
ar
X

iv
:1

21
2.

48
46

v1
 [

cs
.P

F]
 1

9
D

ec
 2

01
2

Operational semantics for product-form solution

Maria Grazia Vigliotti

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

maria.vigliotti@imperial.ac.uk

Abstract. In this paper we present product-form solutions from the
point of view of stochastic process algebra. In previous work [16] we have
shown how to derive product-form solutions for a formalism called La-
belled Markov Automata (LMA). LMA are very useful as their relation
with the Continuous Time Markov Chains is very direct. The disadvan-
tage of using LMA is that the proofs of properties are cumbersome. In
fact, in LMA it is not possible to use the inductive structure of the lan-
guage in a proof. In this paper we consider a simple stochastic process
algebra that has the great advantage of simplifying the proofs. This sim-
ple language has been inspired by PEPA [10], however, detailed analysis
of the semantics of cooperation will show the differences between the
two formalisms. It will also be shown that the semantics of the coopera-
tion in process algebra influences the correctness of the derivation of the
product-form solutions.

1 Introduction

In this paper we present product-form solutions from the point of view of stochas-
tic process algebra. The main motivation for this work is twofold: on one side, our
formalisation clarifies the basic mechanisms that govern product-form solutions
in Continuous Time Markov Chains (CTMCs), on the other side, we can gener-
alise the notion of product-form solutions beyond queuing theory. Product-form
solutions are efficient solutions for stationary distributions in CTMCs in general,
while so far product-form solutions have been studied mostly in the area of per-
formance evaluation/ queuing theory. The work presented here is an extension
of previous work [16] where we have shown how to derive product-form solutions
for a formalism called Labelled Markov Automata (LMA). In very simple terms,
LMA describe the state space of CTMCs as labelled graph decorated with transi-
tion rates. LMA are equipped with a basic mechanism to build complex CTMCs.
LMA have proved very useful in helping to understand basic mechanisms that
govern product-form solutions, and in providing a very elegant proof of the the-
orem GRCAT [16]. However, the disadvantage in using LMA is that the proofs,
even for simple properties, are cumbersome. In LMA it is not possible to use the
inductive structure of the language in a proof.

In this paper we improve on previous work [16] by considering a simple
stochastic process algebra (SSPA), which preserves the semantics of cooperation

http://arxiv.org/abs/1212.4846v1

of LMA. This simple language has been inspired by PEPA [10], however detailed
analysis of the semantics of cooperation will show the differences between the
two formalisms.

In this paper we investigate the general principle that determines product-
form solutions in CTMCs, and we show that the semantics of cooperation is
crucial for the correct derivation of product-form solutions. We will introduce
a simple language equipped with a rather unique, and possibly counterintuitive
semantics, which guarantees the existence of product-form solutions. We will
argue that the semantics presented here, is precisely what is needed to model
rigorously product-form solutions for CTMCs. We shall also consider a biological
example to show an interesting application of product-form solutions to a context
different from queuing theory.

2 Related work

There is vast literature on the topic of product-form solutions and process al-
gebra, and on the formalisation of the intrinsic mechanisms that determine
product-form solution [19,12,8,2,9,7,2,3]. On the relationship between process
algebra and product-form solutions, Hillston, Thomas and Clark, played a ma-
jor role [13,12,8,11,6,19]. The common denominator in these papers is the use
of PEPA to model processes that are known to enjoy product-solution, and to
extract, via PEPA, the modular properties of such processes. This body of work
has demonstrated to the community the modelling power of PEPA. It was shown
in [8] that quasi-reversible structures can be modelled in PEPA, together with
a large variety of product-from solutions. We differ from the work carried out
in PEPA, as our goal is not to define ’yet another stochastic process algebra’
to model product-form solutions, but to design a language and a semantics to
describe only the CTMCs that enjoy product-form solutions. With our formalism
it is relatively easy to find new product-form solutions for CTMCs. This was not
achieved in previous work.

Another formalism that has been extensively used is the Generalised Stochas-
tic Petri Nets (GSPN) [2,7,2,3]- to cite a few articles. The emphasis is to un-
derstand which GSPN enjoy product-form solutions, and what conditions on
GSPN are necessary to yield product-form solution [7]. We differ from the work
on the GSPN as we use process algebra, and also because of the generality of
our results. In this paper, and in previous work, the effort has been directed
in defining a set of sufficient conditions that guarantee product-form solutions
for time-homogenous CTMCs. Finally, it must be mentioned that similar efforts
have been carried out by the community in performance [14,5,18].

