
Polyglot: Systematic Analysis

for Multiple Statechart Formalisms�

Daniel Balasubramanian1, Corina S. Păsăreanu2, Gábor Karsai1,
and Michael R. Lowry1

1 Vanderbilt University
2 Carnegie Mellon Silicon Valley

3 NASA Ames
{daniel,gabor}@isis.vanderbilt.edu,

{corina.s.pasareanu,michael.r.lowry}@nasa.gov

Abstract. Polyglot is a tool for the systematic analysis of systems
integrated from components built using multiple Statechart formalisms.
In Polyglot, Statechart models are translated into a common Java repre-
sentation with pluggable semantics for different Statechart variants. Poly-
glot is tightly integrated with the Java Pathfinder verification tool-set,
providing analysis and test-case generation capabilities. The tool has been
applied in the context of safety-critical software systems whose interacting
components were modeled using multiple Statechart formalisms.

Keywords: Statecharts, symbolic execution, model checking.

1 Introduction and Tool Overview

Polyglot is a unified environment in which multiple variants of Statecharts [1],
a popular modeling formalism for the dynamics of reactive systems, can be exe-
cuted and verified against properties. The work on Polyglot has been motivated
by large programs such as human space exploration, that involve multiple sys-
tems that interact via safety-critical protocols. These systems have been designed
using different Statechart formalisms to build models from which code is auto-
matically generated. Determining the impact of using different formalisms on
the reliability and safety of such model-based software has been a daunting task
with little prior tool support available.

Polyglot performs the analysis of the different models (e.g. expressed in Mat-
lab Stateflow or Rational Rhapsody) by translating them to a common inter-
mediate representation, which is then translated into Java code that represents
the “structure” of the model (see Figure 1). The semantics are provided as sepa-
rate “pluggable” modules. Currently, Polyglot includes modules that implement
the semantics of Matlab Stateflow, Rational Rhapsody, and UML Statemachines;
the framework can be extended easily with other Statechart semantics. The Java

� The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 523–529, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



524 D. Balasubramanian et al.

Rhapsody

IMPORT
Simulink/Stateflow

Pluggable Semantics

Generic Execution Environment

UML Rhapsody

State machine model in Java

EXPORT

Java Pathfinder

Stateflow

Data interface

Modeling / 
Intermediate Representation

(1) (2)

(3)

(4)
(5)

Fig. 1. The Polyglot tool

code representing the structure of the model is combined with one of these se-
mantic modules, resulting in an executable component. We have also developed
a formal description for the various Statecharts semantics using the structural
operational semantics formalism (SOS) [2] to provide confidence in our imple-
mentation. Properties of interest are expressed using specification patterns [3]
which are automatically translated into checking code similar to observer au-
tomata [4]. The analysis is performed using Java Pathfinder (JPF) [5]. JPF
is a mature open-source tool-set for the verification of Java bytecode, that in-
corporates model checking and powerful test-case generation (i.e. the symbolic
execution tool Symbolic PathFinder – SPF [6]) and compositional verification
capabilities [7]. Polyglot is written in Java and it is freely available from [8].

The clear separation between the model structure and the different semantics
provides several advantages. First, it provides the basis for analyzing interacting
models that operate under different semantics. This is crucial to finding interop-
erability and interface errors early in the design phase, since e.g. previous findings
show that the majority of errors in NASA’s Apollo and Skylab software were
interface errors [9]. Furthermore, this approach allows users to verify whether
model properties are preserved across different variants of Statecharts, ensuring
that there are no misunderstandings in requirements and design development
due to semantical differences. Moreover, Polyglot allows a user to understand
and analyze the behavior of models across different tools in a single framework.

Verification and validation techniques exist for several individual modeling for-
malisms, and supporting tools offer features such as test-input generation and
model checking (see below). However, existing modeling languages and analysis
tools are limited to a single Statechart formalism and have limited verifica-
tion capabilities. What distinguishes Polyglot from other related approaches is
its extensibility both in terms of Statechart semantics that are supported (via
“pluggable” semantics) and analyses that can be performed, via the extensible
JPF verification framework or custom analysis.

