Identifying Dynamic Data Structures by
Learning Evolving Patterns in Memory

David H. White and Gerald Liittgen

Software Technologies Group, University of Bamberg, Germany
{david.white, gerald.luettgen}@swt-bamberg.de

Abstract. We investigate whether dynamic data structures in pointer
programs can be identified by analysing program executions only. This
paper describes a first step towards solving this problem by applying ma-
chine learning and pattern recognition techniques to analyse executions
of C programs. By searching for repeating temporal patterns in mem-
ory caused by multiple invocations of data-structure operations, we are
able to first locate and then identify these operations. Applying a proto-
typic tool implementing our approach to pointer programs that employ,
e.g., lists, queues and stacks, we show that the identified operations can
accurately determine the data structures used.

Keywords: Program comprehension, pointer programs, dynamic data
structures, machine learning, pattern recognition.

1 Introduction

Programs making heavy use of pointers are notoriously difficult to analyse. To
do so one needs to understand which dynamic data structures and associated
operations the program employs. Analysis tools for pointer programs, such as
those based on shape analysis [17] and pointer graph abstraction [8], rely on an
abstraction methodology that must be crafted for each specific data structure,
and thus require a priori knowledge of the program to be analysed.

Knowing the shape of a data structure is, however, sometimes insufficient
for understanding its behaviour. For example, to recognise a linked list imple-
menting a stack, the operations that manipulate the data structure are of key
importance. Static analyses typically provide only approximations for this type
of behaviour, due to imprecision in the analysis. The task is further complicated
when dealing with legacy code, programs with unavailable source code and, even
worse, programs with obfuscated semantics such as malware. Hence, the question
arises whether pointer programs can be understood, with high confidence via a
dynamic analysis that identifies dynamic data structures and the operations that
manipulate them from an execution trace of the program under analysis.

Identifying (or in machine-learning terminology: labelling) operations appear-
ing in a program trace is a difficult problem. The initial obstacle is simply lo-
cating data structure operations, i.e., determining which events (e.g., a pointer
write) in the trace correspond to an operation and which do not. This problem

is compounded by the fact that invocations of the same operation may look
very different: clearly the addresses appearing in pointer variables will differ,
but there may also be significant differences in the control path taken due to
traversal or corner cases, such as inserting to an empty data structure.

The key idea is to locate an operation by learning the repetition in the
program trace caused by multiple invocations of that operation. For this to
work, we must construct an abstraction of the trace that lessens the differences
between invocations, and thus exposes the repetition. However, we need to make
some realistic assumptions for this to be feasible. Firstly, there should be a
sufficiently large number of invocations to expose the repetition, and secondly,
the surrounding context of the invocations should vary; otherwise, the context
could be included in the repeating pattern.

However, merely locating repetition in the program trace is insufficient as it is
highly likely that repetition resulting from non-operations will also be discovered.
Furthermore, as there are many different ways to code a data structure operation,
it is unlikely that it will be possible to assign a label at the granularity of
repeating pattern elements. To solve both problems, we consider an instance of
a repeating pattern a potential operation. We then construct a snapshot of the
pre- and post-memory states of the potential operation, and assign a label based
on the difference between these. With the set of data structure operations to
hand, identifying the program’s data structures is an easy task.

Contribution & Approach. Our contribution is the automated identification
of dynamic data structures appearing in an execution trace of a C program via a
labelling of the operations that manipulate them. We have written a prototypic
software tool to evaluate our approach on a number of textbook programs im-
plementing dynamic data structures, in addition to real-world examples. The
current prototype employs user-specified templates to identify iterative data
structures such as lists, queues, stacks, etc., and has a couple of limitations
that should be addressed by future work: nested data structures/operations are
not handled and patterns for non-tail recursive operations cannot be learned.

We divide the description of our approach into three parts: Sec. 2 shows
how we compute a suitable abstraction from an execution, Sec. 3 introduces
the machine learning of repetition, and Sec. 4 explains the labelling process for
operations and data structures. We begin Sec. 2 by describing the type of events
we wish to capture from an execution, in addition to how the instrumentation
is performed. Thus, the execution of the instrumented source code gives an
event trace. For each event we compute a points-to graph, and the sequence
of these is the points-to trace. However, the points-to trace is unsuitable as
input to the machine learning as the specific information about an event is
captured very inefliciently. Therefore, we construct a second abstraction for each
points-to graph that captures the semantics of the event; using machine learning
terminology we term this abstraction a feature.

The search for repeating structure takes place on the feature trace, where the
goal is to learn the set of patterns that best captures the repetition (Sec. 3). The
notion of “best” is determined by a Minimum Description Length [6] criterion

that evaluates how successful a set of patterns is at compressing the feature trace.
The search is performed using a genetic algorithm, which is particularly good
at finding globally good solutions. Each occurrence of a pattern corresponds to
a potential operation, and labelling is performed by matching against a reposi-
tory of templates for known data structure operations (Sec. 4). Data structure
labelling is then achieved by considering the set of operations that manipulated
a connected component in the points-to graph.

