
Automatic Testing of Real-Time Graphics

Systems

Robert Nagy1, Gerardo Schneider2, and Aram Timofeitchik3

1 Dfind Redpatch, Sweden
2 Department of Computer Science and Engineering,

Chalmers | University of Gothenburg, Sweden
3 DQ Consulting AB, Sweden

ronag89@gmail.com, gerardo.schneider@gu.se, aram.timofeitchik@dqc.se

Abstract. In this paper we deal with the general topic of verification
of real-time graphics systems. In particular we present the Runtime
Graphics Verification Framework (RUGVEF ), where we combine tech-
niques from runtime verification and image analysis to automate testing
of graphics systems. We provide a proof of concept in the form of a
case study, where RUGVEF is evaluated in an industrial setting to ver-
ify an on-air graphics playout system used by the Swedish Broadcasting
Corporation. We report on experimental results from the evaluation, in
particular the discovery of five previously unknown defects.

1 Introduction

Traditional testing techniques are insufficient for obtaining satisfactory code cov-
erage levels when it comes to testing real-time graphical systems. The reason for
this is that the visual output is difficult to formally define, as it is both dynamic
and abstract, making programmatic verification difficult to perform [6]. Inherent
properties of real-time graphics, such as non-determinism and time-based execu-
tion, make errors hard to detect and reproduce. Furthermore, dependencies such
as hardware, operating systems, drivers and other external run-time software
also make the task of testing quite difficult, as witnessed by Id Software during
the initial release of their video-game Rage, where the game suffered problems
with texture artifacts [11]. Even though the software itself performed correctly,
the error still occurred when executed on systems with certain graphic cards and
drivers.

A common method for verifying real-time graphics is through ocular inspec-
tions of the software’s visual output. The correctness is manually checked by
comparing the subjectively expected output with the output produced by the
system. Some disadvantages with this approach are that it requires extensive
working hours, it is repetitive, and it makes regression testing practically inap-
plicable. Moreover, the subjective definition of correctness makes it possible for
some artifacts to be recognized as errors by some testers, but not by others [10].
Furthermore, some errors might not be perceptible in the context of specific tests
thereby making ocular inspections even more prone to human-error.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 463–477, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



464 R. Nagy, G. Schneider, and A. Timofeitchik

In this paper, we present a conceptual model for automatic testing real-time
graphics system, with the aim of increasing the probability of finding defects, and
making software verification more efficient and reliable. The proposed solution is
formalized as the Runtime Graphics Verification Framework (RUGVEF ), based
on techniques from runtime verification and image analysis, defining practices
and artifacts needed to increase the automation of testing. We implemented and
evaluated the framework by using it in the development setting of CasparCG, a
real-time graphics system used by the Swedish Broadcasting Corporation (SVT )
for producing most of their on-air graphics. We also present an optimized im-
plementation of the image quality assessment technique SSIM, which enables
real-time analysis of Full HD video produced by CasparCG. As a result of the
application of RUGVEF to CasparCG we identified 5 previously unknown de-
fects that were not previously detected with existing testing practices at SVT,
and 6 out of 16 known defects that were injected back into CasparCG could be
found. This shows that RUGVEF can indeed successfully complement existing
verification practices by automating the detection of contextual and temporal
errors in graphical systems. Using the framework allows for earlier detection of
defects and enables more efficient development through automated regression
testing. In addition to this, the framework makes it possible to test the software
in combination with its external environment, such as hardware and drivers.

In summary our contributions are: i) The framework RUGVEF for automat-
ing the testing of real-time graphics systems; ii) The implementation of the
framework into a tool, and its application to an industrial case study (Cas-
parCG), finding 5 previously unknown defects; iii) An optimized implementation
of SSIM, an image quality assessment technique not previously applicable to the
real-time setting of CasparCG.

We start with some background in next section, and we outline our conceptual
framework RUGVEF in section 3 . We present our case study in section 4, of
which we show the results in section 5. Related work is presented in section 6.

2 Background

We give here a very short introduction to runtime verification, and provide a
description on some image quality assessment techniques.

Runtime Verification (RV) offers a way for verifying systems as a whole during
their execution [2]. The verification is performed at runtime by monitoring sys-
tem execution paths and states, checking whether any predefined formal logic
rules are being violated. Additionally, RV can be used to verify software in com-
bination with user-based interaction, adding more focus toward user specific
test-cases, which more likely could uncover end-user experienced defects. How-
ever, care should be taken as RV adds an overhead potentially reducing system
performance. This overhead could also possibly affect the time sensitivity of sys-
tems in such way that they appear to run correctly while the monitor is active,
but not after it has been removed, a common problem when checking for e.g.
data-races in concurrent execution [2].