The class of product-form solutions considered by [18] is rather limited, while
a true advancement was made by [14,5] with the notions of quasi-reversibility.
Quasi-reversibility was introduced by Kelly [14], and used only on the context of
queuing networks. In [5], great efforts were successfully made to show generality
and robustness of quasi-reversibility. Nearly all product-form solutions known in
queueing networks are derived using quasi-reversibility. It was proved in [5] that

quasi-reversibility is a sufficient condition for product-form solutions. The condi-
tions of Theorem 1 can be seen as formalisation of quasi-reversibility. The main
difference between Theorem 1 and quasi-reversibility lies in the formalisation of
the ‘connection’ of CTMCs. The way in which queues are connected together
is expressed in natural language [5]. This is the main weakness of the work.
Since it is not clear how to ‘connect’ CTMCs together, only networks of queues
are considered. Understanding of how to connect queues together is clear in the
community of performance evaluation. Our work goes further as it specifies, in a
rigorous way, the ‘connection’ or, better, the cooperation among CTMCs. Note
that we have only sufficient conditions for product-form solutions, not necessary
conditions. As consequence, there are product-form solutions that we cannot
characterise, for example [4]. We leave for future work formal development to
deal with such product-form solutions.

3 A simple language

In this section we introduce a simple stochastic process algebra, SSPA. The
main motivation to introduce such a formalism is to verify that the conditions
for product-form solutions can be modelled in a language. SSPA is defined in
a rather unusual way, but follows in the spirit ideas that were discussed in
[13,12]. We initially define simple processes. These are composed essentially by
choice and by recursion.Similarly to PEPA, simple processes may or may not
characterise a CTMC. Some simple process are incomplete, according to PEPA
terminology, in the sense that some transitions lack the information about the
rate. Such information can be inserted via a new operator: the closure. A second
layer of processes is defined, as cooperation of simple processes. The operator
for cooperation has been inspired by PEPA, but differently form PEPA is an
n-nary -operator, like choice. Such operator, differently form PEPA-bow, cannot
be expressed as multiple composition of the binary association.

To formally define the language we assume the existence of a set of variables
Var, and a set of actions Act on which the letter a, b, c . . . range over it.

Definition 1 (Simple processes). The set of simple process, P, is is given

by the following syntax:

E ::= 0 | D

M ::=
∑

i∈I(ai, ri).Ei | M[a←λ]

where I is a finite set of indexes.

For clarity in the notation we use the greek letters λ, µ, . . . range over the
set of positive real numbers IR

+, the letters x, y, x, . . . range over Var and the
letter r ranges over IR

+ ∪ Var. When writing a variable in processes, we use a
subscript that refers to the label. For example we would write (a, ya).E but not
(a, yb).E. A simple processes stand for the building blocks which are ultimately
used to compose complex CTMCs. Nil, written 0, is the empty process; D is the
symbol for the identifier. Identifiers are equipped with identifier equations such

as D
df
= M. The choice,

∑

i∈I(a, r).Ei, represents the standard selection of one
of the possible transitions, and finally there is a new operator closure M[a←λ].
This operator transforms all transitions labelled with the pair a and a variable
into transitions labelled with the pair a and the real number λ. The role of
closure will become clear in the later development of the paper. The grammar of
simple process aims to define the transition graph of a labelled CTMC, but not
all transition graphs derived from this grammar are CTMCs due to the presence
of variables. Examples of this kind can be seen in Fig. 1.

M0 M1 M2 M3

aλ bxb a µ

bxb

Fig. 1. Transition diagram of the process M0

M0 M1 M2 M3

aλ b δ a µ

b δ
Fig. 2. Transition diagram of the process M0[b←δ]

Informally, we can say that the closure operator would transform a transition

graph of the simple process M0
df
= (a, λ).(b, xb).(a, µ).(b, xb).M0 as in Fig. 1 as

one in Fig.2 for the simple process M0[b←δ].

If all transitions of a process are decorated with a real number, as in in Fig.
2, then the underlying model description is a time-homogenous CTMC, similar
to PEPA. To formally define how to derive the CTMC of a given simple process,
we need to give a formal semantics to SSPA via labelled transition system.

Definition 2. A labelled transition system for simple processes written →: P ×
(Act × IR

+ ∪ Var) × P is the smallest multi-relation that satisfies the rules in

Table 1.

We write M
a,r

−→ M
′ if (M, (a, r),M′) ∈→, and →∗ for the transitive closure

of →.

In what follows, we consider a relation that is generally defined in π-calculus
[17] structural congruence. Structural congruence is a relation preserved by all
operators of the calculus, i.e a congruence, that identifies terms that should not
be distinguished for semantical reasons. Hillston [10] defined a similar relation
in a operational way as isomorphism.

Definition 3. Structural congruence, written ≡ over the set of simple processes

P is the smallest congruence that allows the reorder of terms in the choice.

We use structural congruence as a relation to talk about individual terms in
the summation, and to to avoid to be bothered by the order of terms in the
summation. For example (a, λ).E1 + (b, µ).E2 ≡ (b, µ).E2 + (a, λ).E1. We use S
to indicate a set of terms of the summation that we do not wish to identfy i.e.
(a, λ).E1 + (b, µ).E2 + (c, γ).E3 ≡ (a, λ).E1 + S.

Differently from CTMC, not all transitions in SSPA have a real number at-
tached. These are called passive transitions. Passive transitions are transitions
whose delay has not yet been specified. The difference between passive and ac-
tive transitions, is crucial in this work, so we proceed now to define such entities
via analysis of the labels in a process.

