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Abstract. One of the prevailing ideas in applied concurrency theory and veri-
fication is the concept of automata minimization with respect to strong or weak
bisimilarity. The minimal automata can be seen as canonical representations of
the behaviour modulo the bisimilarity considered. Together with congruence re-
sults wrt. process algebraic operators, this can be exploited to alleviate the noto-
rious state space explosion problem. In this paper, we aim at identifying minimal
automata and canonical representations for concurrent probabilistic models. We
present minimality and canonicity results for probabilistic automata wrt. strong
and weak bisimilarity, together with polynomial time minimization algorithms.

1 Introduction

Markov decision processes (MDPs) are models appearing in areas such as operations
research, automated planning, and decision support systems. In the concurrent systems
context, they arise in the form of probabilistic automata (PAs) [17]. PAs form the back-
bone model of successful model checkers such as PRISM [12] enabling the analysis of
randomised concurrent systems. Despite the remarkable versatility of this approach, its
power is limited by the state space explosion problem, and several approaches are being
pursued to alleviate that problem.

In related fields, a favourable strategy is to minimize the system – or components
thereof – to the quotient under bisimilarity. This can speed up the overall model anal-
ysis or turn a too large problem into a tractable one [2, 4, 9]. Both, strong and weak
bisimilarity are used in practice, with weaker relations leading to greater reduction.
However, this approach has never been explored in the context of MDPs or probabilis-
tic automata. One reason is that thus far no effective decision algorithm was at hand
for weak bisimilarity on PAs. A polynomial time algorithm has been proposed only re-
cently [10]. But that algorithm is a decision algorithm, not a minimization algorithm.
This paper therefore focusses on a seemingly tiny problem: Does there exist a unique
minimal representative of a given probabilistic automaton with respect to weak bisim-
ilarity? And can we compute it? In fact, this turns out to be an intricate problem. We
nevertheless arrive at a polynomial time algorithm.

Notably, minimality with respect to the number of states of a probabilistic automaton
does not imply minimality with respect to the number of transitions. And further mini-
mization is possible with respect to transition fanouts, the latter referring to the number
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of target states of a transition with non-zero probability. The minimality of an automa-
ton thus needs to be considered with respect to all the three characteristics: number of
states, of transitions and of transitions’ fanouts.

We consider our results as a breakthrough with wide ranging consequences. Since
weak probabilistic bisimilarity enjoys congruence properties for parallel composition
and hiding on PAs, compositional minimization approaches can now be carried out ef-
ficiently. And because PAs comprise MDPs, we think it is not far fetched to imagine
fruitful applications in areas such as operations research, automated planning, and de-
cision support systems.

As a byproduct, our results provide tailored algorithms for strong probabilistic bisim-
ilarity on PAs and strong and weak bisimilarity on labelled transition systems.

Organization. After the preliminaries in Section 2, we recall the bisimulation relations
in Section 3 and we introduce the preorders between automata in Section 4. Then we
present automaton reductions in Section 5 which will be used to compute the normal
forms defined in Section 6. We conclude the paper in Section 7 with some remarks.

2 Preliminaries

Sets, Relations and Distributions: Given sets X , Y , and Z and relations R ⊆ X × Y
and S ⊆ Y × Z , we denote by R ◦ S the relation R ◦ S ⊆ X × Z such that R ◦ S =
{ (x, z) | ∃y ∈ Y.x R y ∧ y S z }.

For a set X , we denote by SubDisc(X) the set of discrete sub-probability distribu-
tions over X . Given ρ ∈ SubDisc(X), we denote by |ρ| the size ρ(X) =

∑
s∈X ρ(s)

of a distribution. We call a distribution ρ full, or simply a probability distribution, if
|ρ| = 1. The set of all discrete probability distributions over X is denoted by Disc(X).
Given ρ ∈ SubDisc(X), we denote by Supp(ρ) the set { x ∈ X | ρ(x) > 0 }, by ρ(⊥)
the value 1 − ρ(X) where ⊥ /∈ X , by δx the Dirac distribution such that ρ(x) = 1
for x ∈ X ∪ {⊥} where δ⊥ represents the empty distribution such that ρ(X) = 0. For
a constant c ≥ 0, we denote by cρ the distribution defined by (cρ)(x) = c · ρ(x) if
c|ρ| ≤ 1. Further, for ρ ∈ Disc(X) and x ∈ X such that ρ(x) < 1, we denote by ρ\x
the rescaled distribution such that (ρ\x)(y) = ρ(y)

1−ρ(x) if y �= x, 0 otherwise. We define
the distribution ρ = ρ1 ⊕ ρ2 by ρ(s) = ρ1(s) + ρ2(s) provided |ρ| ≤ 1, and conversely
we say ρ can be split into ρ1 and ρ2. Since ⊕ is associative and commutative, we may
use the notation

⊕
for arbitrary finite sums.

The lifting L(R) ⊆ Disc(X) × Disc(X) [13] of an equivalence relation R on X
is defined as: for ρ1, ρ2 ∈ Disc(X), ρ1 L(R) ρ2 if and only if for each C ∈ X/R,
ρ1(C) = ρ2(C), where X/R = { [x]R | x ∈ X } and [x]R = { x′ ∈ X | x′ R x }.

Models: A probabilistic automaton (PA) A is a tuple A = (S, s̄, Σ, T ), where S is a
countable set of states, s̄ ∈ S is the start state, Σ is a countable set of actions, and
T ⊆ S×Σ×Disc(S) is a transition relation. In this work we consider only finite PAs,
i.e., automata such that S and T are finite.

