
LTL Model-Checking for Malware Detection�

Fu Song and Tayssir Touili

LIAFA, CNRS and Univ. Paris Diderot, France
{song,touili}@liafa.univ-paris-diderot.fr

Abstract. Nowadays, malware has become a critical security threat. Traditional
anti-viruses such as signature-based techniques and code emulation become in-
sufficient and easy to get around. Thus, it is important to have efficient and ro-
bust malware detectors. In [20,19], CTL model-checking for PushDown Systems
(PDSs) was shown to be a robust technique for malware detection. However, the
approach of [20,19] lacks precision and runs out of memory in several cases.
In this work, we show that several malware specifications could be expressed in
a more precise manner using LTL instead of CTL. Moreover, LTL can express
malicious behaviors that cannot be expressed in CTL. Thus, since LTL model-
checking for PDSs is polynomial in the size of PDSs while CTL model-checking
for PDSs is exponential, we propose to use LTL model-checking for PDSs for
malware detection. Our approach consists of: (1) Modeling the binary program
as a PDS. This allows to track the program’s stack (needed for malware detec-
tion). (2) Introducing a new logic (SLTPL) to specify the malicious behaviors.
SLTPL is an extension of LTL with variables, quantifiers, and predicates over the
stack. (3) Reducing the malware detection problem to SLTPL model-checking
for PDSs. We reduce this model checking problem to the emptiness problem of
Symbolic Büchi PDSs. We implemented our techniques in a tool, and we applied
it to detect several viruses. Our results are encouraging.

1 Introduction

Over the past decades, the landscape of malware’s intent has changed. More and more
sophisticated malwares have been designed for more general cyber-espionage purposes.
For example, Stuxnet, Duqu and Flame are deployed for targeted attacks in countries,
such as Iran, Israel, Sudan. Traditional antivirus techniques: code emulation and signa-
ture (pattern)-based techniques become insufficient. Indeed, code emulation techniques
monitoring only several traces of programs in a limited time span may miss some ma-
licious behaviors, and signature-based techniques using patterns of programs’ codes to
characterize malware can only detect known malwares.

Addressing these limitations, many efforts have been made [1,4,5,17,7,8,13,2].
Among them, model-checking is one of the efficient techniques for malware detection
[4,17,7,8,13], as it allows to check the behavior (not the syntax) of the program with-
out executing it. However, [4,17,7,8,13] use finite state graphs (automata) as program
model that cannot accurately represent the program’s stack. Being able to track the pro-
gram’s stack is very important for malware detection as explained in [16]. For example,

� Work partially funded by ANR grant ANR-08-SEGI-006.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 416–431, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

LTL Model-Checking for Malware Detection 417

malware writers obfuscate the system calls by using pushes and jumps to make malware
hard to analyze, because anti-viruses usually determine malware by checking function
calls to operating systems.

To overcome this problem, we proposed a new approach for malware detection in
[20,19] that consists of (1) Modeling the program using a Pushdown System (PDS).
This allows us to track the behavior of the stack. (2) Introducing a new logic, called
SCTPL, to specify malicious behaviors. SCTPL can be seen as an extension of the
branching-time temporal logic CTL with variables, quantifiers, and regular predicates
over the stack. Extension with variables and quantifiers allows to express malicious
behaviors in a more succinct way and regular predicates allow to specify properties
on the stack content which is important for malware detection. (3) And reducing the
malware detection problem to the model-checking problem of PDSs against SCTPL
formulas. Our techniques were implemented and applied to detect several viruses.

However, using the techniques of [20,19], the analysis of several malwares runs out
of memory due to the complexity of SCTPL model-checking for PDSs. By looking care-
fully at the SCTPL formulas specifying the malicious behaviors, we found that most of
these SCTPL formulas can be expressed in a more precise manner using the Linear
Temporal Logic (LTL). Since LTL can express some malicious behaviors that cannot
be expressed by SCTPL, and since the complexity of LTL model-checking for PDSs
is polynomial in the size of PDSs, whereas the complexity of CTL model-checking
for PDSs is exponential, we will apply in this work LTL model-checking for malware
detection (instead of applying SCTPL model-checking as we did in [20,19], since this
technique lacks precision and runs out of memory in several cases.). To obtain succinct
LTL formulas that express malicious behaviors, we follow the idea of [20,19] and in-
troduce the SLTPL logic, an extension of LTL with variables, quantifiers and regular
predicates over the stack content. SLTPL is as expressive as LTL with regular valua-
tions [9,14], but it allows to express malicious behaviors in a more succinct way. We
show that SLTPL model-checking for PDSs is polynomial in the size of PDSs and we
reduce the malware detection problem to SLTPL model-checking for PDSs.

We use the approach of [19] to model a program as a PDS, in which the PDS control
locations correspond to the program’s control points, and the PDS’s stack mimics the
program’s execution stack. This approach allows to track the program’s stack.

In SLTPL, propositions can be predicates of the form p(x1, . . . , xn), where the xi’s
are free variables or constants. Free variables can get their values from a finite domain.
Variables can be universally or existentially quantified. SLTPL without predicates over
the stack content (called LTPL) is as expressive as LTL, but it allows to express mali-
cious behaviors in a more succinct way. For example, consider the statement “There is
a register assigned by 0, and then, the content of this register is pushed onto the stack.”
This statement can be expressed in LTL as a large formula enumerating all the possible
registers as follows:
(
mov(eax, 0) ∧X push(eax)

)
∨
(
mov(ebx, 0) ∧X push(ebx)

)
∨
(
mov(ecx, 0) ∧X push(ecx)

)
∨ ...

where every instruction is regarded as a predicate, e.g., mov(eax, 0) is a predicate. How-
ever, this LTL formula is large for such a simple statement. Using LTPL, this can be
expressed by ∃r

(
mov(r, 0) ∧ X push(r)

)
which expresses in a succinct way that there

exists a register r s.t. the above holds.

418 F. Song and T. Touili

However, LTPL cannot specify properties about the stack, which is important
with 0 and an address a as parameters 1. After calling
for malware detection as explained previously. For
example, consider Fig. 1(a). It corresponds to a critical
fragment of the Trojan LdPinch that adds itself into the
registry key listing to get started at boot time. To do
this, it calls the API function GetModuleFileNameA
this function, the file name of its own executable will
be stored in the address a. Then, the API function
RegSetValueExA is called with a as parameter (i.e., its
own file name). This adds its file name into the registry
key listing. We cannot specify this malicious behavior
in a precise manner using LTPL. Indeed, a virus writer
can easily use some obfuscation techniques in order
to escape from any LTPL specification. E.g., let us
introduce one push followed by one pop after push 0 at
line l2 as done in Fig. 1(b). This fragment has the same
malicious behavior than the fragment in Fig. 1(a). Since

l1: push a
l2: push 0
l3: call GetModuleFileNameA
l4: push a
l5: call RegSetValueExA

(a)

(b)

l′1: push a
l′2: push 0
l′3: push eax
l′4: pop eax
l′5: call GetModuleFileNameA
l′6: push a
l′7: call RegSetValueExA

Fig. 1. (a) A fragment of the Tro-
jan LdPinch and (b) The obfus-
cated version

the number of pushes and pops can be arbitrary, it is always possible for virus writers
to change their code in order to escape from a given LTPL formula. To overcome this
problem, we introduce SLTPL, which is extension of LTPL with regular predicates over
the stack. Such predicates are given by Regular Variable Expressions over the stack
alphabet and some free variables (which can also be existentially and universally quan-
tified). SLTPL is as expressive as LTL with regular valuations [9], but more succinct.
In this setting, the malicious behavior of Fig. 1(a) and (b) can be specified as follows:
F ∃a
(
call(GetModuleFileNameA)∧0 a Γ∗ ∧F

(
call(RegS etValueExA)∧a Γ∗

))
, where

0 a Γ∗ (resp. a Γ∗) is a predicate expressing that the top of the stack are 0 and a (resp.
a). The SLTPL formula states that there exists a path in which GetModuleFileNameA
is called with 0 and some address a as parameters (i.e., 0 and a are on the top of the
stack), later RegSetValueExA is called with a as parameter. This specification can detect
both fragments in Fig. 1(a) and (b), because it allows to specify the content of the stack
when GetModuleFileNameA is called. Note that it is important to use PDSs as a model
in order to have specifications with predicates over the stack.