Definition 4. A label a ∈ Act is called active with respect to a simple process

M if M ≡ (a, λ).M′+S. A label a ∈ Act is called passive with respect to a simple

process M if M ≡ (a, xa).M
′ + S.

We now define a the set of labels that are active or passive in any possible
evolution of the simple process.

Definition 5. The set of active labels,written A(M), is recursively defined as

follows:

(Nil) A(0) = ∅;

(Def) A(D) = A(M) if D
df
= M;

(Choice) A(
∑

i∈I(ai, ri).Ei) = ∪i∈I{ai : (ai, ri).Ei, ri ∈ IR
+} ∪ A(Ei);

(Closure) A(M[a←λ]) = A(M) ∪ {a}.

Definition 6. The set of passive labels,written P(M), is recursively defined as

follows:

(Nil) P(0) = ∅;

(Def) P(D) = P(M) if D
df
= M;

(Choice) P(
∑

i∈I(ai, ri).Ei) = ∪i∈I{ai : (ai, ri).Ei, ri ∈ V ar} ∪ P(Ei);
(Closure) P(M[a←λ]) = P(M)\{a}.

We simply write P and A for the set of passive and active labels when it is clear
from the context which simple process we are referring to.

Definition 7. A simple process M is closed if A(M) = ∅, it is open otherwise.

The closure operator transforms each open automata into a closed one. We
now present a few properties of the closure operator, with respect to the seman-
tics equivalence of strong bisimilarity.

Definition 8. We define strong bisimilarity as the largest symmetrical relation
∼= such that if M1

∼= M2, then if for all M′1 it holds that M1
a,r
−→ M′1 then there

exists M′2 such that M2
a,r

−→ M′2 and M′1
∼= M′2.

Proposition 1. 1. M[a←λ]
∼= M if M is closed.

2. M[a←λ][b←µ]
∼= Mb←µ][a←λ].

3. Let P(M) ∼= {a1, a2, . . . aN} be the set of passive actions of M. M[a1 ←
λ1] . . . [aN ← λN] is closed.

Proof. By induction on grammar of simple processes.

Sometimes, in the presence of multiple applications of the closure operator,
we write MP←R, where R is a set of rates R = {r1, r2, . . . , rN} and P =
{a1, a2, . . . , aN} is the set of passive labels in M. Clearly, by generalisation of
Proposition 1 this abbreviation is well defined, as it does not matter the order
in which the closure is performed. Now we define the interaction among simple

∑
i∈I

(ai, ri).Ei

ai,ri
−→ Ei

E
a,r
−→ E

′

D
a,r
−→ E

′

if D
df
= E

(a, xa).E
a,xa
−→ E

(a, xa).E[a←λ]
a,λ
−→ E[a←λ]

(a, µ).E
a,µ
−→ E

(a, µ).E[a←λ]
a,µ
−→ E[a←λ]

Table 1. Transition semantics of simple processes

Mi

a,r
−→ M

′

i

⊗
L
(M1, ..,Mi, ..Mn)

a,r
−→

⊗
L
(M1, ..,M

′

i, ..Mn)

(a /∈ L)

Mi

a,λ
−→ M

′

i Mk

a,xa
−→ M

′

k

⊗
L
(M1, ..,Mi, ..Mk, ..Mn)

a,λ
−→

⊗
L
(M1, ..,M

′

i, ..,M
′

k, ..Mn)

(a ∈ L, k 6= i)

Table 2. Transition semantics of interacting processes

processes.

Definition 9. The set of interacting processes, L, is defined by the following

syntax:

C ::= M |
⊗

L

(M1, . . . ,MN)

where L ⊆ Act, M was defined in Definition 1, and for all i, j ≤ N if i 6= j it

holds that A(Mi) ∩A(Mj) ∩ L = P(Mi) ∩ P(Mj) ∩ L = ∅.

Definition 10. The labelled transition system for the interacting processes writ-

ten →: L× (Act× IR
+ ∪Var)×L is the smallest multi-relation that satisfies the

rules in Table 1.

We write C
a,r
−→ C′ if (C, (a, r),C′) ∈→, and →∗ for the transitive closure of

→.

Crucial to this definition is that the interaction happens pairwise. For exam-
ple, in queueing networks such as the Jackson network [5], this captures the idea
that customers hop from one node to one other.

Comparison with PEPA The semantics of the interaction in SSPA has been
inspired by PEPA [10], but it is not identical. PEPA’s interaction operation works
on broadcasting while in SSPA the interaction/cooperation is strictly pairwise.

In PEPA, cooperating processes over the same set of actions L is commuta-
tive and associative with the respect to a notion of strong bisimulation. Strong
bisimilarity (∼=) identifies processes that can carry out the same transitions with
respect to the transition relation defined in Definition 10. Therefore, we assume
that Definition 8 is adapted to the interacting processes.