Our prototype tool is implemented using a combination of C++, the C In-
termediate Language (CIL) [12] and Evolving Objects [4] (11k LOC) and took
nine person-months to develop. It is employed to evaluate the effectiveness of
our approach at locating and labelling data structure operations written in C
(Sec. 5). We first consider data structure source code taken from textbooks [3,
18-20]. We then apply the tool to real-world programs [1,11,13]. Finally, in
Sec. 6, we discuss related work, give conclusions and describe future work.

2 Trace Generation and Preprocessing

In this section we present the construction of the event trace, points-to trace
and feature trace required for our machine learning approach.

Generating the Event Trace. We consider a dynamic data structure to be a
set of objects (C structs) linked by pointers. There are three types of program
events that must be captured in the trace: pointer writes, dynamic memory
events, and stack pointer variables leaving scope. To record these events during
a program’s execution, we instrument the source code using the CIL APT [12].
We now describe and motivate each event type.

The abstraction must capture the topology of a data structure, and since the
topology is defined by pointer writes and their types, this information must be
captured in the trace. All pointer-write events have the following attributes:
sourceAddr, targetAddr and pointerType. We differentiate between two types of
pointer writes: those occurring in the contexrt of an encapsulating object, i.e.,
assignments to context.ptr or context->ptr, where the context is the struct
in which the pointer appears, and those with no context. If the write has context,
then the predicate hasContext on the event is true and two additional attributes
are set, namely encapsulatingObjectAddr and encapsulatingObjectType.

The deallocation of memory is also key to the abstraction. After a mem-
ory region has been deallocated, any information the abstraction was tracking
about this region should be disregarded. Attributes for this event type record
the beginning and end of the memory region: bFreeAddr and eFreeAddr, respec-
tively. Memory allocations are not recorded as separate events and are instead
combined with the pointer write storing the allocation’s return value. For writes
of this type, the predicate isAlloc is true and the attribute allocSize is defined.

We want to understand how the operations affect the data structures beyond
the internal modifications; consider removing the front element of a linked list
by only updating the head pointer. To identify such modifications we must track
the entry points to the dynamic data structure. This is simple as we already

row N R

© N o

typedef struct node *N_ptr; 9 N_ptr new

typedef struct node { 10 = malloc(sizeof (Node));
int key; 11 new->key = key;
N_ptr next, prev; 12 new->next = *1list;
} Node; 13 new->prev = NULL;
14 if (x1list !'= NULL)
void dllInsertFront (15 (*¥1list)->prev = new;
N_ptr *1list, int key) { 16 *1ist = new; }

Fig. 1. An operation to insert in the front of a doubly linked list.

record all pointer writes; however, care must be taken if the pointer write is in
the stack as this memory has a lifetime defined by its scope. Thus, events of this
type store the address of the pointer variable leaving scope in attribute varAddr.

To exemplify our approach, we give a running example based on the insert-
front doubly linked list operation in Fig. 1. It executes in one of two modes,
inserting to the front of an empty list or a non-empty list. Instrumentation will
be inserted at lines 9, 12, 13, 15 and 16 to record pointer writes, and after line
16 to record local variables that go out of scope.

Constructing the Points-to Trace. For each event in the event trace (E1, .. .,
E,), a points-to graph is constructed that describes the effect of that event on
the memory state. Points-to graph G; is constructed by applying event FE; to
points-to graph G;_1, where the initial points-to graph is Gy.

A points-to graph G = (V,) is composed of a vertex set V and an edge set
E C V x V. There is exactly one of each of the following three special vertices
in each points-to graph: vn,y, the target of null pointers; vynder, the target of
undefined pointers; and vgisconnect; @ vertex with no edges that is used as a
placeholder return value. All remaining vertices represent objects, and each has
the following set of attributes obtained from the event trace: a beginning address
(bAddr), an end address (eAddr) and a type (type). A type ¢ has a set of pointer
fields {f1, f2,...} = t.fields. A compound variable object may have any number of
pointer fields (including zero), while a raw pointer has exactly one; raw pointers
are used as entry points to the data structure. Each field has an associated type
(fi-type) and offset (f;.offset). An edge e € & represents a pointer and has a
source address attribute (sAddr). We do not require that the source addresses of
the out-edges of v € V be compatible with the field offsets given by v.type.

The pseudocode in Fig. 2 describes how the points-to graph is updated for
an event. A pointer write provides two opportunities for adding information to
the points-to graph beyond adding the written pointer. If the write has context,
then we can add information about the object encapsulating the pointer, and we
may always add information about the target object based on the pointer type.
This occurs between lines 2-10 of Fig. 2 and in FINDORADDVERTEX. Now, the
vertices representing the source and target objects of the pointer are stored in v
and v, respectively. Using this, the edge representing the pointer is added and

1: if isPointer Write(E) then

2: if hasContext(E) then

3 A <+ FE.encapsulatingObjectAddr; T < FE.encapsulatingObjectType
4: else

5: A < FE.sourceAddr; T < FE.pointerType

6: v, < FINDORADDVERTEX(A, T)