Thus, we reduce the malware detection problem to the SLTPL model checking prob-
lem for PDSs. To solve this problem, we first present a reduction from LTPL model-
checking for PDSs to the emptiness problem of Symbolic Büchi PDSs (SBPDS). This
latter problem can be efficiently solved by [10]. Then, we consider the SLTPL model
checking problem for PDSs. We introduce Extended Finite Automata (EFA) to repre-
sent regular predicates. To perform SLTPL model-checking, we first construct a Sym-
bolic PDS which is a kind of synchronization of the PDS and the EFAs that allows to
determine whether the stack predicates hold at a given step by looking only at the top

1 Parameters to a function in assembly are passed by pushing them onto the stack before a call
to the function is made. The code in the called function later retrieves these parameters from
the stack.

LTL Model-Checking for Malware Detection 419

of the stack of the symbolic PDS. This allows us to reduce the SLTPL model-checking
problem for PDSs to the emptiness problem of SBPDSs.

We implemented our techniques in a tool and applied it to detect malwares. Our
tool can detect all the malwares that we considered. The experimental results show that
detecting malware using SLTPL model-checking performs better than using SCTPL
model-checking [20,19] and LTL model-checking for PDSs with regular valuations [9].
Moreover, the analysis of several examples terminated using SLTPL model-checking,
while it runs out of memory/time using SCTPL or LTL with regular valuations model-
checking. Moreover, some malicious behaviors as expressed in [20,19] produce some
false alarms. Using SLTPL, these false alarms are avoided. Our tool can also detect the
notorious malware Flame that was undetected for more than five years.

Related Work: Quantified Linear Temporal Logic (QLTL) [18] is close to LTPL. How-
ever, QLTL disallows to quantify over atomic propositions’ parameters. LTPL is a sub-
class of the First-order Linear Temporal Logic (FO-LTL) [12]. [12] does not consider
the model-checking problem. LMDG [22] and LMDG∗ [21] are sub-logics of FO-LTL.
However, LMDG disallows temporal operator nesting and properties beyond its tem-
plates, andLMDG∗ cannot use existential and universal operators. FO-LTL was used for
malware detection in [3]. All these works cannot specify predicates over the stack.

Model-checking and static analysis such as [4,17,7,8,13,1,2] have been applied to de-
tect malicious behaviors. However, all these works are based on modeling the program
as a finite-state system, and thus, they miss the behavior of the stack. As explained in the
introduction, being able to track the stack is important for many malicious behaviors.
[16] keeps track of the stack by computing an abstract stack graph which finitely rep-
resents the infinite set of all the possible stacks for every control point of the program.
Their technique can detect some malicious behaviors that change the stack. However,
they cannot specify the other malicious behaviors that SLTPL can describe. [15] per-
forms context-sensitive analysis of call and ret obfuscated binaries. They use abstract
interpretation to compute an abstraction of the stack. We believe that our techniques are
more precise since we do not abstract the stack. Moreover, the techniques of [15] were
only tried on toy examples, they have not been applied for malware detection.

CTPL [13] is an extension of CTL with variables and quantifiers. SCTPL [20,19] is
an extension of CTPL with predicates over the stack content. CTL, CTPL and SCTPL
are incomparable with LTPL or SLTPL. For malware detection, experimental results
show that SLTPL model-checking performs better and is more precise.

Outline. Sections 2 and 3 give the definition of PDSs and LTPL/SLTPL, respectively.
LTPL/SLTPL model-checking for PDSs are given in Sections 4 and 5, respectively.
Experiments are shown in Section 6.

2 Binary Code Modeling

In this section, we recall the definition of pushdown systems. We use the translation of
[19] to model binary programs as pushdown systems.

A Pushdown System (PDS) is a tuple P = (P, Γ, Δ), where P is a finite set of control
locations, Γ is the stack alphabet, and Δ ⊆ (P × Γ)× (P × Γ∗) is a finite set of transition

420 F. Song and T. Touili

rules. A configuration of P is 〈p, ω〉, where p ∈ P and ω ∈ Γ∗. If ((p, γ), (q, ω)) ∈ Δ,
we write 〈p, γ〉 ↪→ 〈q, ω〉 instead. The successor relation�P⊆ (P × Γ∗) × (P × Γ∗) is
defined as follows: for every ω′ ∈ Γ∗, 〈p, γω′〉 �P 〈q, ωω′〉 if 〈p, γ〉 ↪→ 〈q, ω〉. For
every configuration c, c′ ∈ P × Γ∗, c′ is an immediate successor of c iff c �P c′. An
execution ofP is a sequence of configurations π = c0c1... s.t. ci �P ci+1 for every i ≥ 0.
Let π(i) denote ci and πi denote the suffix of π starting from π(i). For technical reasons,
w.l.o.g., we assume that for every transition rule 〈p, γ〉 ↪→ 〈q, ω〉, |ω| ≤ 2 (see [10]).

3 Malicious Behavior Specification

We define the Stack Linear Temporal Predicate Logic (SLTPL) as an extension of the
Linear Temporal Logic (LTL) with variables and regular predicates over the stack con-
tent. Variables are parameters of atomic predicates and can be quantified by the exis-
tential and universal operators. Regular predicates are represented by regular variable
expressions and are used to specify the stack content of the PDS.

3.1 Environments, Predicates and Regular Variable Expressions

From now on, we fix the following notations. Let X = {x1, x2, ...} be a finite set of
variables ranging over a finite domainD. Let B : X ∪D −→ D be an environment that
assigns a value c ∈ D to each variable x ∈ X s.t. B(c) = c for every c ∈ D. B[x ← c]
denotes the environment s.t. B[x ← c](x) = c and B[x ← c](y) = B(y) for every y � x.
Let B be the set of all the environments. Let Θid = {(B1,B2) ∈ B × B | B1 = B2} be the
identity relation for environments, and for every x ∈ X, Θx = {(B1,B2) ∈ B × B | ∀x′ ∈
X s.t. x � x′,B1(x′) = B2(x′)} be the relation that abstracts away the value of x.

Let AP = {a, b, c, ...} be a finite set of atomic propositions, APX be a finite set of
atomic predicates of the form b(α1, ..., αm) s.t. b ∈ AP, αi ∈ X∪D for every i, 1 ≤ i ≤ m,
and APD be a finite set of atomic predicates of the form b(α1, ..., αm) s.t. b ∈ AP and
αi ∈ D for every i, 1 ≤ i ≤ m.

Let P = (P, Γ, Δ) be a PDS, a finite set R of Regular Variable Expressions (RVEs) e
over X ∪ Γ is defined by: e ::= ε | a ∈ X ∪ Γ | e + e | e · e | e∗. The language L(e)
of a RVE e is a subset of P × Γ∗ × B defined inductively as follows: L(ε) = {(〈p, ε〉,B) |
p ∈ P,B ∈ B}; L(x), where x ∈ X is the set {(〈p, γ〉,B) | p ∈ P, γ ∈ Γ,B ∈ B :
B(x) = γ}; L(γ), where γ ∈ Γ is the set {(〈p, γ〉,B) | p ∈ P,B ∈ B}; L(e1 + e2) =
L(e1) ∪ L(e2); L(e1 · e2) = {(〈p, ω1ω2〉,B) | (〈p, ω1〉,B) ∈ L(e1); (〈p, ω2〉,B) ∈ L(e2)};
L(e∗) = {(〈p, ω〉,B) | ω ∈ {u ∈ Γ∗ | (〈p, u〉,B) ∈ L(e)}∗}.