An example of PA is sketched in Figure 1(a), the precise probabilities are left un-
specified, and Dirac transitions directly connect states. The set Σ is partitioned into two
sets H = {τ} and E of internal (hidden) and external actions, respectively; we refer to
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s̄ also as the initial state and we let s,t,u,v, and their variants with indices range over S
and a, b range over Σ.

A transition tr = (s, a, ν) ∈ T , also denoted by s
a−→ ν, is said to leave from

state s, to be labelled by a, and to lead to ν, also denoted by νtr . We denote by src(tr)
the source state s, by act(tr) the action a, and by trg(tr) the target distribution ν.
We also say that s enables action a, that action a is enabled from s, and that (s, a, ν)
is enabled from s. Finally, we denote by T (s) the set of transitions enabled from s,
i.e., T (s) = { tr ∈ T | src(tr) = s }, and similarly for a ∈ Σ, by T (a) the set of
transitions with action a, i.e., T (a) = { tr ∈ T | act(tr) = a }.

Given a state s, an action a and a countable set of indices I , we say that there exists
a combined transition s

a−→c ν if there exist a family of transitions {(s, a, νi) ∈ T }i∈I

and a family {ci ∈ R≥0}i∈I such that
∑

i∈I ci = 1 and ν =
⊕

i∈I ciνi.
We call a PA A = (S, s̄, Σ, T ) a Labelled Transition System (LTS), if (s, a, μ) ∈ T

implies μ = δt for some t ∈ S.

Weak Transitions: An execution fragment α of a PA A is a finite or infinite sequence of
alternating states and actions α = s0a1s1a2s2 . . . starting from a state first(α) = s0
and, if the sequence is finite, ending with a state last(α), such that for each i > 0
there exists (si−1, ai, νi) ∈ T such that νi(si) > 0. The length of α, denoted by |α|,
is the number of occurrences of actions in α. If α is infinite, then |α| = ∞. Denote
by frags(A) the set of execution fragments of A and by frags∗(A) the set of finite
execution fragments of A. An execution fragment α is a prefix of an execution fragment
α′, denoted by α � α′, if the sequence α is a prefix of the sequence α′. The trace of α,
denoted by trace(α), is the sub-sequence of external actions of α; we denote by ε the
empty trace. Similarly, we define trace(a) = a for a ∈ E and trace(τ) = ε.

Given a PA A = (S, s̄, Σ, T ), the reachable fragment of A is the PA RF (A) =
(S′, s̄, Σ, T ′) where S′ = { s ∈ S | ∃α ∈ frags∗(A).first(α) = s̄ ∧ last(α) = s } and
T ′ = { (s, a, ν) ∈ T | s ∈ S′ }.

A scheduler for a PA A is a function σ : frags∗(A) → SubDisc(T ) such that for
each finite execution fragment α, σ(α) ∈ SubDisc(T (last(α))). A scheduler is Dirac
if it assigns a Dirac distribution to each execution fragment and it is determinate if for
each pair of execution fragments α, α′, trace(α) = trace(α′) and last(α) = last(α′)
imply that σ(α) = σ(α′). It is worthwhile to note that a determinate scheduler satisfies
σ(α) = σ(last(α)) when trace(α) = ε.

Given a scheduler σ and a finite execution fragment α, the distribution σ(α) de-
scribes how transitions are chosen to move on from last(α). A scheduler σ and a state
s induce a probability distribution νσ,s over execution fragments as follows. The basic
measurable events are the cones of finite execution fragments, where the cone of a fi-
nite execution fragment α, denoted by Cα, is the set {α′ ∈ frags(A) | α � α′ }. The
probability νσ,s of a cone Cα is defined recursively as follows:

νσ,s(Cα) =

⎧
⎪⎨

⎪⎩

0 if α = t for a state t �= s,

1 if α = s,

νσ,s(Cα′ ) ·
∑

tr∈T (a) σ(α
′)(tr) · νtr (t) if α = α′at.
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Standard measure theoretical arguments ensure that νσ,s extends uniquely to the σ-field
generated by cones. We call the measure νσ,s a probabilistic execution fragment of A
and we say that it is generated by σ from s. Given a finite execution fragment α, we
define νσ,s(α) as νσ,s(α) = νσ,s(Cα) · σ(α)(⊥), where σ(α)(⊥) is the probability of
choosing no transitions, i.e., of terminating the computation after α has occurred.

We say that there is a weak combined transition from s ∈ S to ν ∈ Disc(S) labelled
by a ∈ Σ that is induced by σ, denoted by s

a
=⇒c ν, if there exists a scheduler σ such

that the following holds for the induced probabilistic execution fragment νσ,s:

1. νσ,s(frags
∗(A)) = 1;

2. for each α ∈ frags∗(A), if νσ,s(α) > 0 then trace(α) = trace(a);
3. for each state t, νσ,s({α ∈ frags∗(A) | last(α) = t }) = ν(t).

We say that there is a weak transition from s ∈ S to ν ∈ Disc(S) labelled by a ∈ Σ

that is induced by σ, denoted by s
a

=⇒ ν, if there exists a Dirac scheduler σ inducing
s

a
=⇒c ν.

We say that there is a weak hyper transition from ρ ∈ Disc(S) to ν ∈ Disc(S) labelled
by a ∈ Σ, denoted by ρ

a
=⇒c ν, if there exists a family of weak combined transitions

{s a
=⇒c νs}s∈Supp(ρ) such that ν =

⊕
s∈Supp(ρ) ρ(s) · νs.

Given two weak hyper transitions, it is known that their concatenation is still a weak
hyper transition, provided that one of the two weak hyper transitions is labelled by τ .