7: if E.targetAddr # NULL then

8 v¢ < FINDORADDVERTEX (E .targetAddr, DEREF (E.pointerType))
9: else

10: V¢ €= Unull

11: £+ & —{e€&:esAddr = E.sourceAddr} U {(vs, v¢) (F.sourceAddr) }
12: else

13: if isMemoryFree(E) then

14: Viemove < {v € V : [u.bAddr, v.eAddr) C [E.bFreeAddr, E.eFreeAddr)}

15: else if isVarOutOfScope(E) then

16: Viemove — {v € V : v.bAddr = E.varAddr}

17: for all v € Viemove do

18: & < & — EDGES(v) U {(vs, Vundet){(vs, v¢).sAddr) : (vs,v¢) € INEDGES(v)}

19: V <V — Vremove

20: procedure FINDORADDVERTEX(A : Address, T : Type)

21: if v € V : [A, A + Tsize) C [v.bAddr, v.eAddr]) then return v

22: else

23: Unew ¢ CREATEVERTEX(type = T, bAddr = A, eAddr = A + T'size)

24: for all v € V — {Unew} : [v.bAddr, v.eAddr) C [Unew.bAddr, Unew.eAddr) do
25: E «+ & — INEDGES(v) U {(vs, Unew) {(vs, v¢).sAddr) : (vs,v:) € INEDGES(v)}
26: & + & — OUTEDGES(v) U {(Vnew, vt){(vs, v¢).sAddr) : (vs,v:) € OUTEDGES(v)}
27: V<« V-—{v}

28: forall f € T fields do

29: if e € OUTEDGES(Vnew) : €.sAddr = A + f.offset then

30: E < E U {(Vnew, Vunder) (A + f.offset) }

31: return vpew

Fig. 2. Updating of the points-to graph based on event E.

any pre-existing edge for this pointer is removed (line 11). We use the notation
e(A) to initialize the source address attribute of edge e to address A.
FINDORADDVERTEX (A, T) returns the vertex that represents the memory
needed by type T' starting at address A. If there is no suitable pre-existing ver-
tex, then one is added (line 23). However, there may be pre-existing vertices
representing subsections of the region, and any information stored by these ver-
tices must be aggregated into the vertex of the new larger region. This process is
performed in lines 24-27 where, for each defunct vertex, in-edges are updated to
point to the new vertex, out-edges are added to the new vertex, and lastly, the
vertex is removed. Finally, for any field of the new vertex’s type that does not
already have a pointer, an edge is added from that field to vynder (lines 28-30).
Deallocation and variable-out-of-scope events are handled in lines 13-19. The
only distinction is that a deallocation event may remove a set of vertices, while

‘ Node * | | Node * | | Node * | Gi_1 “frzznb | Node * | | Node * | | Node * | G

! : < !
I Node m Node F}i Node | | Node m Node IC:i Node |

S Wiz, Gin) _ $(W;,Gir) TN)

Fig. 3. Points-to graphs generated from the code in Fig. 1. The highlighted pointer is
written in the event, and the highlighted vertex is the written vertex (discussed later).
The vertices labelled “Node *” are entry points to the data structure.

from
i line 15

an out-of-scope event will remove only one vertex. If there were any in-edges to
a removed vertex, then the edges’ targets are set to vundef (n0t shown in Fig. 3).

Fig. 3 displays the points-to graphs after the pointer writes on line 13 and
15 of Fig. 1 have been performed on the third call to d11InsertFront().

Constructing the Feature Trace. We construct a feature trace F = (F1,. ..,
F,), where F; captures the effect of F; in a way that exposes repetition in the
trace. A feature F; is composed of two types of sub-features: structural sub-
features that abstractly describe the change in local topology between G;_1 and
G;, and temporal sub-features that capture the relationship between the written
pointers in F;_; and F;.

Let W; = FEj;.sourceAddr if isPointerWrite(E;); otherwise, W; is set to a
dummy value that will never be used as an address. We term the vertex in
graph G; that contains address W; the written vertex. In general, a vertex v
in a graph G containing address A is computed as follows: ¢(A,G) = v if
Jv eV : A€ [vbAddr,v.eAddr), otherwise ¢(A,G) = vdisconnect (nOte that
there is at most one vertex representing a particular address).

Each structural sub-feature records one aspect of the incoming or outgoing
edges of the written vertex. Some sub-features concern the pointer arrangement
before the event was performed (i.e., before E; and calculated on G;_1), and
some the arrangement afterwards (i.e., after F; and calculated on G;). Further
discrimination of pointers is based on the type of the two objects they connect,
and whether the pointer is null or undefined. If the event is a memory allocation
or free, then additional features are calculated. The full list of features can be
seen in Table 1, including example values for the event shown in Fig. 3. The sub-
features for out-pointers constructed on the post-state of E; deserve discussion.
Here, additional discrimination is performed based on whether the source and
target objects of a pointer have been in the same connected component of the
graph (given by comp) before the event is performed. The rationale behind these
sub-features is to capture components being joined or separated.