Related Tools. The analysis of Simulink/Stateflow models is supported by
commercial tools such as Mathworks’ Design Verifier, used for model checking
and test case generation, and Reactive System’s Reactis and T-VEC’s tester,
used for test generation and coverage. Similarly, for UML Statecharts, there are



Polyglot: Systematic Analysis for Multiple Statechart Formalisms 525

a wide variety of research tools. However, we believe that the ability to analyze
multiple semantics in one environment is a major benefit to our approach.

Polyglot is similar to the heterogeneous model analysis from [10], which is
based on a common “inframodel” and a set of rules describing the semantics
and interactions between multiple formalisms. The work is concerned with high-
level model descriptions and it would take considerable effort to use those rules
to capture the semantic details for the Statecharts that are the focus here. Also
that work does not address property preservation under different semantics.

The Ptolemy environment [11] is a laboratory for experimenting with different
models of computation for component based systems. Ptolemy implements poly-
morphic componentswhose behavioral semantics depend on an “execution engine”
(“director” in Ptolemy) similar to our “pluggable semantics”. Our work addresses
different Statechart variants and formal semantics with particular focus on model
checking and systematic test case generation, while Ptolemy’s goal is simulation.

The parametric semantics from [12–14] provide powerful semantic frameworks
for many Statecharts variants as well as process algebras. While quite flexible,
they can not fully capture the behavior of any of the three notations considered
here (see [15] for details).

2 Design Choices and Extensions

Design Choices. We chose Java as the common language to represent and ana-
lyze Statecharts for several reasons. First, we needed an executable representation
for the models, to allow for quick validation and debugging. Java has a precise,
clear semantics, well-understood by many, so implementing a concise simple exe-
cution engine for the Statechart variants (that is actually readable) is a good, prag-
matic approach to defining semantics. We also wanted a modular and extensible
design for our framework, to allow for easy integration of new semantic variants.
Java is an ideal language for this purpose. Furthermore, we chose Java to leverage
the model checking and symbolic execution capabilities from JPF for systematic
analysis, automated test case generation (with SPF) and coverage measuring.

We also note that the Statechart variants have large action languages. Features
like complex data types and function states, along with transitions containing
guards and actions that use these types and functions, would be difficult to repre-
sent in simpler modeling languages, e.g. satisfiability modulo theories (SMT) for-
mulas that can be solved with off-the-shelf solvers. On the other hand, there is a
straightforwardmapping frommostaction-language features into a similar concept
in Java.

We have designed the generated code and semantic modules so that they
work together to provide a clean input-output interface to the environment.
This interface allows us to simulate the models and also to connect them to
JPF, with JPF driving the execution non-deterministically or symbolically.

Extensions. The integration of Polyglot with JPF enables us to take advantage
of the optimized analysis techniques that are already provided by JPF. To further
improve the performance of Statechart analysis in Polyglot, we have experimented



526 D. Balasubramanian et al.

with two techniques [16]. The first is a multithreaded custom symbolic execution
engine for Polyglot, while the second technique is the application of partial eval-
uation to optimize the generated Polyglot code with respect to particular models
and semantics. We note that the design of Polyglot, which decouples the semantic
modules from the “structure” of a Statechart model, lends itself well to a multi-
threaded implementation.

Polyglot can be used as described above to execute and analyze both in-
dividual models and also systems with a simple communication that matches
Statechart semantics (i.e. event broadcast). This mechanism is insufficient for
components that execute in parallel and communicate asynchronously. The prob-
lem could be addressed by modeling the communication protocol itself as another
Statechart and composing it with the other models. However this may be ineffi-
cient, as the protocols can be very large. We have therefore explored extending
Polyglot with features not inherent to the basic Statecharts paradigm. These
include a connector mechanism for communication and a scheduling framework
for sequencing the execution of individual components [17].