Lemma 1 (cf. [14, Prop. 3.6]). Given a PA A and an action a, if there exist two weak
hyper transitions ν1

a
=⇒c ν2 and ν2

τ
=⇒c ν3 (or ν1

τ
=⇒c ν2 and ν2

a
=⇒c ν3), then

there exists the weak hyper transition ν1
a

=⇒c ν3.

In the remainder of the paper we make use of this lemma without mentioning it further.
The following technical lemma allows us to decompose a weak hyper transition μ

a
=⇒c

μ′ into several weak hyper transitions μi
a

=⇒c μ′
i. This can be seen as an extension of

the family of weak combined transitions to a family of generic weak hyper transitions.

Lemma 2 (cf. [7, Lemmas 5 and 6]). Let μ, μ′ ∈ Disc(S) and k ∈ N. μ
a

=⇒c μ′

iff μ = μ1 ⊕ · · · ⊕ μk for subdistributions μ1, . . . , μk and for each i = 1, . . . , k a
distribution μ′

i exists, such that μi
a

=⇒c μ
′
i and μ′ =

⊕
i=1,...,k μ

′
i.

We will often lift mappings defined on a set of states S to mappings over distributions
Disc(S) in a generic way.

Definition 1 (Lifting of Functions). Given arbitrary sets S and M , and μ ∈ Disc(S),
we lift a mapping b : S → M to b : Disc(S) → Disc(M) by defining (b(μ))(m) =∑

s∈b−1(m) μ(s) for each m ∈ M .

3 Bisimulations

In the following, we define strong and weak (probabilistic) bisimulations. Let � ∈
{−→,−→c,=⇒,=⇒c}.
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Definition 2 (Generic Bisimulation). Let A = (S, s̄, Σ, T ) be a PA. An equivalence
relation R ⊆ S × S is a �-bisimulation if for every action a ∈ Σ, distribution μ ∈
Disc(S), and states s, s′ ∈ S, with s R s′ it holds that s

a−→ μ implies s′
a� γ for

some γ and μ L(R) γ.

We denote by �� the union of all �-bisimulations. Two PAs A, A′ are �-bisimilar,
written A �� A′ if their initial states are bisimilar in the direct sum of the two au-
tomata. We recover the standard characterization for strong and weak bisimilarities
from this definition as follows:

1. Strong Bisimilarity for LTS, denoted ∼S , is �−→.
2. Strong Probabilistic Bisimilarity for PA, denoted ∼, is �−→c

.
3. Weak Bisimilarity for LTS, denoted ≈S, is �=⇒.
4. Weak Probabilistic Bisimilarity for PA, denoted ≈, is �=⇒c

.

For the rest of the paper, we let the symbol � range over {∼,∼S,≈,≈S}. The relations
∼S and ≈S coincide with the respective notions of strong and weak bisimilarity on
LTS [15]. The same holds for the probabilistic bisimilarities ∼ and ≈ on PAs [18].
In the sequel we assume that bisimilarities are only applied to suitable automata, for
example, if we write A ∼S A′, we implicitly assume A,A′ ∈ LTS.

4 Preorders

The size of an automaton is usually expressed in terms of the size of the set of states
|S| and the size of the transition relation |T | of the automaton. The complexity of algo-
rithms working on probabilistic automata often depends exactly on those two metrics.
A less commonly considered metric is the number of target states of a transition reached
with a probability greater than zero. Especially in practical applications it is known that
the first two of these metrics – the number of states and transitions of an automaton –
can be drastically reduced while preserving its behaviour wrt. some notion of bisimilar-
ity. In contrast, the last metric is usually considered a constant, but in some cases it can
be reduced as well. We will formalize these three metrics by means of three preorder
relations, thus allowing us to define the notion of minimal automata up to bisimilarity.

To capture the last of the three metrics, we introduce the following definition.

Definition 3 (Transition Fanout). For a distribution μ ∈ Dist(S) we define ‖μ‖ =
|Supp(μ)|. For a set of transitions T we define ‖T ‖ =

∑
(s,a,μ)∈T ‖μ‖.

Definition 4 (Size Preorders). Let A = (S, s̄, Σ, T ) and A′ = (S′, s̄′, Σ′, T ′) be two
PAs, and let � be a notion of bisimilarity. We write

– A ≺|S|
� A′ if A � A′ and |S| ≤ |S′|,

– A ≺|T |
� A′ if A � A′ and |T | ≤ |T ′|, and

– A ≺‖T ‖

� A′ if A � A′ and ‖T ‖ ≤ ‖T ′‖.

We let from now on � range over ≺|S|
� , ≺|T |

� , and ≺‖T ‖

� for � ∈ {∼,∼S,≈,≈S}, if not
mentioned otherwise. It is easy to verify that these relations are preorders.
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Fig. 1. (a) Example PA, (b) Quotient reduction. (c) Rescaling of convex-transitive reduction.

Definition 5 (�-Minimal Automata). We call a PA A �-minimal, if whenever A′ �
A for some PA A′, then also A � A′.

Lemma 3 (Existence of �-Minimal Automata). For every PA A there exists a PA A′

such that A′ � A and A′ is �-minimal.

For each of the preorders considered, the proof of this lemma exploits that for every
automaton the respective metric is a finite natural number and at least 0.

As each relation � is a preorder, minimal automata are not necessarily unique. For
example, two ≺|S|

� -minimal automataA andA′ withA � A′ may differ in the underlying
set of states, and/or transitions. This will be investigated in Section 6.

5 Reductions

In this section, we introduce and formalize several methods to reduce the size of an
automaton. Except for the first method, quotient reduction, the methods are especially
tailored towards one or two distinct notions of bisimilarity. We summarize the properties
of the reductions at the end of this section. We will further show that each reduction can
be computed in polynomial time.