Automatic Testing of Real-Time Graphics Systems 465

(a)

MSE:0 SSIM:1.000

(b)

MSE:306 SSIM:0.928

(c)

MSE:309 SSIM:0.580

(d)

MSE:309 SSIM:0.576

Fig. 1. Image Quality Assessment of distorted images using MSE and SSIM [15]

Image Quality Assessment is used to assess the quality of images or video-
streams based on models simulating the Human Visual System (HVS ) [15]. The
quality is defined as the fidelity or similarity between an image and its reference,
and is quantitatively given as the differences between them. Models of the HVS
describe how different type of errors should be weighted based on their percepti-
bility, e.g. errors in luminance are more perceptible than errors in chrominance
[9]. 1 However, there is a trade-off between the accuracy and performance of
algorithms that are based on such models.

Binary comparison is a high performance method for calculating image fi-
delity, but does not take human perception into account. This could potentially
cause problems where any binary differences found are identified as errors even
though they might not be visible, possibly indicating false negatives.

Another relatively fast method is the Mean Squared Error (MSE), which cal-
culates the cumulative squared difference between images and their references,
where higher values indicate more errors and lower fidelity. An alternative version
of MSE is the Peak Signal to Noise Ratio (PSNR) which instead calculates the
peak-error (i.e. noise) between images and their references. This metric trans-
forms MSE into a logarithmic decibel scale where higher values indicate fewer
errors and stronger fidelity. The MSE and PSNR algorithms are commonly used
to quantitatively measure the performance and quality of lossy compression al-
gorithms in the domain of video processing [6], where one of the goals is to keep
a constant image quality while minimizing size, a so-called constant rate factor
[7]. This constant rate is achieved, during the encoding process, by dynamically
assessing image quality while optimizing compression rates accordingly.

Structural Similarity Index (SSIM) is an alternative measure that puts more
focus on modeling human perception, but at the cost of heavier computations.
The algorithm provides more interpretable relative percentage measures (0.0-
1.0), in contrast to MSE and PSNR, which present fidelity as abstract values
that must be interpreted. SSIM differs from its predecessors as it calculates
distortions in perceived structural variations instead of perceived errors. This
difference is illustrated in Fig. 1, where (b) has a uniform contrast distortion
over the entire image, resulting in a high perceived error, but low structural

1 Luminance is a brightness measure and chrominance is about color information.



466 R. Nagy, G. Schneider, and A. Timofeitchik

Fig. 2. The RUGVEF framework

error. Unlike SSIM, MSE considers (b), (c), and (d) to have the same image
fidelity to the reference (a), but this is clearly not the case due to the relatively
large structural distortions in (c) and (d). Tests conducted have shown that SSIM
provides more consistent results compared toMSE and PSNR [15]. Furthermore,
SSIM is also used in some high end applications as an alternative to PSNR.2

3 The Runtime Graphics Verification Framework

In this section we start by describing the Runtime Graphics Verification Frame-
work (RUGVEF ), for verifying graphics-related system properties. We then state
the prerequisites for testing such systems, and finally, we explain how graphical
content is analyzed for correctness using image quality assessment.

3.1 The RUGVEF Conceptual Model

RUGVEF can be used to enable verification of real-time graphics systems during
their execution. Its verification process is composed of two mechanisms: i) check-
ing of execution paths, and ii) verification of graphical output. Together they
are used to evaluate temporal and contextual properties of the system under test.
Note that the verification can also include its external runtime environment, such
as hardware and drivers.

The verification process, illustrated in Fig. 2, is realized as a monitor appli-
cation that runs in parallel with the tested system. During this process system
and monitor are synchronized through event-based communication where events
are used to identify changes in the system’s runtime state, thereby verifying
the system’s temporal correctness. State transitions should always occur when
the graphical output changes, allowing legal graphical states to be represented
through reference data. These references, either predefined or generated dur-
ing testing using N-version programming, are in turn used for determining the

2 http://www.videolan.org/developers/x264.html

http://www.videolan.org/developers/x264.html


Automatic Testing of Real-Time Graphics Systems 467

correctness of state properties through objective comparisons against graphical
output produced by the system using appropriate image assessment techniques.