3.2 The Stack Linear Temporal Predicate Logic

A SLTPL formula is a LTL formula where predicates and RVEs are used as atomic
propositions, and where quantifiers over variables are used. For technical reasons, we
suppose w.l.o.g. that formulas are given in positive normal form. We use the release
operator R as the dual of the until operator U. Formally, the set of SLTPL formulas is
given by (where x ∈ X, e ∈ R and b(α1, ..., αm) ∈ APX):

ϕ ::= b(α1, ..., αm) | ¬b(α1, ..., αm) | e | ¬e | ϕ∧ϕ | ϕ∨ϕ | ∀x ϕ | ∃x ϕ | Xϕ | ϕUϕ | ϕRϕ

LTL Model-Checking for Malware Detection 421

The other standard operators of LTL can be expressed by the above operators: Fψ =
trueUψ and Gψ = f alseRψ. A SLTPL formula ψ is a LTPL formula iff the formula ψ
does not use any regular predicate e ∈ R. A variable x is a free variable of ψ if it is out
of the scope of a quantification in ψ.

Given a PDS P = (P, Γ, Δ), let λ : APD → 2P be a labeling function that assigns
a set of control locations to each predicate. Let c = 〈p, ω〉 be a configuration of P. P
satisfies a SLTPL formula ψ in c (denoted by c |=λ ψ) iff there exists an environment
B ∈ B s.t. c satisfies ψ under B (denoted by c |=B

λ ψ). c |=B
λ ψ holds iff there exists

an execution π starting from c s.t. π satisfies ψ under B (denoted by π |=B
λ ψ), where

π |=B
λ ψ is defined by induction as follows: π |=B

λ b(α1, ..., αm) iff the control location
p of π(0) is in λ

(
b(B(α1), ...,B(αm))

)
; π |=B

λ ¬b(α1, ..., αm) iff π |=B
λ b(α1, ..., αm) does

not true; π |=B
λ e iff (π(0),B) ∈ L(e); π |=B

λ ¬e iff (π(0),B) � L(e); π |=B
λ ψ1 ∧ ψ2 iff

π |=B
λ ψ1 and π |=B

λ ψ2; π |=B
λ ψ1 ∨ ψ2 iff π |=B

λ ψ1 or π |=B
λ ψ2; π |=B

λ ∀x ψ iff for every
v ∈ D, π |=B[x←v]

λ ψ; π |=B
λ ∃x ψ iff there exists v ∈ D s.t. π |=B[x←v]

λ ψ; π |=B
λ X ψ iff

π1 |=B
λ ψ; π |=B

λ ψ1Uψ2 iff there exists i ≥ 0 s.t. πi |=B
λ ψ2 and ∀ j, 0 ≤ j < i : π j |=B

λ ψ1;
π |=B

λ ψ1Rψ2 iff for all j ≥ 0, if for any i < j : πi �|=B
λ ψ1, then π j |=B

λ ψ2.
Given a SLTPL formula ψ, let cl∃(ψ) (resp. cl∀(ψ) and clU(ψ)) denote the set of ∃-

formulas (resp. ∀-formulas and U-formulas) of the form ∃xφ (resp. ∀xφ and φ1Uφ2)
of ψ. Let cl(ψ) be the closure of ψ defined as the smallest set of formulas containing
ψ and satisfying the following: if φ1 ∧ φ2 ∈ cl(ψ) or φ1 ∨ φ2 ∈ cl(ψ), then φ1 ∈ cl(ψ)
and φ2 ∈ cl(ψ); if Xφ1 ∈ cl(ψ), or ∃xφ1 ∈ cl(ψ), or ∀xφ1 ∈ cl(ψ) or ¬φ1 ∈ cl(ψ), then
φ1 ∈ cl(ψ); if φ1Uφ2 ∈ cl(ψ), then φ1 ∈ cl(ψ), φ2 ∈ cl(ψ) and X(φ1Uφ2) ∈ cl(ψ); if
φ1Rφ2 ∈ cl(ψ), then φ1 ∈ cl(ψ), φ2 ∈ cl(ψ) and X(φ1Rφ2) ∈ cl(ψ).

LTL with regular valuations is an extension of LTL where the atomic propositions
can be regular sets of configurations over the stack alphabet [9,14]. SLTPL is as expres-
sive as LTL with regular valuations. Since the domainD is finite, we have:

Proposition 1. LTPL and LTL (resp. SLTPL and LTL with regular valuations) have the
same expressive power. SLTPL is more expressive than LTL.

3.3 Modeling Malicious Behaviors Using SLTPL

We consider a typical malicious behavior: windows viruses that compute the entry ad-
dress of Kernel32.dll. We show that this behavior can be expressed in a more precise
manner using SLTPL instead of SCTPL, and that if we use SCTPL to describe it, we
can obtain false alarms that can be avoided when using SLTPL (see Tab. 1).

Kernel32.dll Base Address Viruses:
Many Windows viruses use API functions to
achieve their malicious tasks. The Kernel32.dll
file includes several API functions that can
be used by the viruses. In order to use these
functions, the viruses have to find the entry
addresses of these API functions. To do this,
they need to determine the Kernel32.dll entry
point. They determine first the Kernel32.dll PE

l1 : cmp [eax], 5A4Dh
jnz l2
...

cmp [ebx], 4550h
jz l3
l2 : ...
jmp l1
l3

(a) (b)

l′1 : ...
...

jnz l′1
cmp [eax], 5A4Dh
cmp [ebx], 4550h

Fig. 2.

422 F. Song and T. Touili

header in memory and use this information to locate the Kernel32.dll export section
and find the entry addresses of the API functions. For this, the virus looks first for
the DOS header (the first word of the DOS header is 5A4Dh in hex (MZ in ascii));
and then looks for the PE header (the first two words of the PE header is 4550h
in hex (PE00 in ascii)). Fig. 2(a) presents a disassembled code fragment performing
this malicious behavior. This behavior can be specified in SLTPL using the formula
Ψwv = GF

(∃r1 cmp(r1, 5A4Dh)∧F∃r2 cmp(r2, 4550h)
)
. This SLTPL formula expresses

that the program has a loop such that there are two variables r1 and r2 such that first, r1 is
compared to 5A4Dh, and then r2 is compared to 4550h. This formula can detect the mal-
ware in Fig. 2(a). It can be shown that there is no CTL-like formula equivalent toΨwv. In
[20,19], to be able to express this malicious behavior using a CTL-like formula, we used
the following formula: Ψ ′wv = EGEF

(∃r1 cmp(r1, 5A4Dh) ∧ EF ∃r2 cmp(r2, 4550h)
)
.

This formula can detect the malware in Fig. 2(a). However, the benign program in Fig.
2(b) that compares with 5A4Dh and 4550h only once is also detected as a malware using
Ψ ′wv due to the loop at l′1, whileΨwv will not detect it as a malware. In our experiments, as
shown in Tab. 1, several benign programs are detected as malwares using Ψ ′wv, whereas
Ψwv classified them as benign programs.

4 LTPL Model-Checking for PDSs

In this section, we show how to reduce LTPL model-checking for PDSs to the emptiness
problem of symbolic Büchi PDSs which can be efficiently solved by [10].

4.1 Symbolic Büchi Pushdown Systems

A Symbolic Pushdown System (SPDS) P is a tuple (P, Γ, Δ), where P is a finite set of
control locations, Γ is the stack alphabet and Δ is a set of symbolic transition rules of

the form 〈p, γ〉 Θ
↪→ 〈q, ω〉 s.t. p, q ∈ P, γ ∈ Γ, ω ∈ Γ∗, and Θ ⊆ B × B.

A symbolic transition 〈p, γ〉 Θ
↪→ 〈q, ω〉 denotes the following set of PDS transi-

tion rules: 〈(p,B), γ〉 ↪→ 〈(q,B′), ω〉 for every B,B′ ∈ B s.t. (B,B′) ∈ Θ. For ev-
ery ω′ ∈ Γ∗, 〈(q,B′), ωω′〉 is an immediate successor of 〈(p,B), γω′〉, denoted by
〈(p,B), γω′〉�P 〈(q,B′), ωω′〉. A run (execution) ofP from 〈(p0,B0), ω0〉 is a sequence
〈(p0,B0), ω0〉〈(p1,B1), ω1〉 · · · over P × B × Γ∗ s.t. for every i ≥ 0, 〈(pi,Bi), ωi〉 �P
〈(pi+1,Bi+1), ωi+1〉.