5.1 Quotient Reduction

Definition 6 (Quotient Automaton). Let A = (S, s̄, Σ, T ) be a PA and P(S) = {C |
C ⊆ S }. Given an equivalence relation � on S, we define the quotient PA [A]
 with
respect to � as the reachable fragment of the PA (S/
, [s̄]
, Σ, [T ]
) where (i) the
equivalence class mapping [ · ]
 : S → P(S) is defined for every s ∈ S as [s]
 =
{ s′ | s′ � s }, (ii) S/
 = { [s]
 | s ∈ S }, and (iii) [T ]
 = { ([s]
, a, [μ]
) |
(s, a, μ) ∈ T }.

Note that [μ]
 means lifting the quotient mapping on states [·]
 to distributions accord-
ing to Definition 1.

Definition 7 (Quotient Reduction). We write A 
� A′ if A′ = [A]
.

Fig. 1(b) shows the result of applying Def. 7 to weak bisimilarity and the PA in Fig. 1(a).
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5.2 Convex Reduction

In essence, strong probabilistic bisimilarity ∼ enhances standard bisimilarity by the
idea that the observable behaviour of a system is closed under convex combinations of
transitions. Using this fact, we minimize the number of transitions in a PA by replacing
the transitions of each state by a unique and minimal set of generating transitions.

Definition 8. Let P = {p1, . . . , pn ∈ R
k} be a finite set of points in R

k. We call
CHull(P ) = { c ∈ R

k | ∃c1, . . . , cn ≥ 0 :
∑n

i=1 ci = 1 and c =
∑n

i=1 ci · pi } the
convex hull of P .

C is a finitely generated convex set, if C = CHull(P ) for a finite set P ⊆ R
k. The

following lemma guarantees the optimality of our approach with respect to ≺|T |
∼ .

Lemma 4 (cf. [3, Sec. 2]). Every finitely generated convex set C has a unique minimal
set of generators Gen(C) such that C = CHull(Gen(C)).

Definition 9 (Convex Reduction). Let A be a PA. We write A C� A′ if the automaton
A′ differs from A only by replacing the set T by the set T ′, where

(s, a, γ) ∈ T ′ if and only if γ ∈ Gen(CHull({μ | (s, a, μ) ∈ T })).

5.3 Convex-Transitive Reduction

Just like strong probabilistic bisimilarity, weak probabilistic bisimilarity embodies the
idea that the observable behaviour of a system is closed under convex combinations.
Yet, this has to be interpreted for weak transitions. Finding a minimal set of generators
turns out to be harder in this setting, as the behaviour of each state s no longer only de-
pends on (convex combinations of) single step transitions leaving s. Instead, reachable
distributions are now characterized by arbitrarily complex schedulers and their convex
combinations. This convex set is known to be finitely generated [3].

We take inspiration from the standard approach followed in transitive reduction of
order relations. Intuitively, this is the opposite of the transitive closure operation, and
is achieved by removing transitions that can be reconstructed from other transitions by
transitivity. In this spirit, we propose a simple algorithm that iteratively removes tran-
sitions, as long as their target distribution can also be reached by a weak combination
of other transitions. Similar to transitive reduction on order relations, this reduction
algorithm has polynomial complexity.

We will later show that this reduction leads to a minimal result with respect to ≺|T |
≈ , if

applied on a model that a priori has been subjected to a quotient reduction.

Definition 10 (Convex-Transition Reduction Preorder).
Given the PAs A = (S, s̄, Σ, T ) and A′ = (S′, s̄′, Σ′, T ′), we write A ⊆T A′ if and
only if T ⊆ T ′, S = S′, Σ = Σ′, s̄ = s̄′, and for each transition (s, a, μ) ∈ T ′ there
exists a weak combined transition s

a
=⇒c μ in A.

Definition 11 (⊆T -Minimal Automata). We call a PA A ⊆T -minimal, if whenever
A′ ⊆T A for some PA A′, then also A ⊆T A′.
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Lemma 5 (Existence of ⊆T -Minimal Automata). For every PA A there exists a PA
A′ such that A′ ≈ A and A′ is ⊆T -minimal.

Definition 12 (Convex Transitive Reduction). Let A be a PA. We write A T� A′ if
A′ ⊆T A and A′ is ⊆T -minimal.

Notably, this reduction relation is non-deterministic, i.e., non-functional. But, as we will
show in Section 6, it is unique up to isomorphism (=iso), if applied to a quotient reduced
automaton. The overall result will therefore be unique up to isomorphism. As a special
case, this reduction can be applied to non-probabilistic transition systems (LTSs), where
it then coincides with transitive reduction of order relations. For this it is irrelevant
that this reduction allows to combine transitions, as long as we work on a quotient
reduced system, because in that system bisimilar states have been collapsed into a single
representative. Thus, a Dirac transition to a single state can only be matched by a Dirac

transition to precisely that state. In the LTS setting,
T� preserves ≈S, and in fact is a

necessary step to arrive at the transition minimal quotient. As a side note, though this
must have been considered in the context of tools exploiting weak bisimilarity [5, 8],
we are not aware of a publication mentioning this point.

5.4 Rescaling

A particular fine point of weak probabilistic bisimilarities [1] is related to internal tran-
sitions that induce a nonzero chance of residing inside the class. If looking at the quo-
tient, this concerns any internal transition (s, τ, μ) that contains the source state s with
nontrivial probability, i.e., 0 < μ(s) < 1. For those transitions, we can renormalise
the probability of all other states in the support set by 1 − μ(s) without breaking weak
bisimilarity. In other words, such μ can be replaced by the rescaled distribution μ\s.