The first temporal sub-feature records whether the addresses of the written
vertices in F;_; and F; are the same. Sequences of events where this property
is true usually represent traversal. The next sub-feature records whether the
written vertex in F; is reachable from F;_; by following one pointer forwards or
backwards. The last sub-feature records whether the written vertices in E; and
FE;_1 are in the same component.

Dynamic Memory Features Ezxample

Allocate if isAlloc(E;) then E;.allocSize else 0 0

Deallocate if isFree(E;) then FE;.freeSize else 0 0

Pre and Post Event Structural Features, where x € {pre, post} ()

In Pointers |{e € INEDGES(v%) : SOURCE(e).type b< v.type}| pre: 2(=), 1(#)
_ post: 2(=), 1(#)

Null Pointers [{e € INEDGES(v;,) : TARGET(€) = vnun}| pre: 1, post: 0

Undef Point. |[{e € INEDGES(v},) : TARGET(€) = Uundef}| pre: 0, post: 0

Pre-Event Structural Features ()

Out Pointers |{e € OUTEDGES(v},;,) : TARGET(€).type i< v, type}| [1(=), 0(#)

Post-Event Structural Features (b1, <2)

Out Pointers |{e € OUTEDGES(Vp0s¢) : TARGET(€).type b1 Upost-type|2(=, =), 0(=, #)
A COMP(Up o) Dl2 COMP(P(TARGET (e).sAddr), Gi—1)}| |0(#, =), 0(#, #)
Temporal Features

Same Object vf;,:el .sAddr = vf,ost.sAddr false
Temporal Features, where x € {pre,post} pre, post
1 Forward |oUTEDGES(v:i™) N INEDGES(vE)| > 0 true, true
1 Backward |OUTEDGES(v:) N INEDGES(vE™)| > 0 false, true
Component coMP(v) = comp(vi™t) true, true

Table 1. This table describes how the feature vector F; is computed for event F;.
To save space some rows represent multiple features (<€ {=,#}). The features are
based on properties concerning the written vertex of events E;,_1 and E;. We use the
following shorthand for the written vertices: vl,. = ¢(W;, Gi—1) and v) ., = ¢(W;, G:).

post
The right column shows the value of each feature for event E; depicted in Fig. 1.

The features described above are sufficiently selective to be able to recognise
operations on linked lists and trees (cf. Sec. 5). They are also compact enough
to enable an efficient machine learning of patterns. In the following, the exact
value vector of a feature will be unimportant; thus, we simply denote features
by symbols f,, f», etc., where different indices mean that the features differ.

3 Locating Data Structure Operations in the Trace

We describe repetition in the feature trace in terms of a pattern set, where a
pattern is sequentially composed of (i) feature sequences and/or (ii) repetitions
of feature sequences. This two-level structure allows repetition to be learned. For
example, a feature sequence [fq, f, fe, fd; fes fda» fe] might be represented by the
pattern [[fa, fol, [fes fa] T, [fe]], where the middle sequence is allowed to match
multiple times. A feature from a pattern and a feature from the trace match if all
sub-features have identical values. There is a small caveat due to the temporal
features; we do not require a match of any temporal sub-feature for the first
feature in a pattern; this is because we do not want to restrict the matching of a
pattern based on the preceding context. As discussed earlier, d11InsertFront

from Fig. 1 operates in two different modes. Therefore, we would expect these two
modes to manifest themselves as two different feature sequences. This is indeed
the case as we obtain the two sequences [fqo, fp, fe, fa] and [fa, fe, fr, fq: fr-
Note that the first feature is identical as the object storing the malloc result is
disconnected from everything else. The remainder of the sequence diverges due
to the differing number of in-/out-pointers to/from the written vertex.

We solve the problem of locating repetition in the feature trace by consid-
ering how it may be compressed, the intuition being that the best compression
has identified the most repetition. The Minimum Description Length [6] (MDL)
principle makes this definition precise; it states that the following should be min-
imized: L(H) + L(D|H), i.e., the length of the hypothesis (the set of patterns
chosen to represent the data) summed with the length of the data encoded with
the hypothesis. This is a commonly used criteria since it avoids two of the most
common pitfalls in machine learning: over-fitting (penalized by the L(H) term)
and over-generalizing (penalized by the L(D|H) term).

The MDL criterion determines the fitness of a pattern set. We choose a
genetic algorithm to explore the space of possible pattern sets as we expect the
fitness function to be highly non-continuous. The algorithm proceeds by evolving
an initial set of individuals via two operators, mutation and crossover, until a
stopping condition is met. In each generation of the evolution, the fitness of an
individual is assessed, and this determines its inclusion in the next generation.

We use a random initialization of the population where each individual is a set
of randomly selected patterns. When crossover is applied to a pair of individuals
(with probability GA.), some of the patterns from each are swapped to the other.
When mutation is applied to an individual (probability GA,,), a random pattern
is selected and one of two operations is applied: (i) the front or back of the pattern
is extended or contracted; or (ii) if the pattern contains consecutively repeating
subsequences, then these are collapsed into a single instance that is allowed to
match multiple times. The front or back of the pattern may only be extended to
a feature sequence that occurs in the feature trace. The search terminates when
there has been no improvement in the fitness for GA; generations. Parameters
GA., GA,, and GA; are chosen by us as documented in Sec. 5.