As an example let us consider testing a simple video player having three
system control actions (play, pause, and stop), which according to the specifi-
cation change from 3 different states: from Idle to Playing with action play.
From Playing it is possible to go to state Idle with action stop and to Paused

with action pause; and finally from Paused to Playing with action play, and
with stop to state Idle. In this formal definition (the above gives place to a
Finite-State Machine — FSM), transitions are used to describe the consequen-
tiality of valid system occurrences that potentially could affect the graphical
output. Thus, as the video player is launched the monitor application is started
and initialized to the video player’s Idle state, specifying during this state that
only completely black frames are expected. Any graphical output produced is
throughout the verification intercepted and compared against specified refer-
ences, where any mismatches detected correspond to contextual properties being
violated. At some instant, when one of the video player’s controls is used, an
event is triggered, signaling to the monitor that the video player has transitioned
to another state. In this case, there is only one valid option and that is the event
signaling the transition from Idle to Playing state (any other events received
would correspond to temporal properties being violated). As valid transitions
occur, the monitor is updated by initializing the target state, in this case the
Playing state, changing references used according to that state’s specifications.

3.2 Prerequisites

There is a limitation in using comparisons for evaluating graphical output. To
illustrate this consider a moving object being frame-independently rendered at
three different rendering speeds, showing that during the same time period, no
matter what frame rate is used, the object will always be in the same location
at a specific time. The problem is that rendering speeds usually fluctuate, caus-
ing consecutive identical runs to produce different frame-by-frame outputs. For
instance two runs having the same average frame rate but with varying frame-
by-frame results, will make it impossible to predetermine the references that
should be used. For this reason, the rendering during testing must always be
performed in a time-independent fashion. That is, a moving object should al-
ways have moved exactly the same distance between two consecutively rendered
frames, no matter how much time has passed.

3.3 Image Quality Assessment for Analyzing Graphical Output

Analysis of graphical output is required in order to determine whether con-
textual properties of real-time graphics systems have been satisfied. RUGVEF
achieves this by continuously comparing the graphical output against predefined
references. We discuss two separate image quality assessment techniques for mea-
suring the similarity of images: one based on absolute correctness, and the other
based on perceptual correctness.



468 R. Nagy, G. Schneider, and A. Timofeitchik

Absolute correctness is assessed using binary comparison, where images are
evaluated pixel by pixel in order to check whether they are identical. This tech-
nique is effective for finding differences between images that are otherwise diffi-
cult or impossible to visually detect, which could for instance occur as a result
of using mathematically flawed algorithms. However, it is not always the case
that non-perceptible dissimilarities are a problem, requiring in such cases that a
small tolerance threshold is introduced in order to ignore acceptable differences.
One example of this could occur when the monitored system generates graphical
output using a Graphical Processing Unit. based runtime platform, conforming
to the IEEE 754 floating point model3, while its reference generator is run on
a x86 CPU platform, using an optimized version of the same model4, possibly
causing minor differences in what otherwise should be binarily identical outputs.

Perceptual correctness is estimated through algorithms based on models of the
human visual system, and is used for determining whether images are visually
identical. Such correctness makes graphics analysis applicable to the output of
physical video interfaces which compresses images into lossy color spaces [15,9],
with small effects on perceived quality [9], but with large binary differences.

We have evaluated the three common image assessment techniques, MSE,
PSNR, and SSIM, which are based on models of the HVS. Although MSE and
PSNR are the most computationally efficient and widely accepted in the field of
image processing, we have found SSIM to be the best alternative. The reason for
this is that MSE and PSNR are prone to false positives and present fidelity as
abstract values that need to be interpreted. As an example, when verifying the
output from a physical video interface we found that an unacceptably high error
threshold was required in order for a perceptually correct video stream to pass
its verification. SSIM on the other hand was found to be more accurate, also
presenting results as concrete similarity measure given as a percentage (0.0-1.0).
Additionally, both MSE and PSNR have recently received critique due to lacking
correspondence with human perception [15]. The main problem with SSIM is
that current implementations are not efficient.

4 Case Study - CasparCG

In order to evaluate the feasibility of our framework, a case study was performed
in an industrial setting where we created, integrated, and evaluated a verification
solution based on RUGVEF . We first describe CasparCG, and we then show how
testing of CasparCG was improved using RUGVEF .