A Symbolic Büchi Pushdown System (SBPDS) BP is a tuple (P, Γ, Δ, F), where
(P, Γ, Δ) is a SPDS and F ⊆ P is a finite set of accepting control locations. A run of
the SBPDS BP is accepting iff it infinitely often visits some control locations in F. Let
L(BP) be the set of configurations 〈(p,B), ω〉 ∈ P × B × Γ∗ from which BP has an
accepting run.

Theorem 1. Given a SBPDS BP = (P, Γ, Δ, F), for every configuration 〈(p,B), ω〉 ∈
P×B×Γ∗, whether or not 〈(p,B), ω〉 ∈ L(BP) can be decided in time O(|P|· |Δ|2 ·|D|3|X|).
Given a SBPDS BP with n control locations, m boolean variables and d transition
rules, [10] shows that L(BP) can be computed in time O(n · 23m · d2). We can use

LTL Model-Checking for Malware Detection 423

|X| · log2 |D| boolean variables to represent the set of variables X overD. Thus, we can
decide whether 〈(p,B), ω〉 is in L(BP) in time O(|P| · |Δ|2 · |D|3|X|).

A Generalized Symbolic Büchi PDS (GSBPDS) BP is a tuple (P, Γ, Δ, F), where
(P, Γ, Δ) is a SPDS and F = {F1, ..., Fk} is a set of sets of accepting control locations.
A run of the GSBPDS BP is accepting iff for every i, 1 ≤ i ≤ k, the run infinitely
often visits some control locations in Fi. Let L(BP) denote the set of configurations
〈(p,B), ω〉 ∈ P × B × Γ∗ from which the GSBPDS BP has an accepting run.

Proposition 2. Given a GSBPDS BP, we can get a SBPDS BP′ s.t. L(BP) = L(BP′).

4.2 From LTPL Model-Checking for PDSs to the Emptiness Problem of SBPDSs

Let P = (P, Γ, Δ) be a PDS, λ : APD → 2P a labeling function, ψ a LTPL formula. We
construct a GSBPDS BPψ s.t. BPψ has an accepting run from 〈(�p, {ψ}�,B), ω〉 iff P
has an execution π from 〈p, ω〉 s.t. π satisfies ψ under B. Thus, 〈p, ω〉 |=λ ψ iff there
exists B ∈ B s.t. BPψ has an accepting run from 〈(�p, {ψ}�,B), ω〉 (since 〈p, ω〉 |=λ ψ
iff there exists B ∈ B s.t. 〈p, ω〉 |=B

λ ψ). Let clU(ψ) = {φ1Uϕ1, ..., φkUϕk} be the set
of U-formulas of cl(ψ). We define BPψ = (P′, Γ, Δ′, F) as follows: P′ = P × 2cl(ψ),
F = {P × Fφ1Uϕ1 , ..., P × FφkUϕk }, where for every i, 1 ≤ i ≤ k, FφiUϕi = {Φ ⊆ cl(ψ) |
if φiUϕi ∈ Φ then ϕi ∈ Φ}, and Δ′ is the smallest set of transition rules satisfying the
following: for every Φ ⊆ cl(ψ), p ∈ P, γ ∈ Γ,

(α1): if φ = b(x1, ..., xm) ∈ Φ, 〈�p, Φ�, γ〉 Θ
↪→ 〈�p, Φ \ {φ}�, γ〉 ∈ Δ′, where Θ = {(B,B) | B ∈

B ∧ p ∈ λ(b(B(x1), ...,B(xm)))};
(α2): if φ = ¬b(x1, ..., xm) ∈ Φ, 〈�p, Φ�, γ〉 Θ

↪→ 〈�p, Φ \ {φ}�, γ〉 ∈ Δ′, where Θ = {(B,B) | B ∈
B ∧ p � λ(b(B(x1), ...,B(xm)))};

(α3): if φ = φ1 ∧ φ2 ∈ Φ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ ∪ {φ1, φ2} \ {φ}�, γ〉 ∈ Δ′;

(α4): if φ = φ1 ∨ φ2 ∈ Φ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ ∪ {φ1} \ {φ}�, γ〉 ∈ Δ′ and 〈�p, Φ�, γ〉 Θid

↪→ 〈�p, Φ ∪
{φ2} \ {φ}�, γ〉 ∈ Δ′;

(α5): if φ = ∃xφ1 ∈ Φ, then:

(α5.1): if x is not a free variable of any formula inΦ, 〈�p, Φ�, γ〉 Θx
↪→ 〈�p, Φ∪{φ1}\ {φ}�, γ〉 ∈ Δ′;

(α5.2): otherwise, for every c ∈ D, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ ∪ {φc} \ {φ}�, γ〉 ∈ Δ′, where φc is φ1

where x is substituted by c;

(α6): if φ = ∀xφ1 ∈ Φ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ∪ {φc | c ∈ D} \ {φ}�, γ〉 ∈ Δ′, where φc is φ1 where x

is substituted by c;

(α7): if φ = φ1Uφ2 ∈ Φ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ ∪ {φ2} \ {φ}�, γ〉 ∈ Δ′ and 〈�p, Φ�, γ〉 Θid

↪→ 〈�p, Φ ∪
{φ1,Xφ} \ {φ}�, γ〉 ∈ Δ′;

(α8): if φ = φ1Rφ2 ∈ Φ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p, Φ ∪ {φ1, φ2} \ {φ}�, γ〉 ∈ Δ′ and 〈�p, Φ�, γ〉 Θid

↪→
〈�p, Φ ∪ {φ2,Xφ} \ {φ}�, γ〉 ∈ Δ′;

(α9): if Φ = {Xφ1, ...,Xφm} and 〈p, γ〉 ↪→ 〈p′, ω〉 ∈ Δ, 〈�p, Φ�, γ〉 Θid
↪→ 〈�p′, {φ1, ..., φm}�, ω〉 ∈ Δ′.

Intuitively, BPψ is a kind of “product” of P and ψ. BPψ has an accepting run from
〈(�p, {ψ}�,B), ω〉 iff P has an execution π starting from 〈p, ω〉 s.t. π satisfies ψ under
B. The control locations of BPψ are of the form �p, Φ�, where Φ is a set of formulas,
because the satisfiability of a single formula φ may depend on several other formulas.
E.g., the satisfiability of φ1 ∧ φ2 depends on φ1 and φ2. Thus, we have to store a set of

424 F. Song and T. Touili

formulas into the control locations of BPψ. The intuition behind each rule is explained
as follows. (By abuse of notation, given a set of formulasΦ, we write π |=B

λ Φ iff π |=B
λ φ

for every φ ∈ Φ.) Let π be an execution of P from 〈p, ω〉.
If b(x1, ..., xm) ∈ Φ, then π |=B

λ Φ iff π |=B
λ b(x1, ..., xm) and π satisfies all the other

formulas of Φ under B. This is ensured by Item (α1). Item (α2) is similar to Item (α1).
If φ1 ∧ φ2 ∈ Φ, then, π |=B

λ Φ iff π |=B
λ φ1, π |=B

λ φ2 and π satisfies all the other
formulas of Φ under B. This is ensured by Item (α3). Item (α4) is analogous.