In SSPA, the cooperating operator is commutative, but not associative with
respect to strong bisimilarity, even under the same set of cooperating actions.
Commutativity says that the order in which processes cooperate does not matter.
If fact, two processes that differ only for the order of simple processes in the
cooperation are strongly bisimilar, and, we will see, they have the same product-
form solution. However, as far associativity goes, the reader can verify that
(M1⊕LM2)⊕LM3 and M1⊕L (M2⊕LM3) have different transitions i.e they are
not strongly bisimilar. To see this it suffices to take the following processes (M1 =
(a, λ).0 andM2 = M3 = (a, xa).0 with L = {a} and verify that (M2⊕LM3) has no
transition according to the semantics of SSPA. Therefore M1⊕L (M2⊕LM3) ∼= 0
while (M1 ⊕L M2) ⊕L M3 6∼= 0, which implies, differently from PEPA semantics,
that (M1 ⊕L M2)⊕L M3 6∼= M1 ⊕L (M2 ⊕L M3). If we had used PEPA transition
system we would have been able to prove that the two processes are strongly
bisimilar.

3.1 CTMC

In this paper, we deal only with product-form solutions for time-homogenous

CTMCs. For a time-homogenous CTMC, the generator matrix Q contains all the
information to compute the transient and steady-state probability distribution.
From the matrix Q it is possible to describe the state space of the CTMC and
vice versa. Generally, in process algebra such as PEPA, the language is a means
to describe in a modular way the state space of the underlying CTMC. The
generator matrix is then appropriately recovered for computation purposes. If
the interacting process C does not contain passive transitions, we can recover the
CTMC by taking the set of all derivatives of C as the state space of the CTMC,
and by generating the entries of the generator matrix QC as the sum of all
the real numbers of the transitions between two derivatives. Rates of self-loops
should be ignored, and the diagonal of the generator matrix QC is constructed
as usual to ensure that the sum of the entries of the rows equals 0. Even in

the presence of passive transitions in a process, the generator matrix can be
recovered. However, the matrix may not be used for computation purposes, as it
may contain the variables from the passive transitions. For this reason, in what
follows, we describe how to build the generator matrix, and we will leave it to
the reader, or to the context in which it is used, to establish if the generator can
be used straightforwardly for computation purposes, or instantiation of variables
is necessary.

Given a process, we define the set of derivatives as the set of processes derived
via the transitive closure of the labelled transition system.

The set of derivatives of an interactive process C is defined as SC = {C′ :

C
a,r
−→

∗
C′}. The transition rate from the state of the chain C to C′ is given by

the sum of the rates of all the labelled transitions of the process i.e.:

q(C −→ C
′) =

∑

(a,r):C
a,r
−→C

′

C6=C
′

r.

If all transition rates q(C −→ C′) ∈ IR
+ then QC is the generator matrix of

the underlying CTMC of the interactive process. If for some rates it holds that
q(C −→ C′) 6∈ IR

+ then we must specify that the variables in the prefix (a, x).E
are considered the same if they occur with the same label. This observation has
a huge impact in correct derivation of the generator matrix. For all intents and
purposes, variables are considered the same if they are associated with the same
label. For example we could write M = (a, x).(b, µ).M+ (a, y).(c, z).M, however,
in the construction of the generator matrix, either x or y will appear in the
definition of the rate. This concept has no meaning from the point of view of the
process algebra, but it has huge impact in the building of the generator matrix,
and in the computation of probabilities. The generator matrix ofM, written QM,
will be

QM =

−2x x x
µ −µ 0
0 z −z

while the matrix

QM =

−(x+ y) x y
µ −µ 0
0 z −z

is not what we intended. We impose that x = y, since they appear with the
label a and therefore we can treat x as a variable, and apply standard numerical
operations. The semantics for the variables is such that x, y 6= z as z occurs
with the label c, not a. For this reason the subscript of the label of the action
in variables is used in this paper.

For convenience we write q(C
a
−→ C′) =

∑

r:C
a,r
−→C′

r for the transition rate
with respect to a label a. We note that for the latter definition we also consider
rates from a state to itself i.e. q(C

a
−→ C). This will be useful later in Theorem 1.

We observe that q(C −→ C′) =
∑

a∈Act
C6=C

′

q(C
a
−→ C′).

Given an interacting process C, we can generate the state space of the CTMC

as SC and the generator matrix QC, then with an abuse of notation we refer to
the properties of the process meaning the properties of the CTMC. Therefore,
we can talk about a stationary or steady-state distribution of the process, πC,
meaning that its CTMC has a stationary or steady-state distribution π. If QC

is the generator matrix of the underlying CTMC of C, then we write π(C) for
invariant measure meaning the πQC = 0. In other words, we use in the notation
π(C) instead of πQC. For C′ ∈ SC we write πM(C

′) meaning the value of the
vector πM for the element C′. If

∑

C′∈SC
π(C′) = 1 then the CTMC is ergodic

and π is the state-state distribution of C [5].