Definition 13 (Rescaling). Let A = (S, s̄, Σ, T ) be a PA. We write A R� A′ if A′ =
(S, s̄, Σ, T ′) such that for each (s, a, μ′) ∈ T ′, either a ∈ E and (s, a, μ′) ∈ T , or
a ∈ H and there exists (s, τ, μ) ∈ T such that μ(s) < 1 and μ′ = μ\s.

As it will turn out, this reduction is the final step to obtain minimality with respect to
≺‖T ‖

≈ if applied a posteriori to the other two reductions,
≈� and

T�. Figure 1(c) depicts
the result of applying this sequence of reductions on the PA in Figure 1(a). Figure 1(b)
shows the automaton after it has been subjected to quotient reduction only.

5.5 Properties of Reductions

We summarize preservation and computability properties of the reduction relations.

Lemma 6 (Preservation of Bisimilarities)

1. A 
� A′ implies A � A′ for each A,A′ and � ∈ {∼,∼S,≈,≈S}.

2. A C� A′ implies A ∼ A′ for each A,A′ ∈ PA.

3. A T� A′ implies A � A′ for each A,A′ and � ∈ {≈S,≈}.

4. A R� A′ implies A ≈ A′ for each A,A′ ∈ PA.
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Proof. Proof for

�,

C� and
T�: The result follows almost immediately from the defi-

nitions of the reductions.
Proof for R�: Since by definition of

R�, A and A′ have the same set of states, we use ν
to refer to distributions from both A and A′; we still use s′ to remark that we consider
the state s in A′.

Let I be the equivalence relation on S�S′ whose set of classes is { {s, s′} | s ∈ S },
i.e., we relate each state s with its primed counterpart in A′. I is a weak probabilistic
bisimulation for A and A′: let s I t and s

a−→ ν; if s = t, then also t enables the
transition t

a−→ ν and ν L(I) ν. Suppose that s �= t; if a ∈ E, then also t enables
the transition t

a−→ ν, thus ν L(I) ν. Now, consider a ∈ H : if s ∈ S and t ∈ S′,
i.e., t = s′, then t is able to match such transition by the weak combined transition
t

τ
=⇒c ν as induced by the scheduler σ such that σ(t)(⊥) = ν(s), σ(t)(tr) = 1−ν(s),

and σ(α)(⊥) = 1 for each finite execution fragment α �= t, where tr = (t, τ, ν\s).
Note that this applies also when ν = δs as the resulting scheduler assigns σ(t)(⊥) =

ν(s) = 1 so the induced weak combined transition is t
τ

=⇒c δt and δs L(I) δt.
Otherwise, if s ∈ S′ and t ∈ S, i.e., s = t′, then s

a−→ ν is actually a transition
s

a−→ ρ\s that t is able to match by the weak combined transition t
τ

=⇒c ν as induced
by the determinate scheduler σ such that σ(α)(tr ′) = 1 for each α ∈ frags∗(A) with
last(α) = t, and σ(α)(⊥) = 1 for each finite execution fragment α with last(α) �= t
where tr ′ = (t, τ, ρ). ��

Proposition 1 (Computability of Reductions). For every PA A, a PA A′ can be found

in polynomial time, such that A � A′ for �∈ {
�,
C�,

T�,
R�}.

Proof (outline). The result for

� follows by the corresponding polynomial decision

procedures [3, 8, 10, 11, 16] and reachability analysis;
C� requires for each state and

each enabled action to solve O(|T |) linear programming problems (cf. [3, Sec. 6])

in order to find the set of generators of reachable distributions;
R� can be obtained

by computing for each transition s
τ−→ ν the distribution ν\s that requires at most

O(|S|) operations; finally,
T� can be computed by iteratively refining A by removing

one transition obtainingA′ and deciding whetherA ≈ A′. Since this is polynomial [10]

and the check is performed at most |T | times, computing
T� is polynomial. ��

6 Normal Forms

We are now concerned with minimality and uniqueness properties induced by the re-
duction operations with respect to the metrics discussed. To discuss uniqueness, it is
convenient to introduce normal forms as means to canonically represent automata in
such a way that two automata are equivalent if and only if they have identical normal
forms. Or better, if and only if the normal forms are identical up to isomorphism (struc-
tural identity). Two PAs A = (S, s̄, Σ, T ) and A′ = (S′, s̄′, Σ′, T ′) are isomorphic,
denoted by A =iso A′, if Σ = Σ′ and there is a bijective mapping b : S → S′ such that
b(s̄) = s̄′ and (s, a, μ) ∈ T if and only if (b(s), a, b(μ)) ∈ T ′.
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Definition 14 (Normal Form). Given an equivalence relation � over PAs, we call
NF : PA → PA a normal form, if it satisfies for every PA A

– NF(A) � A, and
– for every PA A′ it holds that A � A′ if and only if NF(A) =iso NF(A′).

It is natural to strive for normal forms that are distinguished in a certain sense. Not
surprisingly, we will strive for normal forms that are distinguished as being the smallest
possible representation of the behaviour they represent. In the following, we call a total
and functional subset of a binary relation r ⊆ PA × PA a function in r. Note that every
function in r is a mapping PA → PA.

Definition 15 (Normal Form Instances)

– Let NF∼S =
∼S�.

– Let NF≈S be an arbitrary function in
≈S� ◦ T�.

– Let NF∼ =
∼� ◦ C�.

– Let NF≈ be an arbitrary function in
≈� ◦ T� ◦ R�.

