BULL: A Library for Learning Algorithms
of Boolean Functions*

Yu-Fang Chen and Bow-Yaw Wang

Academia Sinica, Taiwan
http://bull.iis.sinica.edu.tw/

Abstract. We present the tool BULL (Boolean fUnction Learning Li-
brary), the first publicly available implementation of learning algorithms
for Boolean functions. The tool is implemented in C with interfaces to
C++, JAVA and OCAML. Experimental results show significant advan-
tages of Boolean function learning algorithms over all variants of the L*
learning algorithm for regular languages.

1 Introduction

BULL is the first publicly available implementation of learning algorithms for
Boolean functions. Three algorithms are implemented in the library. The classical
CDNF algorithm infers Boolean functions over a fixed number of variables. The
incremental CDNF+ and CDNF++ algorithms infers Boolean functions over an
indefinitely number of variables. The library is implemented in C with C++,
JAVA, and OCAML interfaces. Sample codes of C, C++, JAVA, and OCAML
are distributed with the library. Users can adopt BULL by modifying them.

What Is It?. Learning algorithms for Boolean functions can be viewed as an
efficient procedure to generate a target Boolean function only known to a teacher.
This type of learning algorithms assume a teacher who answers queries about
the target Boolean function. The learning algorithms acquire information from
the answers to queries and organize them in a systematic way. In the worst case,
learning algorithms will infer a target Boolean function within a polynomial
number of queries in the CNF and DNF formula sizes of the target function.

Learning in Formal Verification. Since the work in [8], algorithmic learning
has been applied to formal verification techniques such as specification synthe-
sis [8], automated compositional verification [5], and regular model checking [6].
Most applications are based on the L* automata learning algorithm for regular
languages. The learning algorithm enumerates states explicitly. Its applications
are hence inherently explicit [5], or use explicit automata as implicit representa-
tions of state spaces [6].

* The project was supported in part by the National Science Council of Taiwan project
no. NSC-101-2221-E-001-006 and no. NSC-101-2221-E-001-007.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 537-p22] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://bull.iis.sinica.edu.tw/

538 Y.-F. Chen, B.-Y. Wang

Why Use Boolean Learning. Implicit algorithms (e.g., SAT-based model
checking) can greatly improve the capacity of various verification techniques.
Similar improvements have also been reported in applications of the CDNF learn-
ing algorithm for Boolean functions. In [3], the learning algorithm is adopted to
infer implicit contextual assumptions in automated compositional reasoning. It
is shown that learning implicitly can tackle certain hard problems unattainable
by traditional explicit algorithms. The CDNF algorithm is also applied to loop
invariant generation. The learning-based framework can be much more efficient
than conventional static analysis algorithms [7].

For regular languages, the learning algorithms are available in veteran tools
(such as libalf [1] and learnlib [ITJ10J9]). Implementations of learning algorithms
for Boolean functions however are still missing. Since it would take a considerable
amount of time to understand and implement learning algorithms for Boolean
functions, lack of publicly available tools could be an obstacle to develop related
techniques in the research community. In order to lower the barrier to entry, we
decide to develop the BULL library.

The Position of the Paper. The Boolean learning project starts in 2009
and since then we tested different variants of the algorithms and data struc-
tures. Several of them indeed dramatically improved the performance, e.g., non-
membership queries are introduced partly for performance reasons. However,
since boolean learning is a new technique to most people in the community. We
decided to spend the pages for a general introduction instead of technical details.

2 The BULL Library

Figure [Ml shows the architecture of the

Learning OCaml e BULL library. The core library con-
Algorithms c Applications tains three learning algorithms imple-
_CDNF nteriace em. ry. .

[] ‘%’ mented in C. They are the CDNF [2],
o tertace | [FonMem Gn] the CDNF+ [4], and the CDNF 4+ [4]
AR algorithms. The CDNF algorithm as-

sumes that the number of variables in

the target Boolean function is known.

Fig. 1. System Architecture The CDNF+ and the CDNF++ algo-

rithms do not have this assumption.

In addition to the learning algorithms, we also provide C++, JAVA (via JNI),
and OCaml interfaces.