4 Product-form solution

We now present the main theorem of the paper regarding product-form solution
for SSPA. The theorem asserts that for a given class of processes, that satisfies
certain conditions on the rates and on the structure of state space, the product-
form solution exists. We start with the definition of structure of the processes.

Definition 11. In a simple process M =
∑

i∈I(ai, ri).Ei the label a is the unique
passive label if and only if M ≡ (a, xa).E+S and M ≡ (a, xa).E

′+S′ then S′ = S
and E = E′ .

We now define a set of unique passive labels for a process. Such a set is not
empty if in all possible evolution of the process, one passive transition with a
given label is possible.

Definition 12. The set of unique passive labels in a simple process M, written

U(M), is recursively defined as follows:

(Nil) U(0) = Act;

(Def) U(D) = U(M) if D
df
= M

(Choice) U(
∑

i∈I(ai, ri).Ei) =

∅ if there exist a passive

label in
∑

i∈I(ai, ri).Ei

which is not unique

(∪i∈I{ai}) ∩i∈I U(Ei) if aiis a unique

passive label in
∑

i∈I(ai, ri).Ei

(Closure) U(M[a←λ]) = U(M)\{a}

Such a definition is necessary as we need to use process that have one passive
transition. This restriction could be relaxed, but it would involve a more com-
plicated statement of Theorem 1.

We now provide the definition of well-formed simple processes, which are the
building blocks for the correct definition of product form solutions. Well-formed
processes are processes that will generate no confusion in the construction of

product form solutions. Informally, we can think product-form as a way of de-
composing the invariant measure of a CTMC. Now, if the CTMC has been built
using simple processes and an empty cooperation set, then each simple process
is independent of the other, and trivially the invariant measure can be written
as the product of the invariant measures of each simple process. However, if a
complex CTMC has been built using simple processes and a non-empty coopera-
tion, then the behaviour of each simple process can be influenced by the others
in the cooperation. If, however, in each simple process, the reversed rates of the
cooperating transitions are constant in each state, then the invariant measure of
a complex CTMC can be written as the product of the invariant measures of each
simple process, in a similar fashion as if they were independent. To perform all
these calculations correctly, we need to make sure that no confusion arises when
writing the processes in SSPA, and therefore we need the notion of well-formed

processes.

Definition 13 (Well-formed processes). A simple process M is well-formed
if:

1. A(M) ∩ P(M) = ∅ and
2. if P(M) 6= ∅ then P(M) = U(M).

From a syntactic point of view, we have done the work for the following
result for the product-form solution. The theorem considers only complex CTMCs
composed by well-formed processes. A further condition is added on the outgoing
rates of the simple processes to guarantee that on average, we can quantify the
dependency among the various processes.

Theorem 1. Given an interacting process C =
⊕

L(M1,M2, . . . ,MN) composed

by be well-formed simple processes M1,M2, . . . ,MN that cooperate on a finite set

of actions L = {a1, a2, . . . aM}.
Assume that the state space of SC = SM1

×SM2
× · · ·×SMN

is irreducible. If

for all labels in the cooperation set L there exists a set of positive real numbers

K = {κ1, . . . , κM} such that, for any simple process Mi, the following equations

are satisfied

∑

M′∈SMi

q(M′
ar−→ M)πi(M

′)

πi(M)
= κr M ∈ SMi

, ar ∈ L ∩ A(Mi) (1)

where πi is the invariant measure of the closed process Mc
i = Mi[P∩L←K]. Then

the following statements hold:

1. The invariant measure of the process
⊕

L(M1,M2, . . . ,MN) has the product-

form:

π(
⊕

L

(M1,M2, . . . ,MN)) = π1(M
c
1)⊗ π2(M

c
2)⊗ . . .⊗ π2(M

c
N) (2)

where ⊗ is the Kronecker product 1.

1 If π1, π2 are two vectors, π1 ∈ IR
1×n and π2 ∈ IR

1×m then he Kronecker product is
π1 ⊗ π2 = (p1π2, p2π2, . . . pnπ2) ∈ IR

1×nm.

2. If
∑

M∈SMi

πi(M) = 1 (i ∈ [1, . . . , N]) then π is the steady-state probability

distribution of
⊕

L(M1,M2, . . . ,MN).

Proof. For (1) we first show that for all states (M1,M2, . . . ,MN) ∈ SM1
×SM2

×

· · · × SMN
we can derive π(M1,M2, . . . ,MN) =

∏N
i=1 πi(Mi) for Mi ∈ SMc

i
. Since

we are considering the whole state space, the result π(
⊕

L(M1,M2, . . . ,MN)) =
π1(M

c
1)⊗π2(M

c
2)⊗. . .⊗π2(M

c
N) follows.We show now, forN = 2 that π(M1,M2) =

π1(M1)π2(M2) when M1⊕{a,c}M2
. Generalisation to N is straightforward. We ob-

serve, that with an abuse of notation we write M1 to indicate the simple process
in the cooperation, but also the process that forms the state space of SM1

. The
context distinguishes between these two mathematical objects.