Theorem 1. Let �∈ {∼,∼S,≈,≈S}.
1. Minimality: NF
(A) is ≺|S|

� , ≺|T |
� , and ≺‖T ‖

� -minimal for every A ∈ PA.
2. Uniqueness of minimals: If A and A′ are ≺|S|

� , ≺|T |
� , and ≺‖T ‖

� -minimal automata, and
A � A′, then also A =iso A′,

3. Normal forms: NF
 is uniquely defined up to =iso , and is a normal form.

It is straightforward to check that all normal forms NF
 above are indeed mappings.
Furthermore, by Lemma 6, it follows that in each of the cases NF
(A) � A.

The remainder of this section is devoted to the proof of Theorem 1. We begin with a
lemma that we use often.

Lemma 7 (Preservation of Minimality). Let � ∈ {≺|S|
� ,≺|T |

� ,≺‖T ‖

� ,⊆T }. If A =iso A′

and A is �-minimal, then A′ is �-minimal, too.

For each normal form, the proof will refer to the following crucial, but already folklore
insight, that the quotient automaton is minimal with respect to the number of states.

Lemma 8 (State Minimality of Quotient Automata). For every A ∈ PA, the automa-
ton A′ with A 
� A′ is ≺|S|

� -minimal.

Next, we show that ≺|S|
� and ≺|T |

� -minimality can be achieved at the same time in one
automaton. For bisimilarities on LTSs, this is enough to conclude also ≺‖T ‖

� -minimality, as

this always coincides with≺|T |
� -minimality here (as all transition have the form (s, a, δt)).

Lemma 9 (Compatibility of ≺|S|
� and ≺|T |

� -minimality). For every PA A there exists a

PA A′ with A′ � A, which is ≺|S|
� and ≺|T |

� -minimal.

Proof. By Lemma 3, there exists a PA A that is ≺|T |
� -minimal. Consider [A]
. From Def-

inition 6 it is clear that for every transition of [A]
 there exists a transition in A. Thus,
[A]
 ≺|T |

� A, and hence, [A]
 must also be ≺|T |
� -minimal. Furthermore, by Lemma 8,

[A]
 must also be ≺|S|
� -minimal, and finally with Lemma 6 A � A′ follows. ��
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Strong Bisimilarities

Lemma 10 (Canonicity of Normal Form). Let � ∈ {∼S,∼}, A ∈ PA, and A′ =

NF
(A). For every ≺|S|
� and ≺|T |

� -minimal PA Am with Am � A, also Am =iso A′.

Proof. We skip the proof for � = ∼S and proceed with the more complicated case

of � = ∼. Let Am be a ≺|S|
� and ≺|T |

� -minimal automaton. Recall that NF∼ =
∼� ◦ C�.

As applying
∼� to A leads to a ≺|S|

∼ -minimal automaton according to Lemma 8, and
C�

obviously does not alter the number of states, NF∼(A) = A′ is ≺|S|
∼ -minimal, and thus

|Sm| = |S′|, as Am is ≺|S|
∼ -minimal by assumption.

Since A′ ∼ A and A ∼ Am, we have A′ ∼ Am. We will now argue that b = ∼ ∩
(S′ × Sm) is in fact a suitable mapping to establish A′ =iso Am. We start by showing
that b is functional, injective and surjective. Assume b is not injective. Then there must
exist states s1, s2 ∈ S′ and t ∈ Sm, such that b(s1) = t and b(s2) = t. But this implies
s1 ∼ t and s2 ∼ t. By transitivity, this implies s1 ∼ s2, contradicting Lemma 8.
Functionality can be shown similarly. We skip the details. If b is not surjective, this
would immediately contradict the assumption that Am is ≺|S|

∼ -minimal, since then any
state t ∈ Am for which no s ∈ S′ exists, such that b(s) = t could be removed without
violating A′ ∼ Am.

Most of the other conditions that have to be checked to show that b is an isomorphism
are straightforward, except for the condition

(s, a, μ) ∈ T if and only if (b(s), a, b(μ)) ∈ T ′. (�)

The set of combined transitions any state s of A′ can do must equal the set of combined

transitions that b(s) can do as s ∼ b(s). By reduction
C�, the set of transitions leaving

s must be minimal, according to Lemma 4, and must also be unique. As the transitions
of b(s) are minimal by assumption, the uniqueness of the minimal set of generators
guarantees Condition (�). ��

For ∼S and ∼, Theorem 1 now follows almost immediately by Lemma 9, Lemma 10
and Lemma 6. For ∼S, we in addition need the observation that A is ≺‖T ‖

� -minimal if and
only if it is ≺|T |

� -minimal, as we remarked before Lemma 9. For ∼, the same observation
holds, but follows from the uniqueness of the minimal set of generators (Lemma 4).

Weak Bisimilarities The following two lemmas are the weak counterparts to Lemma 10.

Lemma 11. Let A be a PA and A′ = NF≈S (A). Let Am be a ≺|S|
≈S

and ≺|T |
≈S

-minimal PA
satisfying Am ≈S A. Then A′ =iso Am.

We skip the proof of this lemma, as it is similar to, but simpler than the proof of the
following lemma. Theorem 1 can then be proven in complete analogy to the proof for
∼S.

It is instructive to note that in the following lemma, we need to apply the reduction
R� to arrive at an uniqueness result. Only applying

≈� followed by
T� will still lead
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to ≺|S|
� and ≺|T |

� -minimal automata, but they will not agree up to =iso , in full generality.
Different to Lemmas 11 and 10, the following lemma is slightly more general.

Lemma 12. Let A be a ≺|S|
≈ -minimal PA, A T� ◦ R� A′, and A′

m be a ≺|S|
≈ and ≺|T |

≈ -

minimal PA satisfying A′
m ≈ A. Now let A′

m
R� Am for some Am. Then A′ =iso Am.