If φ1Uφ2 ∈ Φ, then, π |=B
λ Φ iff π |=B

λ φ2 holds or both (π |=B
λ φ1 and π |=B

λ X(φ1Uφ2))
hold, and π satisfies all the other formulas of Φ under B. This is ensured by Item (α7).
Since φ2 should eventually hold, to prevent the case where the run ofBPψ always carries
φ1 and X(φ1Uφ2) and never φ2, we set P × Fφ1Uφ2 = P × {Φ′ ⊆ cl(ψ) | if φ1Uφ2 ∈ Φ′
then φ2 ∈ Φ′} as a set of accepting control locations. Then, the accepting run of BPψ
will infinitely often visit some control locations in P × Fφ1Uφ2 which guarantees that φ2

eventually holds. Item (α8) is similar to Item (α7).
If Φ = {Xφ1, ...,Xφm}, then π |=B

λ Φ iff π1 |=B
λ {φ1, ..., φm}. It is ensured by Item (α9).

If ∀xφ ∈ Φ, then π |=B
λ Φ iff π |=B

λ ∀xφ and π |=B
λ Φ \ {∀xφ}. Since π |=B

λ ∀xφ iff
π |=B

λ

∧
c∈D φc, where φc is φ1 where x is substituted by c, we replace ∀xφ by

∧
c∈D φc.

This is expressed by Item (α6).
If ∃xφ ∈ Φ, then the construction depends on whether x is a free variable of some

formula in Φ or not:

– if x is not a free variable of any formula in Φ, then π |=B
λ Φ iff there exists c ∈ D

s.t. π |=B[x←c]
λ φ and π |=B

λ Φ \ {∃xφ}. Since x is not a free variable of any formula
in Φ, we can get that π |=B

λ Φ \ {∃xφ} iff π |=B[x←c]
λ Φ \ {∃xφ} for every c ∈ D. This

implies that π |=B
λ Φ iff there exists c ∈ D s.t. π |=B[x←c]

λ φ and π |=B[x←c]
λ Φ \ {∃xφ}.

This is ensured by Item (α5.1).
– otherwise, if x is a free variable of some formula ϕ in Φ, we cannot apply Item

(α5.1). Indeed, it may happen that φ is satisfied only when x = c, ϕ is not satisfied
when x = c, whereas π |=B

λ {ϕ,∃xφ}. In this case, we apply Item (α5.2). Since
π |=B

λ Φ iff π |=B
λ

∨
c∈D φc and π |=B

λ Φ \ {∃xφ}, where φc is φ where x is substituted
by c. Since π |=B

λ

∨
c∈D φc iff there exists c ∈ D s.t. π |=B

λ φc, then, π |=B
λ Φ iff there

exists c ∈ D s.t. π |=B
λ φc and π |=B

λ Φ \ {∃xφ}. This is ensured by Item (α5.2). Note
that we can use Item (α5.2) even in the previous case when x is not a free variable
of any formula in Φ. However, it is more efficient to use Item (α5.1) in this case,
since Item (α5.1) adds only one symbolic transition rule, whereas Item (α5.2) adds
|D| symbolic transition rules.

Thus, we can show that:

Theorem 2. Given a PDS P = (P, Γ, Δ), a labeling function λ : APD → 2P, and a
LTPL formula ψ, we can construct a GSBPDS BPψ with O((|Δ|+ |P| · |Γ|) · |D| · |X| · 2|ψ|)
transition rules and O(|P|·|D|·|X|·2|ψ|) states s.t. for every B ∈ B and every configuration
〈p, ω〉 ∈ P × Γ∗, 〈p, ω〉 satisfies ψ under B iff 〈(�p, {ψ}�,B), ω〉 ∈ L(BPψ).

Note that we do not need to consider all the possible subsets of cl(ψ) during the con-
struction of BPψ. In order to get the above complexity, we can maintain a set of sets of
formulas which are reachable from the configuration carrying the set {ψ}.

From Proposition 2, Theorem 2 and Theorem 1, we have:

LTL Model-Checking for Malware Detection 425

Theorem 3. Given a PDS P = (P, Γ, Δ), a labeling function λ : APD → 2P and a LTPL
formula ψ, for every B ∈ B and configuration 〈p, ω〉, whether 〈p, ω〉 satisfies ψ under B
or not can be decided in time O(|clU(ψ)| · |P| · |D| · |X| · (|Δ| + |P| · |Γ|)2 · 23|ψ| · |D|3|X|).
The complexity follows from the fact that the number of transition rules (resp. states)
of the SBPDS equivalent to BPψ is at most O(|clU(ψ)| · (|Δ| + |P| · |Γ|) · |D| · |X| · 2|ψ|)
(resp. O(|clU(ψ)| · |P| · |D| · |X| · 2|ψ|)), and the environments B only need to consider the
variables that are used in ψ.

Remark 1. To do LTPL model-checking for PDSs, by Proposition 1, we can translate
LTPL formulas into LTL formulas and apply LTL model-checking for PDSs [6,10].
This can be done in time O(23|ψ|·|D|(|cl∀(ψ)|+|cl∃ (ψ)|)

). Our approach has a better complexity.

5 SLTPL Model-Checking for PDSs

In this section, we show how to do SLTPL model-checking for PDSs. We follow the
approach of [9]. Fix a PDS P, a set of variables X over D and a SLTPL formula ψ.
Roughly speaking, for each RVE e of ψ, we construct a kind of finite automaton V
recognizing all the configurations (〈p, ω〉,B) ∈ P × Γ∗ × B s.t. (〈p, ω〉,B) ∈ L(e). Then,
we compute a SPDS P′ which is a kind of synchronization of P and theVs that allows
to determine whether the stack predicates hold at a given step by looking only at the top
of the stack of P′. HavingP′ allows to readapt the construction of Section 4 and reduce
the SLTPL model-checking problem for PDSs to the emptiness problem of SBPDSs.

5.1 Extended Finite Automata

To represent RVEs, we introduce extended finite automata, in which transition rules can
be labeled by a set of variables and/or their negations. Formally, let P = (P, Γ, Δ) be a
PDS and ξ = {α,¬α | α ∈ Γ ∪ X}, an Extended Finite Automaton (EFA) V is a tuple
(S, Λ, Γ, s0, S f) where S is a finite set of states, Γ is the input alphabet, s0 ∈ S is the
initial state, S f ⊆ S is a finite set of final states, and Λ is a finite set of transition rules

of the form s1
��→ s2 s.t. s1, s2 ∈ S, � ⊆ ξ. Let B ∈ B be an environment, γ ∈ Γ the input

letter, suppose V is at state s1 and t = s1
��→ s2 is a transition rule in Λ, then V can

move to the state s2 (i.e., s2 is an immediate successor of s1 under B over γ), denoted

by s1
γ
�B s2, iff the following conditions hold: (1) for every α ∈ �, B(α) = γ; (2) for

every ¬α ∈ �, B(α) � γ (note that B(γ) = γ if γ ∈ Γ). Obviously, the transition t will
never be fired when either γ1, γ2 ∈ � ∩ Γ s.t. γ1 � γ2 or α,¬α ∈ � for some α ∈ Γ ∪ X.
This implies that � can contain only one letter from Γ, and for each α ∈ X∪Γ, � cannot
contain both α and ¬α.V recognizes (accepts) a word γ0...γn over Γ under B iffV has

a run s0
γ0
�B s1...sn

γn
�B sn+1 s.t. sn+1 ∈ S f . Let L(V) be the set of all the configurations

(〈p, ω〉,B) ∈ P × Γ∗ × B s.t.V recognizes ω under B.
A EFAV is deterministic (resp. total) iff for every state s ∈ S, environment B ∈ B,

letter γ ∈ Γ, s has at most (resp. at least) one immediate successor s′ ∈ S under B over
γ. We can show that:

426 F. Song and T. Touili

Proposition 3. For every EFA V = (S, Λ, Γ, s0, S f), we can compute in time O(2|Λ|) a
deterministic and total EFAV′ s.t. L(V) = L(V′).
Theorem 4. For every regular predicate e ∈ R, we can get in polynomial time an EFA
Ve s.t. L(e) = L(Ve).

Given a configuration (〈p, γ1...γm〉,B) ∈ P × Γ∗ × B, its reverse (〈p, γ1...γm〉,B)r is the
configuration (〈p, γm...γ1〉,B). Given a set L ⊆ P × Γ∗ × B, its reverse Lr is the set
{(〈p, γm...γ1〉,B) | (〈p, γ1...γm〉,B) ∈ L}. We can show that:

Proposition 4. For every EFA V, we can get an EFA Vr in linear time s.t. L(V)r =

L(Vr).

