modal p-calculus formulae expressing live-
ness and safety requirements were formalised. Typical requirements stated, for
example, that jobs are always processed once submitted, and that jobs never
enter an inconsistent state. Violations of these requirements revealed livelocks
and race conditions, explaining phenomena observed in the actual system.

The technology enabling the verification was the symbolic exploration (using
the equation system interface with LTSmin, see [28]) and solving of the equation
systems encoding the model checking problems. This allowed for a full verifica-
tion of the system in under 60 seconds on a 64 bit Intel Core Duo (1.6GHz) ma-
chine with 2 GB RAM. For comparison, the model checking problem for a single
property required more than 50 hours when conducted using explicit state space
generation approaches, exploring well over 1.5 - 108 states. Attempts to employ
compositional verification, relying on equivalence reductions to minimise state
spaces, failed due to the fact that the individual processes that make up the
subsystems have infinite state spaces.

FlexRay is a communication protocol that was developed by a consortium of
automotive companies. Its final version was published in 2012. The protocol is
designed to provide a reliable, high-bandwidth communication channel between
nodes, with predictable timing properties. The protocol is time-triggered, that
is, the protocol relies on nodes (senders and receivers of messages) to have syn-
chronised clocks, and operates by allocating bandwidth to senders based on a
global, cyclic schedule. Using mCRL2, the FlexRay startup procedure, which en-
sures that activated nodes will find each other and will correctly initialise their
local view on the global schedule, was modelled and checked for correctness [11].
The rich data language, and the modularity of the process language of mCRL2
allowed to specify the FlexRay protocol closely. In the protocol, there is a notion
of macroticks, clock ticks that are generated by one process and communicated
to the other processes using events. To model the synchronisation that these
macroticks induce, multi-actions were used to create a form of barrier synchro-
nisation.

To review the robustness of the protocol, faults that might occur in the system
were modelled, which could mostly be done by making small, local changes to
the fault-free model. The property language of mCRL2 showed itself conveniently
expressive to define relatively complicated properties. For instance, the property
that eventually all nodes in the network will keep sending messages according
to their schedule was expressed as a p-calculus formula that uses fixpoints pa-
rameterised with data variables representing sets, and user-defined functions to
specify the schedule. The properties were verified by creating a PBES, expanding
it and solving the resulting BES. Solving time for these (large) equation systems
was reduced by interpreting the BES as a parity game, reducing that game using
a notion of stuttering equivalence tailored to parity games, and then solving the
reduced game [13].

Domain Specific Languages Domain specific languages, or DSLs, have become
increasingly popular with high-tech industry to speed up their design and de-
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velopment cycles. Although DSLs provide an easy way to design software for a
specific domain, they do not guarantee correctness of the designs. Through DSLs,
however, techniques from the mCRL2 toolset can be made available to industry.

If an SOS-style operational semantics is available for a DSL, the transforma-
tion technique discussed in Section 4 can be used to analyse it using mCRL2.
However, many domain specific languages are still defined informally. In [45] we
report on a case study of the formalisation of an industrial DSL, called TRECS.
The execution semantics was implicitly defined by the implementation of the
TRECS interpreter. By formalising the language, that is, by creating an S0S for
its syntactic constructs and subsequent application of the semantic transforma-
tion, we were able to discover—and improve upon—sub-optimal design decisions
using the mCRL2 toolset.

To further investigate the applicability of the approach, we took the formal
definition of the mCRL2 language itself and encoded it into mCRL2 again by ap-
plying the same procedure [46]. The SOS consisted of 43 deduction rules and
resulted in an mCRL2 specification of slightly over 1000 lines of code. Our effort
revealed a number of subtle differences between the specified, intended and the
implemented semantics. In particular, the definition of the mCRL2 language al-
lows for the use of existential quantifiers within a set comprehension scheme,
but this possibility was overlooked in the actual implementation of the linear
specification generator. The exercise led to improvements in the toolset and the
documentation of the language.

7 Related work

The mCRL2 toolset was originally based on the toolset associated with uCRL [7].
As such, a lot of the functionality of the uCRL toolset can still be found in the
mCRL2 toolset.

The toolset that—in terms of functionality—most resembles the mCRL2 toolset
is CADP, developed in Grenoble [19]. It uses the specification language Lotos NT,
which, like the process language of mCRL2, has its roots in process algebra; it has
a property language that is, like the mCRL2 property language, based on a vari-
ant of the propositional u-calculus, and, like in the mCRL2 toolkit, verification is
conducted using equation systems. Both toolsets offer the basic functionality of
minimising explicit labelled transition systems and visualising these; CADP offers
a slightly richer set of equivalences that can be used to reduce with, whereas
mCRL2 offers more advanced interactive 2D and 3D visualisation tooling. There
are a few key differences between the two toolsets. While the mCRL2 toolset is
fully open source, CADP’s license imposes more restrictions. Model checking in
CADP is essentially limited to alternation-free p-calculus formulae, with limited
support for alternation depth 2 formulae, whereas potentially mCRL2 can verify
p-calculus formulae of arbitrary alternation depth. Unlike CADP, mCRL2 can be
used to specify and analyse real-time systems. On the other hand, CADP provides
features to support performance evaluation, which are lacking in mCRL2. Finally,
there are differences in the philosophy between CADP and mCRL2: the latter pro-
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vides full control over objects such as linear processes and equation systems,
whereas in CADP objects fulfilling similar roles are hidden from the user.