4.1 CasparCG

The development of CasparCG started in 2005 as an in-house project for on-
air graphics and was used live for the first time during the 2006 Swedish elec-
tions [13]. Developing this in-house system enabled SVT to greatly reduce costs

3 http://developer.download.nvidia.com/assets/cuda/files/

NVIDIA-CUDA-Floating-Point.pdf
4 http://msdn.microsoft.com/en-us/library/e7s85ffb.aspx

http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://msdn.microsoft.com/en-us/library/e7s85ffb.aspx


Automatic Testing of Real-Time Graphics Systems 469

by replacing expensive commercial solutions with a cheaper alternative. During
2008 the software was released under an open-source license, allowing external
contributions to the project. CasparCG 2.0, was released in April 2012 with
the successful deployment in the new studios of the show Aktuellt [12]. During
broadcasts CasparCG renders on-air graphics such as bumpers, graphs, news
tickers, and name signs. All graphics are rendered in real-time to different video
layers that are composed using alpha blending into a single video-stream. The
frame rate is regulated by the encoding system used by the broadcasting facility.

The broad range of features offered by CasparCG allows the replacement
of several dedicated devices during broadcasting (e.g. video servers, character
generators, and encoders), making it a highly critical component as failures could
potentially disrupt several stages within broadcasts. The system is expected to
handle computationally heavy operations during real-time execution, e.g. high
quality deinterlacing5 and scaling of high definition videos. A single program
instance can also be used to feed several video-streams to the same or different
broadcasting facilities, requiring good performance and reliability.

CasparCG is incrementally developed and is mainly tested through code re-
views and ocular inspections. Code reviews are performed continuously through-
out the iterative development, roughly every two weeks and also before any new
version release. Reviews usually consist of informal walkthroughs where either
the full source code or only recently modified sections are inspected, in order
to uncover possible defects. Ocular inspections are performed during the later
stages of the iterative development, when CasparCG is nearing a planned re-
lease. The inspections consist of testers enumerating different combinations of
system functionalities and visually inspecting that the output produced looks
correct.

Whenever an iteration is nearing feature completion, an alpha build is re-
leased, allowing users to test the newly added functionality while verifying that
all previously existing features still work as expected. Once an iteration becomes
feature complete, a beta build is released that further allows users to test sys-
tem stability and functionality. As defects are reported and fixed, additional beta
builds are released until the iteration is considered stable for its final release. Al-
pha and beta releases are viewed, by the development team, as a cost-effective
way for achieving relatively large code coverage levels, where the assumption is
that users try more combinations of features, compared to the in-house testing,
and that the most commonly used features are tested the most.

4.2 Verifying CasparCG with RUGVEF

RUGVEF was integrated into the testing workflow of CasparCG with the aim
of complementing existing practices (particularly ocular inspections), in order
to improve the probability of detecting errors, while maintaining the existing
reliability levels of its testing process. In this section, we present our contribution

5 A process where an interlaced frame consisting of two interleaved frames (fields) are
split into two full progressive frames.



470 R. Nagy, G. Schneider, and A. Timofeitchik

Fig. 3.The verifier is implemented as an output module, running as a part of CasparCG

to the testing of CasparCG, consisting of two separate verification techniques:
local and remote, allowing the system to be verified alternatively on the same and
different machine. We also present our optimized SSIM implementation, used
for real-time image assessment, and a theoretical argumentation on how our
approach is indeed an optimization in relation to a reference implementation [4].

Local Verification. During local verification, the verification process is con-
currently executed as a plugin module inside CasparCG, allowing output to be
intercepted without using middleware or code modifications. Fig. 4.2 illustrates
that the verifier is running as a regular output module inside CasparCG, directly
intercepting the graphical output (i.e. video) and the messages produced.

The main difficulty of verifying CasparCG is to check its output as it is dynam-
ically composed of multiple layers. Consider the scenario where a video stream,
initially composed by one layer of graphics, is verified using references. In this
case, the reference used is simply the source of the graphics rendered. However,
at some point, as an additional layer is added, the process requires a different
reference for checking the stream that now is composed of two graphical sources.
The difficulty, in this case, is to statically provide references for each possible
scenario where the additional layer has been added on top of the other (as this
can happen at any time). As a solution, we instead analyze the graphical output
through a reference implementation that mimics basic system functionalities of
CasparCG (e.g. blending of multiple layers). Using the original source files, the
reference implementation generates references at runtime which are expected to
be binarily equal to the graphical output of CasparCG. The reference implemen-
tation only needs to be verified once, unless new functionality is added, as it is
not expected to change during CasparCG’s development.