Remark 2. To represent RVEs, [20] uses automata with alternating transition rules,
called Variable Automata (VA). If we use VAs to represent variable expressions, we will
obtain an alternating SBPDS when synchronizing the SLTPL formula with the PDS. We
introduce EFAs to avoid using alternation, since checking the emptiness of alternating
SBPDSs is exponential in the size of the PDSs [20]. [11] introduces another kind of
VAs, which is not suitable for our purpose, since determinizing a VA as defined in [11]
is undecidable, but, we need the automata to be deterministic as will be explained later.

5.2 Storing States into the Stack

We fix a PDS P = (P, Γ, Δ) and a SLTPL formula ψ. Let {e1, ..., en} be the set of RVEs
used in ψ. We suppose w.l.o.g. that P has a bottom-of-stack⊥ ∈ Γ that is never popped
from the stack. For every i, 1 ≤ i ≤ n, letVi = (Si, Λi, Γ, si

0, S
i
f) be a deterministic and

total EFA s.t. L(ei)r = L(Vi). Since we have predicates over the stack, to check whether
the formula ψ is satisfied, we need to know at each step which RVEs are satisfied by
the stack. To this aim, we will compute a SPDS P′ which is a kind of product of P and
the EFAsV1, ...,Vn, where the states of theVi s are stored in the stack of P′. Roughly

speaking, the stack alphabet ofP′ is of the form (γ,
−→
S), where

−→
S =
[
s1, · · · , sn

]
, si ∈ Si

for every i, 1 ≤ i ≤ n, is a vector of states of the EFAsV1, ...,Vn. For every i, 1 ≤ i ≤ n,

let
−→
S (i) denote the ith component of

−→
S . A configuration 〈(p,B), (γm,

−→
S m) · · · (γ0,

−→
S 0)〉 is

consistent iff for every i, 1 ≤ i ≤ n, Vi has a run
−→
S 0(i)

γ0
�B
−→
S 1(i) · · · −−−→S m−1(i)

γm−1
�B
−→
S m(i)

over γ0 · · · γm−1, i.e., the reverse of the stack content γm−1 · · ·γ0. Intuitively, a consis-

tent configuration 〈(p,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 denotes that the stack content is γm · · · γ0

and the runs of the EFAs V1, ...,Vn over γ0 · · · γm−1 reach the states
−→
S m(1), ...,

−→
S m(n),

respectively (note that γ0 · · · γm−1 is the reverse of the stack content γm−1 · · · γ0, this is
why theVi s are s.t. L(ei)r = L(Vi)). For every i, 1 ≤ i ≤ n, a consistent configuration

〈(p,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 satisfies ei under the environment B iff there exists s ∈ S i

f

s.t.
−→
S m(i)

γm
�B s. I.e., whether 〈(p,B), (γm,

−→
S m) · · · (γ0,

−→
S 0)〉 satisfies ei under B or not

depends only on the top of the stack (γm,
−→
S m).

Formally, let
−→S = S1 × · · · × Sn and

−→
S 0 =

[
s1

0, · · · , sn
0

]
. We compute the SPDS

P′ = (P, Γ′, Δ′) as follows: Γ′ = Γ × −→S is the stack alphabet and the set Δ′ of transition
rules are defined as follows:

LTL Model-Checking for Malware Detection 427

1. 〈p1, (γ,
−→
S)〉 Θid

↪→ 〈p2, ε〉 ∈ Δ′ iff 〈p1, γ〉 ↪→ 〈p2, ε〉 ∈ Δ and
−→
S ∈ −→S ;

2. 〈p1, (γ,
−→
S)〉 Θid

↪→ 〈p2, (γ1,
−→
S)〉 ∈ Δ′ iff 〈p1, γ〉 ↪→ 〈p2, γ1〉 ∈ Δ and

−→
S ∈ −→S;

3. 〈p1, (γ,
−→
S)〉 Θ

↪→ 〈p2, (γ2,
−→
S ′)(γ1,

−→
S)〉 ∈ Δ′ iff 〈p1, γ〉 ↪→ 〈p2, γ2γ1〉 ∈ Δ and for every i, 1 ≤

i ≤ n,
−→
S (i)

�i�→ −→S ′(i) ∈ Λi, where Θ = {(B,B) | B ∈ B,∀i : 1 ≤ i ≤ n, (x ∈ �i =⇒ B(x) =
γ1) ∧ (¬y ∈ �i =⇒ B(y) � γ1)}.

Intuitively, the run of P reaches the configuration 〈p1, γm, · · ·γ0〉 and the
runs of the EFAs V1, ...,Vn over the stack word γ0 · · · γm−1 reach the states−→
S m(1), ...,

−→
S m(n), respectively, iff the run of P′ reaches the consistent configuration

〈(p1,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉. If P moves from 〈p1, γm, · · ·γ0〉 to 〈p2, γm−1, · · ·γ0〉

using the rule 〈p1, γm〉 ↪→ 〈p2, ε〉, then the EFAs V1, ...,Vn should be at−−−→
S m−1(1), ...,

−−−→
S m−1(n) after reading the stack word γ0 · · ·γm−2, i.e., P′ moves from

〈(p1,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 to 〈(p2,B), (γm−1,

−−−→
S m−1) · · · (γ0,

−→
S 0)〉. This is ensured by

Item 1. The intuition behind Item 2 is similar.
If P moves from 〈p1, γ

′
mγm−1 · · · γ0〉 to 〈p2, γm+1γm · · · γ0〉 using the rule 〈p1, γ

′
m〉 ↪→

〈p2, γm+1γm〉, then, after reading γ0 · · ·γm, the EFAs V1, ...,Vn should be at−−−→
S m+1(1), ...,

−−−→
S m+1(n) where for every i, 1 ≤ i ≤ n,

−→
S m(i)

γm
�B
−−−→
S m+1(i). I.e.,P′ moves from

〈(p1,B), (γ′m,
−→
S m)(γm−1,

−−−→
S m−1) · · · (γ0,

−→
S 0)〉 to 〈(p2,B), (γm+1,

−−−→
S m+1)(γm,

−→
S m) · · · (γ0,

−→
S 0)〉.

This is ensured by Item 3. The relation Θ = {(B,B) | B ∈ B,∀i : 1 ≤ i ≤
n, (x ∈ �i =⇒ B(x) = γm) ∧ (¬y ∈ �i =⇒ B(y) � γm)} in the transition rule

〈p1, (γ′m,
−→
S m)〉 Θ

↪→ 〈p2, (γm+1,
−−−→
S m+1)(γm,

−→
S m)〉 guarantees that for every i, 1 ≤ i ≤ n,

the state
−−−→
S m+1(i) is the immediate successor of the state

−→
S m(i) over γm under B inVi.

The fact that EFAs are deterministic guarantees that the top of the stack can infer the
truth of the regular predicates. The fact that EFAs are total makes sure that the EFAs
always have a successor state on an arbitrary input and environment.