4 Labelling Operations and Data Structures

We now determine which potential operations are real data structure operations
and then label them, and which are just noise in the trace. The greedy application
of the best set of patterns to the feature trace gives the set of potential operations
P. An operation P € P is a subsequence of the event trace, i.e., P = (E,, ..., Ej).
Given this definition, pre(P) = G;_1 is the points-to graph before the operation
was performed and post(P) = G; is the points-to graph afterwards.

Labelling Operations. We label operations via a template matching scheme,
i.e., we manually define a repository of templates 7 for the pre and post points-to
graphs of any operation we wish to identify, and attempt to match each template
in turn. Templates are defined for operations on a singly linked list (SLL), a queue

Sketch of pre(P) TPTe TPost Sketch of post(P)

Initial
Correspondence

Comp Var |-

Anchor

Template for DLL Insert Front
A = {DLL, Insert, Front}

Fig. 4. An example of matching the template for inserting at the front of a doubly
linked list. Note that, in 7P"¢, the second pointer to NULL is omitted to allow the
template to match a DLL insert front operation on a list of any length.

as SLL, a stack as SLL, a doubly linked list (DLL) and a binary tree. There is
typically not a 1-1 correspondence between a template match and a real-world
data structure operation; so instead of labelling a potential operation directly,
a successful match adds a set of attributes to the operation (see below). After
a match of all templates has been attempted, the operation label is determined
from the identified set of attributes.

Template. A template (TP"¢, TPt A) € T consists of a pair of template graphs,
which are matched against an operation P, and a set of attributes A. A template
graph places constraints on which types of template vertices may match which
types of points-to graph vertices; we distinguish four types: compound variable
vertices, raw pointer vertices (which can be distinguished from compound vari-
able types with one field on the basis of the C types), vnun and vyndet. One of
the template graphs must have more vertices than the other, and the vertex
set of the smaller graph is a subset of the larger. Compound variable vertices
appearing only in the larger graph are termed anchor vertices; at least one of
these is always required. An example of a template is given in Fig. 4.

Matching. Anchor vertices are used to provide the initial correspondence(s) for
the match. If |pre(P)| > |post(P)| (| - | only counts non-pointer object vertices),
then templates with anchor vertices in TP are applicable for matching; or, if
|[post(P)| > |pre(P)|, then templates with anchor vertices in TP are applica-
ble. Those difference vertices between pre(P) and post(P) that are compound
variable vertices provide the set of vertices to be initially mapped to the anchor
vertices. With the initial correspondences established, all remaining vertices and
edges in the template graph are matched to those in the points-to graph. If this
succeeds, and the other template graph can be matched to the other points-to
graph given the previous correspondences, then the template is matched. In case
there are multiple possible initial mappings to the anchor vertices, all possible
permutations are tried. Thus, it does not matter if some of the difference vertices
are irrelevant to the operation. Note that our reliance on difference vertices is
not a restriction in practice, since all dynamic data structures have some oper-
ations (e.g., insert and remove) that exhibit this characteristic and do not have

only, e.g., traversing operations. In Fig. 4, [post(P)| > |pre(P)|, and TP°%! has an
anchor vertex, so TP% is first matched to post(P) using the difference vertex for
the initial correspondence. Since this matches, we check whether TP"¢ matches
pre(P) given the correspondences from the first step. This also matches, and
hence, so does the whole template.

Labelling. After all templates have been tested, we examine the set of present
and absent attributes now associated with a potential operation to determine
its label. Attributes may record data structures (SLL, DLL, bTree), coding style
(Payload, Null-terminated, Header-node, Sentinel-node, Tail-pointer), mode (In-
sert, Remove) and position (Front, Middle, End). A formula over the attribute
set allows the potential operation to be labelled, e.g., an operation satisfying
SLL A —DLL A —bTree A insert A —remove A front A —middle is labelled SLL Insert
Front, and one satisfying DLL A —bTree A insert A —remove A front A —middle is la-
belled DLL Insert Front. If the set of attributes is not consistent with exactly
one predicate, then we report that operation to the user.

Note that the templates for SLL are easy to match on many non-SLL oper-
ations. It is only through a combination of templates and attributes that we are
able to handle them correctly. Continuing with our previous example (Fig. 4), a
template for SLL Insert Front will also match P, but this is ruled out as the final
attribute set will only be consistent with the predicate for DLL Insert Front.

Labelling Data Structures. The final part of this phase is to label the data
structures that are manipulated by the operations. For each connected compo-
nent in the graphs, over the whole points-to trace, we check what combination of
operations manipulated this component. This is almost always possible since the
set of components is typically stable in real-world programs. If the combination
of operations is consistent (within a tolerance tops, see Sec. 5) for a data struc-
ture, then this component is labelled. However, if the component has a severely
inconsistent set of operations, e.g., equal numbers of Tree Insert and SLL In-
sert Middle, then this could be an indication of a programming error. Working
out correct combinations is non-trivial since, in special circumstances, one data
structure can look like another. For example, if there are many operations for
both SLL Insert Front and SLL Insert Front with Header, then the label SLL
No Header would be preferred.