Another problem of verifying CasparCG lies in defining the logic of the system,
where each additional layer or command considered would require an exponential
increase in the number of predefined states. For example an FSM representing a
system with two layers would only require half the amount of states compared to
an FSM representing the same system with three layers. In order to avoid such
bloated system definitions, we instead define a generic description of CasparCG
where one state machine represents all layers which are expected to be func-
tionally equal. This allows temporal properties of each layer to be monitored
separately while the reference implementation is used for checking contextual
properties of the complete system.



Automatic Testing of Real-Time Graphics Systems 471

Fig. 4. The remote verification uses two instances of CasparCG

The process in local verification is computationally demanding, affecting the
system negatively during periods of high load, thus making verification inappli-
cable during stress-testing. Another limitation identified was that not all com-
ponents of the system are verifiable; that it is impossible to check the physical
output produced by CasparCG, which could be negatively affected by external
factors (e.g. hardware or drivers). So, in order to more accurately monitor Cas-
parCG, with minimal overhead and including its physical output, we further
extended our implementation to include remote verification.

Remote Verification. During remote verification, the verifier is executed non-
intrusively on a physically different system. Fig. 4 shows this solution, consisting
of two CasparCG instances running on separate machines, where the first in-
stance receives the commands and produces the output, and the second instance
captures the output and forwards it to the RUGVEF verification module.

The main problem of remote verification is that the video card interface of
CasparCG compresses graphical content, converting it from the internal BGRA
color format to the YUV420 color format, before transmitting it between the
machines. These compressions cause data loss, making binary comparisons in-
applicable, instead requiring that the output is analyzed through other image
assessment techniques that are based on the human visual system. In this im-
plementation, we chose to use SSIM, as it seems to be the best alternative for
determining whether two images are perceptually equal. However, the reference
SSIM implementation [4] is only able to process one frame every few seconds,
making real-time analysis of CasparCG’s graphical output impossible (as it is
produced at a minimum rate of 25 frames per second). In what follows we dis-
cuss specific optimizations performed in order to make SSIM applicable to the
RUGVEF verification process of CasparCG.

On the Implementation of SSIM. The main challenge of improving the
implementation of SSIM consisted in achieving the performance that would al-
low the algorithm to be minimally intrusive while keeping up with data rate of
CasparCG. The main bottleneck concerning efficiency in current implementa-
tions of SSIM is the quadratic time complexity, O(N2M2), depending on the
HDTV resolution (N), and on the window size (M) used in the fidelity mea-
surements. In order to improve the performance, we implemented the algorithm
using Single-Instruction-Multiple-Data instructions (SIMD) [8], allowing us to
perform simultaneous operations on vectors of 128 bit values, in this case four
32 bit floating point values using one single instruction. Also, in order to fully



472 R. Nagy, G. Schneider, and A. Timofeitchik

utilize SIMD, we chose to replace the recommended window size of M = 11 in
[15] with M=8, allowing calculations to be evenly mapped to vector sizes of four
elements (i.e. two vectors per row).

Furthermore, we parallelized our implementation by splitting images into sev-
eral dynamic partitions, which are executed on a task-based scheduler, enabling
load-balanced cache-friendly execution on multicore processors [5]. Dynamic par-
titions enable the task-scheduler to more efficiently balance the load between
available processing units [5], by allowing idle processing units to split and steal
sub-partitions from other busy processing units’ work queues. Using all proces-
sors, we are able to achieve a highly scalable implementation.

The final time complexity achieved by our optimized SSIM implementation
is O((N2 (M2+24))/(12p)), where p is the number of available processing units,
allowing SSIM calculations to be performed in real-time on consumer level hard-
ware at HDTV resolutions.

5 Experimental Results

In this section we show: i) The errors found while verifying CasparCG using
RUGVEF , ii) Previously known defects (injected back into CasparCG) we could
detect, iii) The improvements in terms of accuracy and performance of our op-
timized SSIM implementation w.r.t the reference implementation.

5.1 Previously Unknown Defects

Using RUGVEF we were able to detect five previously unknown defects (pre-
sented in the order of their severity, as assessed by the developers), namely:
i) Tinted colors, ii) Arithmetic overflows during alpha blending, iii) Invalid com-
mand execution, iv) Missing frames during looping, v) Minor pixel errors.