2.1 How to Use the Package

In order to adopt the learning algorithms in BULL, users have to play the teacher
and answer queries posed by the algorithms. For the sake of presentation, let us as-
sume that f(z,y, z) = (xA—y)V(xAz) is the target Boolean function over variables
x,y, and z. Consider the following sample queries from the learning algorithms:

BULL: A Library for Learning Algorithms of Boolean Functions 539

1. A membership query on a partial assignment {(z, false)}. On a membership
query, the teacher checks if the target is satisfiable under the given assign-
ment. Here the teacher answers no since f(false,y, z) is not satisfiable.

2. A non-membership query on a parital assignment {(y, true)}. On a non-
membership query, the teacher checks if the negation of the target is satisfi-
able under the assignment. For this example, the teacher answers yes.

3. An equivalence query on a conjecture f’'(z,y,z) =z Ay. On an equivalence
query, the teacher answer yes if the given formula is equivalent to the target.
Otherwise, she returns an assignment as a counterexample. For this example,
the teacher may return the assignment {(z, true), (y, true), (z, false)} since
f'(true, true, false) # f(true, true, false).

Table 1. Features of Algorithms

Num. of Vars. Mem. Qry, Non-Mem. Qry. Equ. Qry.

CDNF known
CDNF+ unknown
CDNF++ unknown

LK
LK

v

Different learning algorithms pose different types of queries. Table [[l shows the
differences among the three learning algorithms in BULL. The CDNF algorithm
assumes the number of variables in the target Boolean function is known. The
CDNF+ algorithm does not know the number of variables. Both algorithms
only pose membership and equivalence queries. The CDNF++ algorithm does
not presume the number of variables is known. It however poses membership,
non-memberhip, and equivalence queries.

BULL defines the interfaces to the three types of queries. If all queries can
be answered automatically, users can implement a mechanical teacher to an-
swer queries through the interface. Learning algorithms in BULL will invoke
the mechanical teacher and infer unknown target functions automatically. We
refer interested users to our full version (http://bull.iis.sinica.edu.tw/)
which contains a detailed demonstration of how to implement the above query
functions and connect them to BULL.

2.2 Users of BULL

The BULL library targets the formal verification research community. As far
as we know, several people in the field are interested in the applications of
learning algorithms for Boolean functions. The library has already been used
by the verification group in Oxford University (Learning-based Compositional
Probabilistic Model Checking), the software trustability and verification group
in Tsinghua University (Learning-Based Compositional Verification), and the
static analysis group in Seoul National University (Loop Invariant Inference).
Several other groups have shown their interests and asked for the source code.

540 Y.-F. Chen, B.-Y. Wang

2.3 Potential Applications

The CDNF algorithm has been applied to synthesize contextual assumptions
in assume-guarantee reasoning. It has also been used to infer a loop invariant
in program verification. These applications share common characteristics. First,
computing contextual assumptions or loop invariants without learning is possible
but expensive. It is however easy to verify if purported contextual assumptions
or loop invariants work. Moreover, contextual assumptions or loop invariants are
by no mean unique. It suffices to compute but one contextual assumption or loop
invariant in these applications. From our experience, we believe that learning is
most suitable for problems with the aforementioned characteristics.

For interested reader, a step-by-step tutorial of how to wuse the
BULL library to find loop invariants is provided in our full version
(http://bull.iis.sinica.edu.tw/). We hope it may give some insights to
more applications of the library.

3 Experimental Results

Since the target application of BULL is verification, in the first experiment, we
decide to pick a classical example, n-bit counter, as the target for learning (Ta-
ble[2). In Table[3] we show a different version where the n-bit counter model can
be non-deterministically reset to 0 from any state. In the second experiment,
we compare the performance of the Boolean learning algorithms using random
3SAT formulae of n variables. In those formulae, the ratio of the number of vari-
ables to the number of clauses is 1/ 4[] We use a timeout period of 10 minutes. In
Figure 2l we show the average execution time of the first 50 non-trivial instances
(satisfiable and all algorithms finished within the timeout period). In Table [
we show the number of timeout cases out of 180 instances.