Polyglot comes with a library of connectors modeling lossless FIFO com-
munication. Instead of reading data from or sending data directly to another
component, data is read from or written to a connector. Other communicat-
ing mechanisms, such as lossy communication and non-FIFO message delivery,
can be easily incorporated. The scheduler is responsible for ordering the com-
ponent execution and for invoking the property checking. We have developed a
generic scheduler that can be instantiated with different scheduling mechanisms,
e.g. non-deterministic, priority-based, calendar-based, etc. By default, Polyglot
uses a non-deterministic scheduler. Currently, it is the responsibility of the user
to manually link the components via the connector and scheduling mechanism.
We intend to automate the process using the Generic Modeling Environment
(GME) [18], a graphical tool that already supports our intermediate represen-
tation and in which we can describe a system’s architecture and automatically
generate the code for connector and scheduler instances.

3 Tool Usage

Polyglot has been applied to medium-sized models of flight software, including
an example modeling a component from NASA/JPL’s Mars Exploration Rovers
(MER) [15].TheMERsoftware consists of aResourceArbiter and several user com-
ponents, serving specific applications, such as imaging, controlling the robot arm,
communicating with earth, and driving. The arbiter moderates access to shared
resources, preventing potential conflicts between resource requests and enforcing
priorities; e.g., a communication session with Earth can not be started while the
rover is driving. Each user has 2 pseudostates, 4 atomic states, 1 compound state
and 9 transitions (259 LOC in the Java representation), while the arbiter has 33
pseudostates, 15 atomic states, 2 orthogonal states and 58 transitions (1788 LOC).
Polyglot was used for checking safety properties and generating test cases for this
model, where the semantics of User 1 was changed from Stateflow into UML and



Polyglot: Systematic Analysis for Multiple Statechart Formalisms 527

Table 1. Experimental results

Semantics, Seq. size Total # Test Cases Property Memory, Time

U1 Stateflow, 4 125 true 20 MB, 43 s

U1 Stateflow, 5 412 true 22 MB, 2 m 04 s

U1 Stateflow, 6 1343 true 24 MB, 6 m 46 s

U1 UML, 4 57 false 21 MB, 21 s

U1 UML, 5 155 false 21 MB, 53 s

U1 UML, 6 579 false 23 MB, 2 m 50 s

U1 Rhapsody, 4 57 false 21 MB, 21 s

U1 Rhapsody, 5 155 false 21 MB, 55 s

U1 Rhapsody, 6 579 false 23 MB, 2 m 45 s

Rhapsody. Table 1 shows the results for analyzing the models with increased num-
ber of time steps, corresponding to sequences of sizes 4, 5 and 6.

The property holds for the Stateflow models, but it fails when we change the
semantics of one user to UML or Rhapsody. This is due to a semantic difference
between UML and Stateflow (outer transitions have higher priority over inner
transitions in Stateflow, but have lower priority in UML and Rhapsody). This
semantic difference is also reflected in the different number of test cases. Note
that the results for UML and Rhapsody are practically identical (since their
semantic differences are not exposed by the analyzed models).

The feedback produced at the Java-level has the form of test sequences that
have been used as inputs to drive the simulation of the models in the original
modeling environments. The generated test sequences can also be used for testing
the code that is generated from the models.

Polyglot has been used also to analyze models representing the interaction be-
tween the Ares launch vehicle and the Orion Crew Exploration Vehicle [17]. The
Ares-Orion communicationduring abortwas formulatedasapropertyderived from
the official flight software design documents and the software requirements specifi-
cation available for Ares I. The analysis confirmed problems suspected by the engi-
neer who developed themodel, who had already submitted a request for a change to
the Ares I design document. Since then, the design has changed to reduce the com-
mand echo dependency because of a bit-rate limitation. The effects of that change
have not yet been investigated, but our tool can help answer this for the future.

4 Conclusion

We have described Polyglot, a tool for the systematic analysis of model-based
software written with multiple Statechart formalisms. The tool has been applied
to the analysis of safety-critical systems whose interacting components were
modeled using multiple Statechart formalisms. We plan to further expand and
robustify the tool and use it for the analysis of the ground system in the GOES-R
project [19]. We also plan to explore the compositional techniques from JPF [7]



528 D. Balasubramanian et al.

for the component-based analysis of models in Polyglot. As model-driven devel-
opment is increasingly used in a diverse way for the design and implementation
of safety and mission critical systems, we believe that our tool will provide a key
capability for the verification and validation of such software.