Proof. Let Am and A′ be chosen as in the claim. We then proceed similarly as in the
proof of Lemma 10 to show that b = ≈∩ (Sm×S′) is a bijection. Then we will be able
to establish that b is a suitable mapping to establish Am =iso A′.

Assume, to derive a contradiction, that b is not an isomorphism. Since b is a bijection
between Sm and S′ (note that all automata in this lemma must be ≺|S|

� -minimal), in order
to have Am �=iso A′ there must exist s ∈ Sm, t ∈ S′ with s ≈ t (i.e., b(s) = t), and

(i) either a transition s
a

νs ∈ Tm but there does not exist t
a

νt ∈ T ′ such that
νs L(≈) νt, i.e., there does not exist a transition t

a
νt ∈ T ′ such that νt = b(νs),

or (ii) a transition t
a

νt ∈ T ′ but there does not exist s
a

νs ∈ Tm such that
νs L(≈) νt. We proceed with the proof of (i).

Note that this cannot be caused by two transitions with νt �= b(νs) but b(νs\s) =
νt\t, since both automata are rescaled. However, since s ≈ t, it follows that there exists
t

a
=⇒c νt such that νs L(≈) νt. Now, there are two cases: either a ∈ E, or a ∈ H . We

provide the detailed proof for a = τ whose schematic proof idea is depicted below; the
case a �= τ is similar.

s

νs
tνt

γi
s

γ1
t
⊕

⊕
γn
t

ρs

ν′s
νs⊕ L(≈)=

τ
c

τ

τ
c

τ
c

τc

τ
c

τ

τ

Let σt be the scheduler inducing t
τ

=⇒c νt and t
τ−→ γ1

t , . . . , t
τ−→ γn

t be all transitions
such that σt(t)(t

τ−→ γi
t) > 0 and γi

t �L(≈) νs, that is, t
τ−→ γi

t is a transition used
in the first step of the weak combined transition t

τ
=⇒c νt; it is immediate to see that

(
⊕n

i=1 γ
i
t)

τ
=⇒c νt. Since s ≈ t, it follows that there exists γi

s for each 1 ≤ i ≤ n such
that s

τ
=⇒c γi

s and γi
s L(≈) γi

t . Furthermore, (
⊕n

i=1 γ
i
s)

τ
=⇒c νs, as (

⊕n
i=1 γ

i
t)

τ
=⇒c

νt and νt = b(νs).
Now, consider a generic γj

s ; there are two cases depending on whether s
τ−→ νs is

used to reach νs. If it is not used by any of the γi
s, then there exists the weak combined

transition s
τ

=⇒c (
⊕n

i=1 γ
i
s)

τ
=⇒c νs that does not involve s

τ−→ νs, hence s
τ−→ νs

can be omitted. This contradicts the ≺|T |
≈ -minimality of Am.

So, suppose that s
τ−→ νs is used in order to reach νs. Since (

⊕n
i=1 γ

i
s)

τ
=⇒c νs,

we may split this hyper-transition into two parts according to Lemma 2, depending on
whether s

τ−→ νs is chosen by the scheduler with non-zero probability: (
⊕n

i=1 γ
i
s)

τ
=⇒c

ν′s with weight c1 ≥ 0 that does not involve s
τ−→ νs, and (

⊕n
i=1 γ

i
s)

τ
=⇒c δs with

weight c2 > 0 that involves s
τ−→ νs such that c1 + c2 = 1 and there exists ρs
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such that (s
τ−→ νs and) νs

τ
=⇒c ρs and νs = (c1ν

′
s ⊕ c2ρs). Note that we use ρs

instead of νs since it may be that, in order to reach distribution equivalent to νs, we
have to adjust probabilities by performing more steps. Now, consider the convex com-
bination of the two weak combined transitions Tr1 = s

τ
=⇒c (

⊕n
i=1 γ

i
s)

τ
=⇒c ν′s

and Tr2 = s
τ

=⇒c (
⊕n

i=1 γ
i
s)

τ
=⇒c δs

τ−→ νs
τ

=⇒c ρs, with weights c1 and c2,
respectively. Since (c1ν

′
s ⊕ c2ρs) = νs, we have that such convex combination cor-

responds to the weak transition s
τ

=⇒c νs, so we can replace the transition s
τ−→ νs

by the weak combined transition Tr = c1 · Tr1 ⊕ c2 · Tr2 with νs = c1ν
′
s ⊕ c2ρs.

Since s
τ−→ νs still occurs in Tr2 = s

τ
=⇒c δs

τ−→ νs
τ

=⇒c ρs, we can recursively
replace it by the same weak combined transition Tr , hence, after k replacements, we
have that νs = c1ν

′
s ⊕ c2c1ν

′
s ⊕ c22c1ν

′
s ⊕ · · · ⊕ ck2ρs = (

⊕k−1
l=0 c1c

l
2ν

′
s)⊕ ck2ρs, that is,

(
⊕k−1

l=0 (1− c2)c
l
2ν

′
s)⊕ ck2ρs. If we tend k to infinite, since c2 < 1, we derive that νs =

ν′s, therefore there exists the weak combined transition s
τ

=⇒c (
⊕n

i=1 γ
i
s)

τ
=⇒c νs that

does not involve s
τ−→ νs, hence again s

τ−→ νs can be omitted. This contradicts the
≺|T |
≈ -minimality of Am. The proof of case (ii) is completely analogous, except that the
contradictions will be derived with respect to ⊆T , which is a result of the fact that A′

has been reduced according to
T�.