5.3 Readapting the Reduction underlying Theorem 2

In this subsection, we show how to reduce the SLTPL model-checking problem for
SPDSs to the emptiness problem of SBPDSs by a readaptation of the construction un-
derlying Theorem 2. LetBP′ψ = (P′, Γ′, Δ′′, F) be the GSBPDS s.t.: P′ = P×2cl(ψ), F =
{P×Fφ1Uϕ1 , ..., P×FφkUϕk }, where for every i, 1 ≤ i ≤ k, FφiUϕi = {Φ ⊆ cl(ψ) | φiUϕi � Φ
or ϕi ∈ Φ}, and Δ′′ is the smallest set of transition rules satisfying the following: for

every Φ ⊆ cl(ψ), p ∈ P, (γ,
−→
S) ∈ Γ′:

(β1): if φ = b(x1, ..., xm) ∈ Φ, 〈�p, Φ�, (γ,
−→
S)〉 Θ

↪→ 〈�p, Φ \ {φ}�, (γ,−→S)〉 ∈ Δ′′, where Θ = {(B,B) |
B ∈ B ∧ p ∈ λ(b(B(x1), ...,B(xm)))};

(β2): if φ = ¬b(x1, ..., xm) ∈ Φ, 〈�p, Φ�, (γ,
−→
S)〉 Θ

↪→ 〈�p, Φ \ {φ}�, (γ,−→S)〉 ∈ Δ′′, where Θ = {(B,B) |
B ∈ B ∧ p � λ(b(B(x1), ...,B(xm)))};

(β3) : if φ = φ1 ∧ φ2 ∈ Φ, 〈�p, Φ�, (γ,
−→
S)〉 Θid

↪→ 〈�p, Φ ∪ {φ1, φ2} \ {φ}�, (γ,−→S)〉 ∈ Δ′′;
(β4): if φ = φ1 ∨ φ2 ∈ Φ, 〈�p, Φ�, (γ,

−→
S)〉 Θid

↪→ 〈�p, Φ ∪ {φ1} \ {φ}�, (γ,−→S)〉 ∈ Δ′′ and

〈�p, Φ�, (γ,
−→
S)〉 Θid

↪→ 〈�p, Φ ∪ {φ2} \ {φ}�, (γ,−→S)〉 ∈ Δ′′;
(β5) : if φ = ∃xφ1 ∈ Φ, then:

428 F. Song and T. Touili

(β5.1): if x is not a free variable of any formula in Φ, 〈�p, Φ�, (γ,
−→
S)〉 Θx

↪→ 〈�p, Φ ∪ {φ1} \
{φ}�, (γ,−→S)〉 ∈ Δ′;

(β5.2) : otherwise for every c ∈ D, 〈�p, Φ�, (γ,
−→
S)〉 Θid

↪→ 〈�p, Φ ∪ {φc} \ {φ}�, (γ,−→S)〉 ∈ Δ′, where
φc is φ1 where x is substituted by c;

(β6): if φ = ∀xφ1 ∈ Φ, 〈�p, Φ�, (γ,
−→
S)〉 Θid

↪→ 〈�p, Φ ∪ {φc | c ∈ D} \ {φ}�, (γ,−→S)〉 ∈ Δ′, where φc is
φ1 where x is substituted by c;

(β7): if φ = φ1Uφ2 ∈ Φ, 〈�p, Φ�, (γ,
−→
S)〉 Θid

↪→ 〈�p, Φ ∪ {φ2} \ {φ}�, (γ,−→S)〉 ∈ Δ′′ and

〈�p, Φ�, (γ,
−→
S)〉 Θid

↪→ 〈�p, Φ ∪ {φ1,Xφ} \ {φ}�, (γ,−→S)〉 ∈ Δ′′;
(β8): if φ = φ1Rφ2 ∈ Φ, 〈�p, Φ�, (γ,

−→
S)〉 Θid

↪→ 〈�p, Φ ∪ {φ1, φ2} \ {φ}�, (γ,−→S)〉 ∈ Δ′′ and

〈�p, Φ�, (γ,
−→
S)〉 Θid

↪→ 〈�p, Φ ∪ {φ2,Xφ} \ {φ}�, (γ,−→S)〉 ∈ Δ′′;
(β9): if Φ = {Xφ1, ...,Xφm}, for every 〈p, (γ,−→S)〉 Θ

↪→ 〈p′, ω〉 ∈ Δ′, 〈�p, Φ�, (γ,
−→
S)〉 Θ∩Θid

↪→
〈�p′, {φ1, ..., φm}�, ω〉 ∈ Δ′′;

(β10): if φ = ei ∈ Φ ∩ R, 〈�p, Φ�, (γ,
−→
S)〉 Θ

↪→ 〈�p, Φ \ {φ}�, (γ,−→S)〉 ∈ Δ′′, where Θ = {(B,B) | B ∈
B,∃−→S ′,−→S (i)

γ
�B
−→
S ′(i) ∧ −→S ′(i) ∈ S i

f };
(β11): if φ = ¬ei ∈ Φ s.t. ei ∈ R, 〈�p, Φ�, (γ,

−→
S)〉 Θ

↪→ 〈�p, Φ \ {φ}�, (γ,−→S)〉 ∈ Δ′′, where Θ =

{(B,B) | B ∈ B,∃−→S ′,−→S (i)
γ
�B
−→
S ′(i) ∧ −→S ′(i) � S i

f }.

The intuition behind BP′ψ is similar to the one underlying Theorem 2. P has an execu-

tion π starting from 〈p, γm, ..., γ0〉 s.t. π satisfies ψ under B iff there exist states
−→
S m, ...,

−→
S 0

s.t. 〈(�p, {ψ}�,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 is consistent and BP′ψ has an accepting run from

〈(�p, {ψ}�,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉. Items (β1), ..., (β8) are similar to Items (α1), ..., (α8).

The main differences are Items (β9), (β10) and (β11).
The relation Θ ∩ Θid in Item (β9) ensures that 〈(�p′, {φ1, ..., φm}�,B), ωω′〉 is an

immediate successor of 〈(�p, {Xφ1, ...,Xφm}�,B), (γ,
−→
S)ω′〉 in the run of BP′ψ iff

〈(p′,B), ωω′〉 is an immediate successor of 〈(p,B), (γ,
−→
S)ω′〉 in the corresponding

run of P′, as (B,B) ∈ Θ ∩ Θid implies that (B,B) ∈ Θ. This implies that BP′ψ
has an accepting run from 〈(�p, {Xφ1, ...,Xφm}�,B), (γ,

−→
S)ω′〉 iff P′ has an immedi-

ate successor 〈(p′,B), ωω′〉 of 〈(p,B), (γ,
−→
S)ω′〉 s.t. BP′ψ has an accepting run from

〈(�p′, {φ1, ..., φm}�,B), ωω′〉.
Item (β10) expresses that if ei ∈ Φ, then for every execution π s.t. π(0) =

〈p, γm · · · γ0〉, π |=B
λ Φ iff π |=B

λ Φ \ {ei} and π |=B
λ ei (i.e., (〈p, γm · · · γ0〉,B) ∈ L(ei),

meaning there exist
−−−→
S m+1, ...,

−→
S 0 ∈ −→S s.t. for every j, 0 ≤ j ≤ m,

−→
S j(i)

γ j
�B
−−−→
S j+1(i)

and
−−−→
S m+1(i) ∈ S i

f). This is guaranteed by Item (β10) stating BP′ψ has an accept-

ing run from 〈(�p, Φ�,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 iff BP′ψ has an accepting run from

〈(�p, Φ \ {ei}�,B), (γm,
−→
S m) · · · (γ0,

−→
S 0)〉 and there exists

−−−→
S m+1 ∈ −→S s.t.

−→
S m(i)

γm
�B
−−−→
S m+1(i)

and
−−−→
S m+1(i) ∈ S i

f . The intuition behind Item (β11) is similar to Item (β10). We get that:

Theorem 5. For every (〈p, γm · · · γ0〉,B) ∈ P×Γ∗ ×B, 〈p, γm · · · γ0〉 |=B
λ ψ iff there exist

−→
S m, ...,

−→
S 0 ∈ −→S s.t. 〈(�p, {ψ}�,B), (γm,

−→
S m) · · · (γ0,

−→
S 0)〉 is consistent and is in L(BP′ψ).

LTL Model-Checking for Malware Detection 429

From Proposition 2, Theorem 1 and Theorem 5, we obtain that:

Theorem 6. Given a PDS P = (P, Γ, Δ), a labeling function λ : APD → 2P and a
SLTPL formula ψ, for every (〈p, ω〉,B) ∈ P × Γ∗ × B, whether or not 〈p, ω〉 satisfies ψ

under B can be decided in time O(|clU(ψ)| · |D| · |X| · |P| ·(|Δ|+ |P| · |Γ|)2· |−→S|2 ·23|ψ| · |D|3|X|).