Tinted Colors. Using remote verification, we found a defect where a video trans-
mitted by CasparCG’s video interface had slightly tinted colors compared to the
original source (i.e. the reference). The error was caused by an incorrect YUV
to BGRA transformation that occurred between CasparCG and the video inter-
face. Such problems are normally difficult to detect as both the reference and
the actual output looks correct when evaluated separately where differences only
are apparent during direct comparisons.

Arithmetic Overflows During Alpha Blending. Using RUGVEF , we found that
in video streams consisting of multiple layers some small “bad” pixels appear,
due to a pixel rounding defect. This defect caused arithmetic overflows during
blending operations, producing errors as shown in Fig. 5 (b) (seen as blue pig-
mentations6). Since these errors only occur in certain cases and possibly affecting
very few pixels, detection using ocular inspections is a time-consuming process
requiring rigorous testing during multiple runs.

6 In B&W this is seen as the small grey parts in the white central part of the picture.



Automatic Testing of Real-Time Graphics Systems 473

(a) (b) (c)

Fig. 5. Pixel rounding defect causing artifact to appear in image (b), highlighted using
red color (grey in B&W) in (c), which are not visible in the reference (a)

(a) (b) (c)

Fig. 6.The output (b) is perceptually identical to the reference (a) while still containing
minor pixels errors (c)

Invalid Command Execution. Using RUGVEF , we found that the software in
certain states accepted invalid commands. For instance it was possible to stop
and pause images while in the Idle state and to pause while in the Paused state.
Executing commands on non-existing layers caused unnecessary layers to be
initialized, consuming resources in the process. Without RUGVEF , this defect
would only have been detected after long consecutive system runs, where the
total memory consumed would be large enough to be noticed. Furthermore, the
execution of these invalid commands produced system responses that indicated
successful executions to clients (instead of producing error messages), probably
affecting both clients and developers in thinking that this behavior was correct.

Missing Frames During Looping. Using RUGVEF , we detected that frames were
occasionally skipped when looping videos. The cause of this defect is still un-
known and has not been previously detected due to the error being virtually in-
visible, unless videos are looped numerous times (since only one frame is skipped
during each loop).

Minor Pixel Errors. Using local verification, we detected that minor pixel devi-
ations occurred to the output of CasparCG that sometimes caused pixel errors
of up to 0.8%. These errors are perceptually invisible and could only be detected
by using the binary image assessment technique. Fig. 6 shows an example of



474 R. Nagy, G. Schneider, and A. Timofeitchik

Table 1. Previously fixed defects that were injected back into CasparCG in order to
test whether they are detectable using RUGVEF

Rev Description Found

N/A Flickering output due to faulty hardware. yes

2717 Red and blue color channels swapped during certain runs. yes

2497 Incorrect buffering of frames for deferred video input. no

2474 Incorrect calculations in multiple video coordinate transformations. no

2410 Frames from video files duplicated due to slow file I/O. yes

2119 Configured RGBA to alpha conversion sometimes not occurring. yes

1783 Missing alpha channel after deinterlacing. yes

1773 Incorrect scaling of deinterlaced frames. no

1702 Video seek not working. no

1654 Video seek not working in certain video file formats. no

1551 Incorrect alpha calculations during different blending modes. no

1342 Flickering video when rendering on multiple channels. yes

1305 De-interlacing artifacts due to buffer overflows. no

1252 Incorrect wipe transition between videos. no

1204 Incorrect interlacing using separate key video. no

1191 Incorrect mixing to empty video. no

such a case, where the output in (b) looks identical to the reference in (a) but
where small differences have been detected (c).

5.2 Previously Known Defects

In order to evaluate the efficiency of our conceptual model, we injected several
known defects into CasparCG and tested whether these could be found using
RUGVEF . The injected defects were mined from the subversion log of CasparCG
[1] by inspecting the last 12 months of development, scoping the large amount of
information while still providing enough relevant defects. In table 1, we present
a summary of the gathered defects, where the first column contains the revision
id of the log entry, the second a short description of the defect, and the third
column indicates whether the defects were possible to detect using RUGVEF .

Using RUGVEF we were able to detect 6 out of 16 defects that were injected
back into CasparCG. The defects that could not be found were due to limited
reference implementation, which only partially replicated existing functionalities
of CasparCG. For instance, our reference implementation did not include the
scaling of frames or the wipe transition functionalities which made the defects,
found in revision 1773 and 1252 respectively, impossible to detect as appropriate
references could not be generated.