The global balance equations for the process M1 or M
c
1 are the following,

assuming that A(M1) ∩ L = {a} and A(M2) ∩ L = {c}

πMc
1
(M1)

(∑

M′

1
∈SMc

1

qMc
1
(M1, a,M

′
1) + qMc

1
(M1, c,M

′
1)

︸ ︷︷ ︸

xc

+
∑

M
′

1
∈SMc

1

b6=a,c

qMc
1
(M1, b,M

′
1)
)
=

∑

M
′

1
∈SMc

1

qMc
1
(M′1, a,M1)πMc

1
(M′1) +

∑

M
′

1
∈SMc

1

qMc
1
(M′1, c,M1)

︸ ︷︷ ︸

xc

πMc
1
(M′1)+

∑

M
′

1
∈SMc

1

b6=a,c

qMc
1
(M′1, b,M1)πMc

1
(M′1). (3)

We have underlined the transition rates what would have a variable in M1 but
a real number in Mc

1. By definition of well-formed simple process, we know that
there is only one instance of qMc

1
(M1, c,M

′
1).

For M2 or Mc
2 the global balance equations would be similar by reverting the

role of the rates of the actions a and c.
We write now the global balance equations for the global state (M1,M2) as

follows:

π
(
(M1,M2)

)(∑

M
′

1
∈SM1

b6=a,c

q((M1,M2), b, (M
′
1,M2))+

∑

M
′

2
∈SM2

b6=a,c

q((M1,M2), b, (M1,M
′
2))+

∑

(M′

1
,M′

2
)∈SM1

×SM2

q((M1,M2), c, (M
′
1,M

′
2))+

∑

(M′

1
,M′

2
)∈SM1

×SM2

q((M1,M2), a, (M
′
1,M

′
2))

)

=
∑

M
′

1
∈SM1

b6=a,c

q((M′1,M2), b, (M1,M2))π
(
(M′1,M2)

)
+

∑

M
′

2
∈SM2

b6=a,c

q((M1,M
′
2), b, (M1,M2))π

(
(M1,M

′
2)
)
+

∑

(M′

1
,M′

2
)∈SM1

×SM2

q((M′1,M
′
2), a, (M1,M2))π

(
(M′1,M

′
2)+

∑

(M′

1
,M′

2
)∈SM1

×SM2

q((M′1,M
′
2), c, (M1,M2))π

(
(M′1,M

′
2)
)
.

We assume that we can write the joint invariant measure in product-form,
dividing by πM1

(M1), πM2
(M2) and writing down the contribution of the rates of

each simple process for the labels b /∈ L we have:

∑

M
′

1
∈SM1

b6=a,c

q(M1, b,M
′
1) +

∑

(M′

1
,M′

2
)∈SM1

×SM2

q((M1,M2), c, (M
′
1,M

′
2))+

∑

M
′

2
∈SM2

b6=a,c

q(M2, b,M
′
2) +

∑

(M′

1
,M′

2
)∈SM1

×SM2

q((M1,M2), a, (M
′
1,M

′
2))

=
∑

M
′

1
∈SM1

b6=a

q(M′1, b,M1)
πM1

(M′1)

πM1
(M1)

+
∑

M
′

2
∈SM2

b6=a,c

q(M′2, b,M2)
πM2

(M′2)

πM2
(M2)

+

∑

(M′

1
,M′

2
)∈SM1

×SM2

q((M′1,M
′
2), a, (M1,M2))

πM1
(M′1)πM2

(M′2)

πM1
(M1)πM2

(M2)
+

∑

(M′

1
,M′

2
)∈SM1

×SM2

q((M′1,M
′
2), c, (M1,M2))

πM1
(M′1)πM2

(M′2)

πM1
(M1)πM2

(M2)
.

We consider the rates in the terms with joint states. We observe that since we
impose that the simple processes are well formed, this means that there is only
one passive action in each process: in M1 the passive action will be labelled
c while in M2 will be labelled a. The number of transitions in the joint state
space SM1

× SM2
will the same number as the active transitions. Therefore we

can rewrite the global balance equation as follows:

∑

M
′

1
∈SM1

b6=a,c

q(M1, b,M
′
1) +

∑

M
′

2
∈SM2

b6=a,c

q(M2, b,M
′
2) +

∑

M′

2
∈SM2

q(M2, c,M
′
2)+

∑

M′

1
∈SM1

q(M1, a,M
′
1) =

∑

M
′

1
∈SM1

b6=a

q(M′1, b,M1)
πM1

(M′1)

πM1
(M1)

+

∑

M
′

2
∈SM2

b6=a,c

q(M′2, b,M2)
πM2

(M′2)

πM2
(M2)

+
∑

M′

2
∈SM2

∑

M′

1
∈SM1

q(M′1, a,M1)
πM1

(M′1)πM2
(M′2)

πM1
(M1)πM2

(M2)

+
∑

M′

1
∈SM1

∑

M′

2
∈SM2

q(M′2, c,M2)
πM1

(M′1)πM2
(M′2)

πM1
(M1)πM2

(M2)
.