Acknowledgments. This work has been supported in part by NASA under
Cooperative Agreement NNX09AV58A. The authors would also like to thank
Michael Whalen and Tom Pressburger for valuable discussions and feedback.

References

1. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3) (June 1987)

2. Plotkin, G.D.: A structural approach to operational semantics. Technical Report
DAIMI FN-19, Comp. Sci. Dept. Aarhus University, Denmark (1981)

3. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE (1999)

4. Balasubramanian, D., Pap, G., Nine, H., Karsai, G., Lowry, M.R., Pasareanu,
C.S., Pressburger, T.: Rapid property specification and checking for model-based
formalisms. In: International Symposium on Rapid System Prototyping (2011)

5. Java pathfinder, http://babelfish.arc.nasa.gov/trac/jpf
6. Păsăreanu, C.S., Rungta, N.: Symbolic PathFinder: Symbolic execution of Java

bytecode. In: Proceedings of ASE, pp. 179–180 (2010)
7. Giannakopoulou, D., Păsăreanu, C.S.: Interface Generation and Compositional

Verification in JavaPathfinder. In: Chechik, M., Wirsing, M. (eds.) FASE 2009.
LNCS, vol. 5503, pp. 94–108. Springer, Heidelberg (2009)

8. Polyglot, https://wiki.isis.vanderbilt.edu/MICTES/index.php/Publications
9. Hamilton, M.: The heart and soul of apollo: Doing it right the first time. In: Proc.

7th International Military and Aerospace Programmable Logic Devices (MAPLD)
Conference (2004)

10. Pezzè, M., Young, M.: Constructing multi-formalism state-space analysis tools:
Using rules to specify dynamic semantics of models. In: ICSE (1997)

11. Eker, J., Janneck, J., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Sachs, S., Xiong, Y.:
Taming heterogeneity - the ptolemy approach. Proc. of IEEE 91(1) (2003)

12. Esmaeilsabzali, S., Day, N.A., Atlee, J.M., Niu, J.: Big-step semantics. Techni-
cal Report CS-2009-05, David R. Chariton School of Computer Science, Univ. of
Waterloo, Ontario, Canada N2l 3G1 (2009)

13. Esmaeilsabzali, S., Day, N.A.: Prescriptive Semantics for Big-Step Modelling Lan-
guages. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp.
158–172. Springer, Heidelberg (2010)

14. Niu, J., Atlee, J.M., Day, N.A.: Template semantics for model-based notations.
IEEE Trans. Software Eng. 29(10), 866–882 (2003)

15. Balasubramanian, D., Pasareanu, C.S., Whalen, M.W., Karsai, G., Lowry, M.R.:
Polyglot: modeling and analysis for multiple statechart formalisms. In: ISSTA
(2011)

http://babelfish.arc.nasa.gov/trac/jpf
https://wiki.isis.vanderbilt.edu/MICTES/index.php/Publications


Polyglot: Systematic Analysis for Multiple Statechart Formalisms 529

16. Balasubramanian, D., Pasareanu, C.S., Karsai, G., Lowry, M.R., Whalen, M.W.:
Improving symbolic execution for statechart formalisms. In: MODEVVA (2012)

17. Balasubramanian, D., Păsăreanu, C.S., Biatek, J., Pressburger, T., Karsai, G.,
Lowry, M., Whalen, M.W.: Integrating Statechart Components in Polyglot. In:
Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 267–272.
Springer, Heidelberg (2012)

18. Dubey, A., Karsai, G., Mahadevan, N.: A component model for hard real-time
systems: Ccm with arinc-653. Softw., Pract. Exper. 41(12), 1517–1550 (2011)

19. Goes-r, http://www.goes-r.gov

http://www.goes-r.gov

	Polyglot: Systematic Analysis for Multiple Statechart Formalisms
	Introduction and Tool Overview
	Design Choices and Extensions
	Tool Usage
	Conclusion
	References