Table 2. Comparison of Boolean function learning algorithms: using n-bit counter as
the example

2 3 4 5 6 7 8 910 11 12

CDNF 0.02 0.02 0.05 0.11 0.35 1.03 2.29 4.3 9.8 23.6 66.2
CDNF+ 0.01 0.02 0.04 0.09 0.27 0.77 1.5 2.4 5.7 14.1 40.3
CDNF++ 0.01 0.02 0.04 0.09 0.25 0.77 1.5 2.4 5.6 13.8 39.8

At the first glance, CDNF learning algorithm has the best performance among
the three. However, it is not a fair interpretation for two reasons. First, CDNF
makes use of some information (number of variables in the target function) that
is not known by the other two algorithms. More importantly, in particular for

! This ratio is very close to satisfiability threshold of 3SAT formulae. Hence the chance
of getting a satisfiable formula is 50%.

BULL: A Library for Learning Algorithms of Boolean Functions 541

Table 3. Comparison of Boolean function learning algorithms: using n-bit counter with
non-deterministic reset as the example

2 3 4 5 6 7 8 9 10 11 12

CDNF 0.00 0.02 0.07 0.24 0.75 2.83 12.13 32.01 112 451 1374
CDNF+ 0.01 0.02 0.06 0.21 0.67 2.63 12.1 36.8 144 637 1671
CDNF++ 0.01 0.02 0.06 0.21 0.62 2.63 12.08 36.88 145 582 1632

800

=¢—CDNF++ =li=CDNF+ CDNF

Fig. 2. Comparison of Boolean learning algorithms, using random 3SAT formulae as
the benchmark. The vertical axis is the average execution time in seconds and the
horizontal axis is the number of variables in the formula. Each point is the average
results of 50 instances.

the case of randomly generated formulae, almost all the variables will be added
to the final result. Hence the benefit obtained from incremental learning is not
significant in such type of examples. In fact, the CDNF+ and CDNF++ algo-
rithms are particularly useful in formal verification applications [4] such as those
based on predicate abstraction and interpolation-based refinement. Typically in
these applications, a boolean variable is used to indicate the truth of a predicate
in certain points of program executions. Since the number of predicates in use
would increase in each refinement step, there is no a prior known upper bound
of needed variables.

Table 4. The number of timeout cases out of 180 instances

Num. of Var. 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135

CDNF 000O0O0O0OT12 01472428 31 48 51 70 76 90 93
CDNF+ 0 0 0 000 1 6 5211942 48 51 83 80 88 99 118122
CDNF++ 0 0 0 0 0 0 2 4 6191632 40 45 69 69 82 90 106 109

542

Y.-F. Chen, B.-Y. Wang

References

10.

11.

Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: 1ibalf:
The Automata Learning Framework. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 360-364. Springer, Heidelberg (2010)

Bshouty, N.H.: Exact learning Boolean function via the monotone theory. Infor-
mation and Computation 123(1), 146-153 (1995)

Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.:
Automated Assume-Guarantee Reasoning through Implicit Learning. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511-526. Springer,
Heidelberg (2010)

Chen, Y.-F., Wang, B.-Y.: Learning Boolean Functions Incrementally. In: Mad-
husudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 55-70. Springer,
Heidelberg (2012)

Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning Assumptions for
Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331-346. Springer, Heidelberg (2003)

Habermehl, P., Vojnar, T.: Regular model checking using inference of regular lan-
guages. In: ENTCS, pp. 21-36 (2005)

Jung, Y., Kong, S., Wang, B.-Y., Yi, K.: Deriving Invariants by Algorithmic Learn-
ing, Decision Procedures, and Predicate Abstraction. In: Barthe, G., Hermenegildo,
M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 180-196. Springer, Heidelberg (2010)
Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Information
and Computation 118(2), 316-326 (1995)

Merten, M., Howar, F., Steffen, B., Cassel, S., Jonsson, B.: Demonstrating Learning
of Register Automata. In: Flanagan, C., Konig, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 466-471. Springer, Heidelberg (2012)

Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220-223.
Springer, Heidelberg (2011)

Raffelt, H., Steffen, B., Berg, T., Margaria, T.: Learnlib: a framework for extrap-
olating behavioral models. STTT 11(5), 393-407 (2009)

	BULL: A Library for Learning Algorithms of Boolean Functions
	Introduction
	The BULL Library
	How to Use the Package
	Users of BULL
	Potential Applications

	Experimental Results
	References