5.3 Performance of the Optimized SSIM Implementation

We performed our speed improvement benchmarks of our optimized SSIM imple-
mentation on a laptop computer having 8 logical processing units, each running



Automatic Testing of Real-Time Graphics Systems 475

Table 2. The optimized SSIM implementation compared against a reference imple-
mentation at different video resolutions

Implementation 720x576 (SD) 1280x720 (HD) 1920x1080 (Full HD)

Optimized 129 fps 55 fps 25 fps

Reference 1.23 fps 0.55 fps 0.24 fps

(a)

R: 1.000 O: 1.000

(b)

R: 0.719 O: 0.714

(c)

R: 0.875 O: 0.875

(d)

R: 0.699 O: 0.686

Fig. 7. The results of performing SSIM calculation using our optimized implementation
(O) and the reference implementation (R) for an undistorted image (a), noisy image
(b), blurred image (c), and an image with distorted levels (d)

at 2.0 GHz7(which is considerably slower than the target server level computer).
Each benchmark consisted of comparing the optimized SSIM implementation
against the original implementation using the three most common video reso-
lutions, standard definition (SD), high definition (HD), and full high definition
(Full HD), by measuring the average time for calculating SSIM for 25 randomly
generated images. The results of our benchmarks are presented in table 2, show-
ing that our optimized SSIM implementation is up to 106 times faster than the
original implementation. This increase is larger than the theoretically expected
increase of 80 times (calculated using our final time complexity in section 4.2),
since our optimized SSIM implementation performs all calculations in a sin-
gle pass, thereby avoiding the memory bottlenecks which existed in the original
SSIM implementation. Using our implementation, we were able to analyze the
graphical output of CasparCG in real-time for Full HD streams.

Additionally, we also performed an accuracy test by calculating SSIM for
different distortions in images, comparing the results of our optimized SSIM
implementation with the results of the original implementation. In Fig. 7, we
present the values produced by our optimized SSIM implementation “O” and
the values produced by the original implementation “R” for the following four
types of image distortions: undistorted (a), noisy (b), blurred (c), and distorted
levels (d). The result shows that the accuracy of both SSIM implementations is
nearly identical, as the differences between the values are very small.

7 Intel Core i7-2630QM.



476 R. Nagy, G. Schneider, and A. Timofeitchik

6 Related Work

The following works address issues related to the testing of graphics: the tool
Sikuli [16], that uses screenshots as references for automating testing ofGraphical
User Interfaces (GUI s); the tool PETTool [3], which (semi-) automates the
execution of GUI based test-cases through identified common patterns; and a
conceptual framework for regression testing graphical applications [6]. When it
comes to verifying graphical output, the framework in [6] uses a similar approach
to RUGVEF . However, the tool in [6] focuses on testing system features in
isolation, where each test is run separately and targets specific areas of a system
(similarly to unit tests). Furthermore, we have also applied our framework to an
industrial case study, while there are no indications that something similar has
been done in [6], making it difficult to make a detailed comparison.

Finally, the runtime verification tool LARVA [2] was used as inspiration source
for developing the runtime verification part of RUGVEF .

7 Final Discussion

In this paper we have presented RUGVEF , a framework for the automatic test-
ing of real-time graphical systems. RUGVEF combines runtime verification for
checking temporal properties, with image analysis, where reference based im-
age quality assessment techniques are used for checking contextual properties.
The assessment techniques presented were based on two separate notions of
correctness: absolute and perceptual. We also provided a proof of concept, in
the form of a case study, where we implemented and tested RUGVEF in the
industrial setting of CasparCG, an on-air graphics playout system developed
and used by SVT. The implementation included two separate verification tech-
niques, local and remote, used for verifying the system locally on the same ma-
chine with maximal accuracy, and remotely on a different machine, with minimal
runtime intrusiveness. Additionally, remote verification allowed the system to be
tested as a whole, making it possible to detect errors in the runtime environment
(e.g. hardware and drivers). We also created an optimized SSIM implementa-
tion that was used for determining the perceptual difference between images,
enabling real-time analysis of Full HD video output produced by CasparCG.

When verifying CasparCG with RUGVEF we identified 5 previously unde-
tected defects. We also investigated whether previously known defects could be
detected using our tool, showing that 6 out of 16 injected defects could be found.
Lastly, we measured the performance of our optimized SSIM implementation,
demonstrating a performance gain of up 106 times compared to the original
implementation and a negligible loss in accuracy.