As final note, consider the weight c2 and suppose that c2 = 1. Since s
τ

=⇒c

(
⊕n

i=1 γ
i
s)

τ
=⇒c δs with (

⊕n
i=1 γ

i
s) �L(≈) δs, it follows that each state in the sup-

port of
⊕n

i=1 γ
i
s is actually weak bisimilar to s as the states touched in the loop

s
τ

=⇒c (
⊕n

i=1 γ
i
s)

τ
=⇒c δs form a strongly connected component. But this contradicts

the ≺|S|
≈ -minimality of Am.

��

Corollary 1. Let A be a ≺|S|
≈ -minimal PA.

A is ⊆T -minimal if and only if it is ≺|T |
≈ -minimal.

Proof. Let A be ≺|S|
≈ -minimal. For the first direction of the if and only if, note first that

by Lemma 9, a PA A′
m must exist, which is minimal with respect to ≺|T |

≈ and ≺|S|
≈ . Let

A′
m

R� Am. Clearly, Am must be ≺|S|
≈ and ≺|T |

≈ -minimal, too. As by assumption, A is

⊆T -minimal, A T� A. Let A′ satisfy A R� A′. We combine the two reductions and

see that A T� ◦ R� A′. This allows us to apply Lemma 12 to obtain A′ =iso Am. As
A′ =iso Am implies that both have the same number of transitions, also A′ must be ≺|T |

≈ -
minimal. If we can now show that also A and A′ have the same number of transitions,
we are done. Assume the contrary to arrive at a contradiction. As A R� A′, this is only
possible if there are two transitions (s, τ, μ) and (s, τ, γ) in A such that μ\s = γ\s.
But then, one of them could have been removed without changing the combined weak
transitions s can perform, contradicting the assumption that A is ⊆T -minimal.

For the other direction, assume A is in addition ≺|T |
≈ -minimal. As removing transitions

from A would lead to an automaton that is smaller with respect to ≺|T |
≈ , it must be the

case that any such automaton A′ does not satisfy A′ ≈ A, otherwise contradicting the
assumption that A was ≺|T |

≈ -minimal. But then it immediately follows that A is also ⊆T -
minimal. ��
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Lemma 13. If A is ≺‖T ‖

≈ -minimal, then there also exists A′, such that A ≈ A′ and A′ is
≺|S|
≈ , ≺|T |

≈ , and ≺‖T ‖

≈ -minimal.

Proof. We first show that for every ≺‖T ‖

≈ -minimal automaton A there is one that is also
≺|S|
≈ -minimal. As candidate, we take the unique automaton A′ such that A ≈� A′. From
Definitions 6 and 7 it is clear that the transitions of A′ can be surjectively mapped to
transitions of A, such that every transition of A′ is smaller or equal with respect to ‖ · ‖
than its image transition in A. Thus, minimality with respect to ≺‖T ‖

≈ is preserved.

Now we show that any A′′, which satisfies A′ T� A′′ is in addition ≺|T |
≈ -minimal.

Clearly, the numbers of states of A′ and A′′ are the same. Furthermore, the transitions
of A′′ form a subset of the transitions of A′. Thus, as A′ is ≺‖T ‖

≈ -minimal, also A′′ must
be ≺‖T ‖

≈ -minimal. By Definition 12, A′′ is minimal with respect to ⊆T , and thus, by
Corollary 1, also with respect to ≺|T |

≈ . ��

Corollary 2. For every PA A there exists a PA A′ with A′ ≈ A, which is ≺|S|
≈ , ≺|T |

≈ and
≺‖T ‖

≈ -minimal.

Proof. Follows immediately from Lemma 3 and Lemma 13. ��

Lemma 14 (Canonicity of Normal Form). Let A′ = NF≈(A). Let Am be a ≺|S|
≈ , ≺|T |

≈ ,
and ≺‖T ‖

≈ -minimal automaton satisfying Am ≈ A. Then A′ =iso Am.

Proof. By Corollary 2 we know that Am exists such that Am ≈ A and Am is ≺|S|
≈ , ≺|T |

≈
and ≺‖T ‖

≈ -minimal. Furthermore, as Am is ≺‖T ‖

≈ -minimal, it must hold Am
R� Am. Finally,

as A′ = NF≈(A), there must exist A′′ such that A ≈� A′′ and A′′ T� ◦ R� A′, and by
the Definition of

≈� and Lemma 8, A′′ is ≺|S|
≈ -minimal. Thus, we may apply Lemma 12

to obtain our result. ��

Theorem 1 now follows for ≈ with Corollary 2 and Lemma 14.

7 Conclusion ∼S ≈S ∼ ≈
××× ×××××× ×××

��� �×× �×× �××

��� ��×

not unique

���

���

∼S� ≈S� ∼� ≈�

T� C� T�

R�

Fig. 2. Algorithmic steps in minimal
quotient computation

This paper has successfully answered the ques-
tion how to compute the minimal, canonical
representation of probabilistic automata under
strong and weak bisimilarity, together with poly-
nomial time minimization algorithms. Canonical
forms have also appeared in axiomatic treatments
of probabilistic calculi [6], but are obtained by
adding transitions via saturation, so without aim-
ing for minimality. Figure 2 summarizes what
steps are needed to perform the minimization in
labelled transition systems (left) and probabilis-
tic automata (right). The triplets indicate mini-
mality (�) or non-minimality (×) with respect to
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|S|, then |T |, then ‖T ‖. For example, ��× indicates that state and transition numbers
are minimal, but transition fanout size can be non-minimal.

The algorithms we developed can be exploited in an effective compositional min-
imization strategy for PAs (or MDPs), because strong and weak bisimilarity are con-
gruence relations for the standard process algebraic operators. With this, we see a rich
spectrum of potential applications in operations research, automated planning, and in
the decision support context.
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