5 Evaluation

We first evaluate our prototype tool on data structure source code taken from
textbooks [3,18-20] (SLLs, DLLs, queues, stacks, binary trees). These show that
our approach recognizes a number of different data structures and works when
operations are coded in different styles. We reinforce these conclusions with ex-
periments on correctly mutated SLL and DLL operations (i.e., permuting state-
ments within the operation in a way that does not change the operation’s se-
mantics, e.g., by changing the placing of a call to malloc). Next, we demonstrate
that our approach can handle program traces that record events for multiple data
structures. Lastly, we apply our approach to real-world programs [1,11,13]. All

experiments were run under Ubuntu on a modern 16 core PC. The most time
consuming step is locating repetition with the genetic algorithm (GA), and this
is trivially parallelizable. The largest trace analysed has 15k events and takes 25
minutes (80% spent in GA) and 1GB RAM. GA parameters in Evolving Objects
[4] are as follows: GA. = 0.1, GA,, = 0.1 and GA; = 500.

Methodology. To evaluate the data structures taken from textbooks, we con-
struct a program for each example to simulate its use in a typical setting. Each
program repeatedly chooses an operation applicable to the current state of the
data structure to perform. To provide meaningful results, we average the mea-
surements taken over 10 different runs, i.e., simulating the data structure being
used in 10 deterministic programs. To make each textbook program more re-
alistic, a randomly chosen “noise” function is sometimes invoked to simulate
the program performing other tasks, such as preparing the payload for the data
structure. This noise is generated via a set of functions that are indicative of
those found in real programs. The noise comprises 30% to 50% of each trace.

When analysing the trace produced by a run, we let R stand for the set of
real operations. The set of potential operations that correctly represent a real
operation is given by Pr C P. A potential operation has an associated label
that is either “NoLabel” or a data structure operation label. Thus, the set of
labelled operations is £ = {P € P : label(P) # NoLabel}, and we denote the set
of correctly labelled operations by Lz C L.

To evaluate the success of locating repeating patterns, we must compute the
set Pr. This is tricky since potential operations do not need to perfectly map to
real operations for the approach to be successful; we consider an overlap of 50%
sufficient. Formally, we record that P € P is a member of Pg if the number of
events P has in common (operator N) with the most appropriate real operation
(given by ¢ (P) = argmaxp r{|P N R'|}) is above 0.5. This also enables a
definition for the set of correctly labelled operations.

[P Np(P)]

Pr={PecP: 0P|

> 0.5} Lgr ={P € Pr:label(P) = label(y(P))}

This measure does not penalize potential operations for over-matching a real
operation. However, this is only of concern if the user is analysing a program
with the labelled operations, and irrelevant parts of the program are included,
e.g., if an operation includes noise or part of another operation. We therefore
introduce a second measure for the usefulness of a labelled operation to the user,
where each summand expresses the proportion of the operation that agrees with
the most appropriate real operation, minus the proportion that disagrees:

1 (0w L L)
Fawtiy |LL§< (L])

We report the following quantities to assess our approach. Firstly, we give

%, the fraction of operations that correctly locate a real operation (this may be

Potential Ops Labelled Ops Data Structures
et R Prl | ILzI|1LR]|{_|£x Cor-| % of L
Program P TRE | Pwl| TRT |1 12T |Favality Label | rect [supports
Wolf SLL 200 [468.1] 0.97 |0.94/0.91| 0.03 | 1.00 |SLL | v | 100%
Weiss SLL 200 |445.4| 0.93 [0.73/0.69| 0.13 | 0.99 [SLI¥ | v | 100%
Wolf DLL* 200 [450.8| 1.00 |0.35/0.35| 0.57 | 0.98 |DLL | v | 100%
Wolf DLL 2 200 [405.2| 0.95 |0.84/0.80| 0.00 | 1.00 |DLL | v | 100%
Wolf Stack 200 | 529 | 0.88 |0.83(0.73| 0.00 0.92 S}E’F v 100%
Sedgewick Stack|200 | 522 | 0.85 |0.79/0.68| 0.00 | 0.93 |Spr | v | 100%
Weiss Stack 200 |418.1| 0.80 [0.68]0.56| 0.00 | 0.96 |SEp | v | 100%
Wolf Queue 200 |434.4| 0.85 |0.77]0.67| 0.05 | 0.95 |QEr | v 95%
Deshpande Tree [300 [759.3] 1.10 [0.61]|0.67| 0.11 0.91 |bTree| v 91%
SLL Perm 300 | 395 | 0.96 |0.73]0.70| 0.06 | 0.89 |SLL | v | 100%
DLL Perm 300 | 382 | 0.95 |0.69]0.66| 0.08 | 0.91 |DLL | v | 100%
Multiple DSs |800 |868.5| 1.04 |0.70|0.73| 0.04 | 0.96 N/A
mp3reorg’ 111.2|111.8| 0.98 [0.99]0.97| 0.00 | 0.58 |SLL | v" | 100%
Acidblood’* 439.8|804.8| 0.77 |0.71]0.55| 0.03 | 0.67 |DLL | v" | 100%
Olden Health* [92.9 [504.7| 0.76 [0.51/0.40| 0.20 0.68 |DLL | v 86%