We can now rewrite the global balance equations in Equation 3 in the following
convenient way:

∑

M′

1
∈SMc

1

qMc
1
(M1, a,M

′
1) + κc +

∑

M
′

1
∈SMc

1

b6=a,c

qMc
1
(M1, b,M

′
1) =

κa +
∑

M
′

1
∈SMc

1

κc

πMc
1
(M′1)

πMc
1
(M1)

+
∑

M
′

1
∈SMc

1

b6=a,c

qMc
1
(M′1, b,M1)

πMc
1
(M′1)

πMc
1
(M1)

)

By subtracting each term side of the last two equation we obtain:

∑

M
′

2
∈SM2

b6=a,c

q(M2, b,M
′
2) +

∑

M′

2
∈SM2

q(M2, c,M
′
2)− κc =

∑

M
′

2
∈SM2

b6=a,c

q(M′2, b,M2)
πM2

(M′2)

πM2
(M2)

+
∑

M′

2
∈SM2

κa

πM2
(M′2)

πM2
(M2)

− κa

The latter equation can be rewritten to see that the global balance equation of
M2 by expanding the Definition of κa, κc as in Condition 1 of Theorem 1.

The proof is very elegant, not because it uses global balance equations, but
because it solidly relies on the semantics of the cooperation. Such semantics
establishes the contribution of each component to transform the global balance
equations of the joint processes into the global balance equations of each simple
process. Further considerations on the cooperation operator will lead to conclude
that the semantics given in this work is the right one, as it allows the correct
substitution of the rates in condition 1 of Theorem 1 in the passive transitions.
As Hillston pointed out in [10], passive transitions lack of information about
the speed of the transition. Such information is given by the cooperation with
the active partner. In this work we embrace this view fully, but we also find
out the right rates (the ones given by condition 1 of Theorem 1) for the passive
transitions to proceed in isolation. We could have chosen an arbitrary rate to be
substituted into the passive transition. This would have made no sense at all.
The product form solution relates the rates of the joint process with the rates
of the single components. We can see why it is important that cooperation is
not associative, and the broadcasting semantics of PEPA would not work here.
Consider three well-formed simple processesM1,M2,M3 specified as followsM1 =
(a, λ).M′1,M2 = (a, xa).M

′
2,M3 = (a, xa).M

′
3 such that condition 1 of Theorem 1

is satisfied for M1. Assume that we have PEPA semantics and M2 ⊕ {a}M3
a,xa−→

M′2 ⊕ {a}M
′
3 and M1 ⊕ {a}(M2 ⊕ {a}M3)

a,λ

−→ M1 ⊕ {a}(M′2 ⊕ {a}M
′
3). Now, to

identify the product-form solution we would need to substitute in both processes
the rate κa M2[a←κa],M3[a←κa]. The product from would not work at all. The
reader can verify this by inspecting the proof of theorem 1. Now consider the

equivalent process (M1 ⊕ {a}M2) ⊕ aM3
a,λ
−→ (M′1 ⊕ {a}M

′
2) ⊕ {a}M

′
3 such that

(M1 ⊕ {a}M2)
a,λ

−→ (M′1 ⊕ {a}M
′
2). We would obtain a series of substitutions

M2[a←κa] and, if (M1⊕{a}M2) satisfy the conditions in theorem 1 for a, then we

would have M3[a←κ∗

a]
, where κ∗a =

∑

(M∗

1
,M∗

2
) λ

π(M∗

1
,M∗

2
)

π(M′′

1
,M′′

2
) Clearly this would lead

to different product-form solution from M1 ⊕ {a}(M2 ⊕ {a}M3). In conclusion,
differently from PEPA semantics, we do not wish to have associativity as the
rates used for the closure of each simple process matters. Such rates depend on
how we group simple processes together. The semantics of the cooperation is
the exactly was is needed to correctly interpret product-form solutions. In this
work we are not concerned about numerical or analytical methods for solution
equations in the form of 1. Such methods can be found in [5].

5 Product-form solutions for biological systems

As stated in the introduction, product-form solutions have been mostly used in
queueing theory. There has been a recent interest in product-form solution for
biological system [15,1]. In particular in [15,1] consider only chemical reactions,
while we show here a variation of the product-form solutions for more complex
systems.

Assume we have a cancerous cell, that grows, in a limited way provided that
there is enough energy. In absence of energy the cell could die, with a certain
probability p. We model the cell as follows:

C0 = (a, xa).C1

C1 = (a, xa).C2 + (c, γ1).C0 + (c, κc).C1

...
...

CN = (a, xa).CN + (c, γN).C0 + (c, κc).CN .

The transitions labelled a stand for the energy that will allow the cell to grow.
As energy is provided by the environment, we model it as a passive transition.
We note that the cell has a finite growth: even in the presence of an infinite
amount of energy, the cell will stop growing. The transitions labelled c stands
for cancerous events: they could inhibit growth and kill the cell.