6 Experiments

We implemented our techniques in a tool for malware detection. We use BDDs to com-
pactly represent the relationsΘ. We evaluated our tool on 270 malwares taken from VX
Heavens and 27 benign programs taken from Microsoft Windows XP system. All the ex-
periments were run on Fedora 13 with a 2.4GHz CPU, 2GB of memory. The time limit
is fixed to 20 minutes. Moreover, we compared the performances of our techniques with
SCTPL [19] and LTL with regular valuations [9] (denoted by LTLr) model-checking.
Our tool was able to detect all the malwares. Due to lack of space, Tab. 1 shows
some results. Time and memory are given in seconds and MB respectively. #LOC de-
notes the number of instructions of the assembly program. The result Yes denotes that
the program is detected as a malware, otherwise the result is No. As can be seen in
Tab. 1, in most cases, SLTPL model-checking performs better. The analysis of several
malwares using SCTPL or LTLr model-checking runs out of memory or time, whereas
our tool terminates and is able to detect these malwares. Moreover, using the SCTPL

Table 1. Some Results of Malware Detection

Example #LOC
SLTPL SCTPL LTLr

Time Memory Result Time Memory Result Time Memory Result

V
irus

Akez 264 13.78 59.02 Yes 14.75 15.59 Yes timeout
Alcaul.b 904 9.79 37.40 Yes 26.25 1.08 Yes timeout
Alcaul.c 347 2.05 9.40 Yes 26.52 2.45 Yes 365.53 225.67 Yes
Alcaul.d 837 0.24 0.17 Yes 23.52 20.39 Yes timeout

E
m

ail-w
orm

Kirbster 1261 948.52 1383.02 Yes o.o.m. timeout
Krynos.b 18357 987.22 947.92 Yes o.o.m. timeout
Newapt.B 11703 1120.21 1042.74 Yes o.o.m. timeout
Newapt.F 11771 1045.17 908.35 Yes o.o.m. timeout
Newapt.E 11717 1059.45 970.27 Yes o.o.m. timeout
Mydoom.j 22335 89.66 40.15 Yes 200.41 48.17 Yes timeout
Mydoom.v 5960 10.78 19.03 Yes 66.34 16.49 Yes 1131.00 1010.24 Yes
Mydoom.y 26902 66.77 36.60 Yes 90.00 43.19 Yes timeout

T
rojan

LdPinch.aar 1245 32.03 198.88 Yes 1.66 8.47 Yes timeout
LdPinch.aoq 7688 46.29 234.86 Yes 7.33 10.13 Yes timeout
LdPinch.mj 5952 39.07 199.28 Yes 5.74 8.90 Yes timeout
LdPinch.ld 6609 8.37 13.36 Yes 5.41 4.24 Yes 452.93 410.85 Yes

B
enign

Cmd.exe 35887 109.81 20.00 No o.o.m. timeout
Blastcln.exe 13819 103.87 80.53 No 27.72 6.30 Yes timeout
Regsvr32.exe 1280 7.31 26.85 No 0.48 1.87 Yes 158.06 48.15 No
ipv6.exe 13700 89.14 31.04 No 60.45 3.14 Yes timeout
dplaysvr.exe 6796 35.46 30.39 No 17.12 2.84 Yes timeout
Shutdown.exe 2524 31.69 62.93 No o.o.m. timeout
Regedt.exe 60 0.02 0.02 No 10.62 0.03 Yes 0.02 0.02 No
Java.exe 21868 184.58 27.96 No 78.64 238.77 Yes timeout

430 F. Song and T. Touili

formula Ψ ′wv (described in Section 3.3) causes false alarms when checking 21 benign
programs, whereas using SLTPL we correctly classify these programs as benign. More-
over, our tool was able to detect the well-known malware Flame and to detect several
other malwares that could not be detected by well-known anti-viruses such as Avira,
Avast, Kaspersky, McAfee, AVG, BitDefender, Eset Nod32, F-Secure, Norton, Panda,
Trend Micro and Qihoo 360.

References

1. Babić, D., Reynaud, D., Song, D.: Malware Analysis with Tree Automata Inference. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 116–131. Springer,
Heidelberg (2011)

2. Beaucamps, P., Gnaedig, I., Marion, J.-Y.: Behavior Abstraction in Malware Analysis.
In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G.,
Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 168–182. Springer, Hei-
delberg (2010)

3. Beaucamps, P., Gnaedig, I., Marion, J.-Y.: Abstraction-Based Malware Analysis Us-
ing Rewriting and Model Checking. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 806–823. Springer, Heidelberg (2012)

4. Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M., Lavoie, Y., Tawbi, N.: Static detection
of malicious code in executable programs. In: SREIS (2001)

5. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: Architecture of a Morphological Malware De-
tector. Journal in Computer Virology 5, 263–270 (2009)

6. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Ap-
plication to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

7. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious patterns. In:
12th USENIX Security Symposium (2003)

8. Christodorescu, M., Jha, S., Seshia, S.A., Song, D.X., Bryant, R.E.: Semantics-aware mal-
ware detection. In: IEEE Symposium on Security and Privacy (2005)

9. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations for push-
down systems. Inf. Comput. 186(2) (2003)

10. Esparza, J., Schwoon, S.: A BDD-Based Model Checker for Recursive Programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336. Springer,
Heidelberg (2001)

11. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable Automata over Infinite Alphabets. In:
Dediu, A.-H., Fernau, H., Martı́n-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572.
Springer, Heidelberg (2010)

12. Hodkinson, I., Wolter, F., Zakharyaschev, M.: Monodic Fragments of First-Order Tempo-
ral Logics: 2000-2001 A.D. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS
(LNAI), vol. 2250, pp. 1–23. Springer, Heidelberg (2001)

13. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting Malicious Code by Model
Checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174–187.
Springer, Heidelberg (2005)

14. Kupferman, O., Piterman, N., Vardi, M.Y.: An Automata-Theoretic Approach to Infinite-
State Systems. In: Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp.
202–259. Springer, Heidelberg (2010)

15. Lakhotia, A., Boccardo, D.R., Singh, A., Manacero, A.: Context-sensitive analysis of obfus-
cated x86 executables. In: PEPM (2010)

LTL Model-Checking for Malware Detection 431

16. Lakhotia, A., Kumar, E.U., Venable, M.: A method for detecting obfuscated calls in mali-
cious binaries. IEEE Trans. Software Eng. 31(11) (2005)

17. Singh, P.K., Lakhotia, A.: Static verification of worm and virus behavior in binary executa-
bles using model checking. In: IAW (2003)

18. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for büchi automata with
appplications to temporal logic. Theor. Comput. Sci. 49, 217–237 (1987)

19. Song, F., Touili, T.: Efficient Malware Detection Using Model-Checking. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 418–433. Springer,
Heidelberg (2012)

20. Song, F., Touili, T.: Pushdown Model Checking for Malware Detection. In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 110–125. Springer, Heidelberg (2012)

21. Wang, F., Tahar, S., Mohamed, O.A.: First-Order LTL Model Checking Using MDGs. In:
Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 441–455. Springer, Heidelberg (2004)

22. Xu, Y., Cerny, E., Song, X., Corella, F., Mohamed, O.A.: Model Checking for a First-Order
Temporal Logic Using Multiway Decision Graphs. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 219–231. Springer, Heidelberg (1998)

	LTL Model-Checking for Malware Detection
	Introduction
	Binary Code Modeling
	Malicious Behavior Specification
	Environments, Predicates and Regular Variable Expressions
	The Stack Linear Temporal Predicate Logic
	Modeling Malicious Behaviors Using SLTPL

	LTPL Model-Checking for PDSs
	Symbolic Büchi Pushdown Systems
	From LTPL Model-Checking for PDSs to the Emptiness Problem of SBPDSs

	SLTPL Model-Checking for PDSs
	Extended Finite Automata
	Storing States into the Stack
	Readapting the Reduction underlying Theorem 2

	Experiments
	References