Table 2. Results from applying our tool to several programs. Programs marked with
(without) t have results averaged over 5 (10) runs. Symbol * denotes a program that is
currently at the limits of our approach. Superscript X means data structure X uses
a header node. For queues (Q) and stacks (S), I € {F, B} (front, back) is the position
of inserts in the list, and D € {F, B} is the position of deletes in the subscript Xip.

greater than 1 due to the loose classification of a “correct” potential operation).
|Pr| imposes an upper bound on the success of the labelling, as we may only

label potential operations. Thus, we report %, which is the quality of the
labelling wrt. the potential operations. % is the overall success of the approach

in identifying operations. The false-positive (FP) rate is given by 1 — %, ie.,

the fraction of incorrectly labelled operations. Lastly, we determine the data
structure label and report the percentage of £ supporting this choice.

Results. The results for our technique are presented in Table 2. When in-
terpreting these, we must keep in mind our goal, namely to be able to classify
data structures based on the operations that manipulate them. Therefore, while
the overall number of operations that are correctly labelled is important, the
FP rate is just as important. In other words, a low FP rate and a reasonable
number of correctly labelled operations gives strong evidence for the label of a
data structure. It is important to note that the FP rate is reported in terms of
labelled operations. For example, in Wolf SLL, on average 91% of operations are
correctly labelled, and only 3% of the 91% are false positives.

Our tool identifies the following operation categories: SLL/DLL Insert/Re-
move Front/Middle/Back and Tree Insert/Remove. The position element is man-
datory to identify data structures such as queues and stacks when implemented
using lists, as our textbook examples are; thus, we must also identify when a

list uses a header node. For all examples, the type of the data structure be-
ing manipulated is correctly inferred. Obviously, there is some overlap between
queues, stacks and SLLs; however, by preferring the label of the more restrictive
data structure when the evidence is within a tolerance of the other possibilities
(tops = 10% in our experiments), the correct label is easily inferred. For example,
in Wolf Queue, 100% of operations support SLL and 95% support QgF; since
QH . is the more restrictive label and within the tolerance, this label is chosen.

In general, the fraction of operations correctly labelled is high, and the FP
rates are low. The FP rates for lists, stacks and queues are all explained by the
operation position being incorrectly identified. This is indeed the case for Wolf
DLL, where a tail pointer makes the shape symmetric and causes the position to
be incorrectly identified. When this experiment is re-run without requiring cor-
rect position (Wolf DLL 2), the results are much improved. We discuss solutions
to these types of problems in the next section. The only examples to have oper-
ations that oppose the chosen labelling are Wolf Queue and Deshpande Tree. As
elements are always inserted to the back of the queue, these negative examples
arise when inserting to an empty queue, and hence, an Insert Front operation is
recognized. For Deshpande Tree, the operations are coded iteratively and, there-
fore, display many modes of execution; some of the patterns inadequately cover
the operations and cause an operation to be identified as an SLL operation.

In SLL Perm and DLL Perm we correctly permute insert and delete opera-
tions to check the robustness of our approach against various coding styles. Four
variants are tested, and these can all be recognized with a low FP rate.

Program Multiple DSs uses an SLL, a DLL, a cyclic DLL and a binary tree to-
gether, where each data structure maintains a sorted set of integers. Repeatedly,
the program randomly chooses a data structure, and randomly chooses an insert
or delete operation to perform. The recognition rates are high and FP rates are
low, showing that the combination of templates and attributes provides good
discrimination of operations. The only overlap that occurs is in corner cases,
such as inserting into an empty tree or DLL. The different data structures all
use the same type (except SLL), so discrimination based on these is impossible.
We do not require the position to be correctly identified for this test.

Program mp3reorg [11] is a small open-source program (= 450 LOC) for
organizing the layout of mp3 files from their ID3 tags. We vary the mp3s in the
input directory to obtain multiple runs. The trace contains noise in the form
of pointers for handling files, and the list elements have pointer payloads of
malloc’ed strings, thus confusing the set of difference vertices. Nevertheless, we
achieve very good recognition rates for this program.

Acidblood [1] is a medium-sized open-source program (=~ 5k LOC) imple-
menting an IRC bot. It uses 14 different user-defined structs for servers, com-
mands, users, networking, etc., and some of these represent linked lists. We
allow it to connect to a server and then simulate privileged users being ran-
domly added and removed. Traces from this program include much noise in the
form of pointer writes for network management. Furthermore, some structs
contain many fields, meaning that preparing the payload is a significant portion

of an insert. Our tool can recognize a significant number of the DLL operations
correctly, and thus, we can accurately infer the data structure used.