Process algebras from the CSP family are less closely related to mCRL2. For
example, the FDR2 toolset [41] is based on checking refinement relations such
as failure-divergence inclusion between specifications and implementations. It
has support for static analysis and compositional reasoning; facilities for model
checking are limited to a predefined set of properties such as (the absence of)
livelock, deadlock and determinism. The PAT toolset [47] provides similar fea-
tures, but additionally supports specifying and analysing real-time systems and
it is capable of LTL-based model checking. Furthermore, it comes with advanced
techniques such as partial order reduction and symmetry reduction.

Prominent tools focussing on model checking include SPIN [25] and nuSMV
[10]. The languages supported by these tools have more restricted data types
(generally booleans or bits, limited range integers and finite arrays). SPIN uses
a C-like process specification language Promela for the analysis of parallel pro-
grams. It primarily focusses on LTL model checking. Properties can be established
by augmenting the specification with assertions and so-called ‘never claims’,
which are either obtained from LTL formulae or constructed manually. The tool
is most famous for its use of partial order reduction and bit hashing technol-
ogy. The tool DiVinE is an LTL model checker built for grid and multi-core
platforms [2]. It is an automaton-based tool providing a high-performance par-
allel computing engine. The nuSMV toolset exploits clever data structures such
as BDDs to compactly represent large state spaces. Model checking in nuSMV is
currently limited to CTL and LTL properties. It also offers support for bounded
model checking using SAT solving.

Several toolsets are optimised for verifying specifications with predominantly
quantitative aspects. These include real-time and probabilistic model checking,
with tools such as Uppaal [4] and Prism [30] The tool Uppaal is based on the
notion of timed automata and uses graphs to draw behaviour which can be used
to describe timed behaviour. Model checking of a restricted temporal logic is
solved elegantly relying on efficient representations and manipulations of time
regions. The tool Prism targets discrete and continuous-time Markov chains and
decision processes. It supports simulation and model checking of PCTL and CSL.

In Section 5, we already mentioned the LTSmin toolset [6] as one of the
back-ends for mCRL2. Contrary to the toolsets listed above, LTSmin has no dedi-
cated language. Instead, it provides highly optimised state space generation tools
employing multi-core, parallel and symbolic reachability analysers and model
checkers, and it is used as back-ends for, e.g., DiVinE, SPIN and mCRL2.

8 Closing remarks

The mCRL2 language and toolset provide end-users with state-of-the-art tools for
analysing complex, distributed systems. In developing the mCRL2 toolset we aim
to uphold a consistent and reliable user experience across the various supported
operating systems, viz., Linux, Windows, Apple Mac OS X and FreeBSD. For
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instance, we recently ported all our graphical tools from wxWidgets to Qt for
this reason. On the other hand, the toolset serves as a platform for testing
research ideas in practice. This requires flexible code that is easy to adapt.
Some of the older parts of the toolset have not been written with adaptability
in mind, making it harder to experiment with these. Efforts are being made
to change this. For example, the type checker of the language is scheduled for
replacement by a much more generic and modularised version. While we consider
such maintenance to be necessary for the progress of the toolset, it distracts from
more fundamental research.

Several challenges lie ahead. Underlying many of the algorithms for manip-
ulating linear processes and equation systems in the mCRL2 toolset is a rewrite
engine. The rewriter enables automated reasoning about data expressions found
in the linear processes and equation systems. Therefore, the efficiency of our
tools depends, to a large extent, on the performance of the rewriter. Currently,
we use just-in-time rewriting [37], which has been improved using strategy trees
and matching trees [49]. These are in essence techniques that reduce the number
of checks that have to be done in the rewrite engine. Nonetheless, the current
first-order rewriter sometimes causes performance problems when dealing with
more advanced language constructs such as lambda expressions, which we expect
to be able to solve using a generic higher-order rewriter. Such a rewrite engine
is currently under development.

At the same time, a few of our algorithms rely on a theorem prover based
on binary decision diagrams with equations. It may be beneficial to use dedi-
cated provers like SMT solvers for some problems instead. Limited support for
integrating SMT solvers is already present in several experimental tools. Inte-
grating them more robustly in the toolset and using them in more places is part
of our ongoing investigations. In particular, we are investigating possible ways
to connect SMT solvers with the abstraction tooling for PBESs [15].
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