Our results show that RUGVEF can successfully complement existing verifi-
cation practices by automating the detection of contextual and temporal errors
in graphical systems. Using our framework allows for earlier detection of defects
and enables more efficient development through automated regression testing.
Unlike traditional testing techniques, RUGVEF can also be used to verify the



Automatic Testing of Real-Time Graphics Systems 477

system post deployment. The implementation of the RUGVEF tool requires
CasparCG to run but it should be possible to adapt and apply implementation
to other systems as well.8

Acknowledgment. We would like to thank Peter Karlsson for his valuable
feedback and SVT for giving us the opportunity to develop this work.

References

1. CasparCG (2008), https://casparcg.svn.sourceforge.net/svnroot/casparcg
2. Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer monitoring of real-time

java programs (tool paper). In: SEFM, pp. 33–37. IEEE Comp. Soc. (2009)
3. Cunha, M., Paiva, A.C.R., Ferreira, H.S., Abreu, R.: PETTool: A pattern-based

GUI testing tool. In: ICSTE 2010, vol. 1, pp. 202–206 (2010)
4. Distler, T.: Image quality assessment (IQA) library (2011),

http://tdistler.com/projects/iqa

5. Farnham, K.: Threading building blocks scheduling and task stealing: Intro-
duction (August 2007), http://software.intel.com/en-us/blogs/2007/08/13/
threading-building-blocks-scheduling-and-task-stealing-introduction/

6. Fell, D.: Testing graphical applications. Embedded Sys. Design 14(1), 86 (2001)
7. Li, X., Cui, Y., Xue, Y.: Towards an automatic parameter-tuning framework for

cost optimization on video encoding cloud. Int. J. Digit. Multim. Broadc. (2012)
8. Microsoft. Streaming SIMD extensions, SSE (2012),

http://msdn.microsoft.com/en-us/library/t467de55.aspx

9. Murching, A.M., Woods, J.W.: Adaptive subsampling of color images. In:
ICIP 1994, vol. 3, pp. 963–966 (November 1994)

10. Myers, G.J., Sandler, C.: The Art of Software Testing, 2nd edn. John Wiley &
Sons (2004)

11. Sharke, M.: Rage PC launch marred by graphics issues (October 2011),
http://pc.gamespy.com/pc/id-tech-5-project/1198334p1.html

12. S.B.C. (SVT). National news: Aktuellt & Rapport, http://www.casparcg.com/
case/national-news-aktuellt-rapport

13. S.B.C. (SVT). Swedish election 2006 (2006), http://www.casparcg.com/

case/swedish-election-2006

14. Timofeitchik, A., Nagy, R.: Verification of real-time graphics systems. Master’s
thesis, Chalmers University of Technology, Gothenburg, Sweden (May 2012)

15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
From error visibility to structural similarity. IEEE Trans. on Image Proc. 13(4),
600–612 (2004)

16. Yeh, T., Chang, T.-H., Miller, R.C.: Sikuli: using GUI screenshots for search and
automation. In: UIST 2009, pp. 183–192. ACM (2009)

8 The project can be downloaded from runtime-graphics-verification.

googlecode.com. See [14] for an extended version of the paper.

https://casparcg.svn.sourceforge.net/svnroot/casparcg
http://tdistler.com/projects/iqa
http://software.intel.com/en-us/blogs/2007/08/13/threading-building-blocks-scheduling-and-task-stealing-introduction/
http://software.intel.com/en-us/blogs/2007/08/13/threading-building-blocks-scheduling-and-task-stealing-introduction/
http://msdn.microsoft.com/en-us/library/t467de55.aspx
http://pc.gamespy.com/pc/id-tech-5-project/1198334p1.html
http://www.casparcg.com/case/national-news-aktuellt-rapport
http://www.casparcg.com/case/national-news-aktuellt-rapport
http://www.casparcg.com/case/swedish-election-2006
http://www.casparcg.com/case/swedish-election-2006
file:runtime-graphics-verification.googlecode.com
file:runtime-graphics-verification.googlecode.com

	Automatic Testing of Real-Time Graphics Systems
	Introduction
	Background
	The Runtime Graphics Verification Framework
	The RUGVEF Conceptual Model
	Prerequisites
	Image Quality Assessment for Analyzing Graphical Output

	Case Study - CasparCG
	CasparCG
	Verifying CasparCG with RUGVEF

	Experimental Results
	Previously Unknown Defects
	Previously Known Defects
	Performance of the Optimized SSIM

	Related Work
	Final Discussion
	References