Program Olden Health (=~ 500 LOC) gives the results for the program health
from the Olden benchmark [13]. This program contains much noise and has
nested data structures, so we are operating at the limit of our approach here.
However, despite a slightly low recognition rate, the type of the list data structure
being used can be correctly determined as a DLL.

This proves that our prototype tool is successful at identifying data structures
based on the set of operations that manipulate them. Typically, operation labels
have a low FP rate, showing that the probability of a data structure being
assigned an incorrect label is small.

6 Related Work & Conclusions

Discovering Data Structures. The shape of a data structure is commonly
abstracted by a shape graph, which permits finite representations of unbounded
recursive structures. These may be discovered for profiling and optimization
[15], detecting abnormal data structure behaviour [9] and constructing program
signatures [2]. In contrast, the whole heap is modelled in [14] to capture the
dynamic evolution of data structures in Java programs and is used to collect
summary statistics, including tree/DAG /cycle classification (a classification sim-
ilar in scope to the static approach of [5]). However, none of these approaches
consider the operations affecting the data structures and, hence, fail to capture
dynamic properties such as linked lists implementing queues.

DDT [10] is the closest to our approach and functions by exploiting the coding
structure in standard library implementations to identify interface functions for
data structures. Invariants are then constructed, describing the observed effects
of an interface function, and these are used in turn to classify the data structures.
The reliance on well-structured interface functions means the approach is not
designed for the customised interfaces appearing in OS/Legacy Software and
C programs, or the replicated interfaces that appear due to function inlining.
In contrast, our machine learning approach makes fewer assumptions about the
structure of the code implementing operations.

Verifying Data Structure Usage. Today, shape analysis [17] is one of the
predominate ways to reason about heap pointer structures. This framework is
based on static analysis and enables the automated proof of program proper-
ties that relate to the shape of data structures on the heap. To configure the
framework via custom predicates, some information on the shape of the data
structure under analysis must be known a priori, although there exists some
work on inferring predicates automatically [7]. The situation is similar for the
proofs carried out in separation logic [16] and abstraction-based techniques such
as [8], where abstractions need to be tailored to the data structures at hand.

Conclusions & Future Work. We presented an approach for learning the
data structure operations employed by a pointer program given only an exe-
cution trace. Our evaluation on a prototypic implementation showed that the

false-positive rate is low, and thus, the labelled operations can accurately in-
fer the data structures they manipulate. We wish to apply this work to various
domains, including automated verification, program comprehension and reverse
engineering, and to make our prototype available after having been generalised
wrt. nested data structures, non-tail-recursive operations and object code anal-
ysis. Last but not least, we wish to thank the anonymous reviewers for their
valuable comments and suggestions.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20

Acidblood IRC Bot. freecode.com/projects/acidblood. Accessed: 30.9.12.

A. Cozzie, F. Stratton, H. Xue, and S.T. King. Digging for data structures. In
OSDI, pages 255-266. USENIX, 2008.

P.S. Deshpande and O.G. Kakde. C & Data Structures. Charles River, 2004.
Evolving Objects (EO). eodev.sourceforge.net. Accessed: 30.9.12.

R. Ghiya and L.J. Hendren. Is it a tree, a DAG, or a cyclic graph? A shape analysis
for heap-directed pointers in C. In POPL, pages 1-15. ACM, 1996.

P.D. Grinwald. The Minimum Description Length Principle. MIT Press, 2007.
B. Guo, N. Vachharajani, and D.I. August. Shape analysis with inductive recursion
synthesis. In PLDI, pages 256—265. ACM, 2007.

J. Heinen, T. Noll, and S. Rieger. Juggrnaut: Graph grammar abstraction for
unbounded heap structures. ENTCS, 266:93-107, 2010.

M. Jump and K. S. McKinley. Dynamic shape analysis via degree metrics. In
ISMM, pages 119-128. ACM, 2009.

C. Jung and N. Clark. DDT: design and evaluation of a dynamic program analysis
for optimizing data structure usage. In MICRO, pages 56—66. ACM, 2009.

MP3 File Reorganizer. sourceforge.net/projects/mp3reorg. Accessed: 30.9.12.
G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer. CIL: Intermediate language
and tools for analysis and transformation of C programs. In CC, volume 2304 of
LNCS, pages 213-228, 2002.

Olden Benchmark. www.martincarlisle.com/olden.html. Accessed: 30.9.12.

S. Pheng and C. Verbrugge. Dynamic data structure analysis for Java programs.
In ICPC, pages 191-201. IEEE, 2006.

E. Raman and D.I. August. Recursive data structure profiling. In MSP, pages
5-14. ACM, 2005.

J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55—74. IEEE, 2002.

S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. TOPLAS, 24(3):217-298, 2002.

R. Sedgewick. Algorithms in C — Parts 1-4 (8rd ed.). Addison-Wesley, 1998.
M.A. Weiss. Data structures and algorithm analysis in C. Cummings, 1993.

J. Wolf. C von A bis Z. Galileo Computing, 2009.