We model the energy as a switch, either there is energy for the cell to grow,
or there is no energy:

E0 = (a, λ).E1 + (a, δ).E0

E1 = (d, δ).E0.

The rate δ represents the speed at which the environment supplies energy. Sim-
ilarly, we model the trigger for cancer which reduces the size of the cell as a
switch:

T0 = (c, xc).T1 + (c, xc).T0

T1 = (e, ν).T0.

f The system is the following: ⊕{a,c}(E0,C0,T0), and the steady state prob-
abilities are π(⊕a,c(E0,C0,T0)) = π1(E0) ⊗ π2(C0[a←δ]) ⊗ π3(T0[c←κc]) where

κc =
γ3π1(C3)+γ2π1(C2)+γ1π1(C1)

π1(C0)
. We observe that E0,C0,T0 are well formed pro-

cess and that the conditions of Theorem 1 are satisfied.

The transition graphs of the state-space processes can be found in Figure 5.

C0 C1 C2 C3

a xa a xa a xa
a xa

c κc

c κcc κc

c γ3

c γ2

c γ1

E0 E1

a λ

d δ

a δ

T0 T1

c xc

e ν

c xc

Fig. 3. Transition graphs of the state-space of the processes E0,C0,T0

6 Conclusion

The main interest for product-form solutions arises when a CTMC contains a
rather large state space, and the analytical computation of the steady state
probability/invariant measure can be computationally prohibitive. In this paper,
we have analysed the cooperation operator for a simple process algebra and its
relationship with product-form solution. We have clarified the semantics of such
operator, and we have shown that such semantics is necessary to derive correctly
product-form solutions.

Acknowledgments

I gratefully acknowledge Jane Hillston for useful discussions on product-form
solutions and operational semantics. Jane pointed out some mistakes and typos
in earlier version of the proof of theorem 1. A lot of generous support and en-
couragement was given by Gianfranco Balbo. I had very interesting discussions
with Andrea Marin, who also pointed out to the work done by Mairesse on bio-
logical systems. My interest in product-form solution has arisen during research
work I conducted with Peter Harrison. His unique way of working has been great
inspiration for me.

References

1. David Anderson, Gheorghe Craciun, and Thomas Kurtz. Product-form stationary
distributions for deficiency zero chemical reaction networks. Bulletin of Mathemat-
ical Biology, 72:1947–1970, 2010.

2. G. Balbo, S. C. Bruell, and M. Sereno. Product form solution for Generalized
Stochastic Petri Nets. IEEE Trans. on Software Eng., 28:915–932, 2002.

3. G. Balbo, S. C. Bruell, and M. Sereno. On the relations between BCMP Queueing
Networks and Product Form Solution Stochastic Petri Nets. Proc. of 10th Int.
Workshop on Petri Nets and Performance Models, 2003., pages 103–112, 2003.

4. R. J. Boucherie. A characterisation of independence for competing Markov chains
with applications to stochastic Petri nets. IEEE Tran. on Software Eng., 20(7):536–
544, 1994.

5. Xiuli Chao, Masakiyo Miyazawa, and Micheal Pinedo. Queueing Networks. Jon
Wiley & Sons Ltd, 1999.

6. G. Clark and J. Hillston. Product form solution for an insensitive stochastic process
algebra structure. Performance Evaluation, 50:129–151, 2002.

7. J. L. Coleman, W. Henderson, and P. G. Taylor. Product form equilibrium dis-
tributions and a convolution algorithm for Stochastic Petri nets. Perform. Eval.,
Elsevier, 26:159–180, 1996.

8. P. Harrison and J. Hillston. Exploiting quasi-reversible structures in Markovian
process algebra models. The Computer Journal, 38(7):510–520, 1995.

9. P. G. Harrison. Turning back time in Markovian process algebra. Theoretical
Computer Science, 290(3):1947–1986, January 2003.

10. J. Hillston. A Compositional Approach to Perfomance Modelling. PhD thesis,
Department of Computer Science, Edinburgh, 1994.

11. J. Hillston and N. Thomas. Product Form Solution for a class of PEPA Models.
In Proceedings of IEEE International Computer Performance and Dependability
Symposium, Durham, NC, September 1998. An extended version appeared in
Performance Evaluation, 35(3–4), 1999).

12. J. Hillston and N. Thomas. Product form solution for a class of PEPA models.
Perform. Eval., Elsevier, 35(3–4):171–192, 1999.

13. Jane Hillston. A class of PEPA models exhibiting product form solution over
submodels. Technical Report Technical Report ECS-LFCS-98-382, University of
Edingburgh, February 1998.

14. F.P. Kelly. Reversibility and Stochastic Networks. Wiley, 1979.
15. Jean Mairesse and Hoang-Thach Nguyen. Deficiency zero petri nets and product

form. In Applications and Theory of Petri Nets, volume 5606 of Lecture Notes in
Computer Science, pages 103–122. Springer Berlin / Heidelberg, 2009.

16. Andrea Marin and Maria G. Vigliotti. A general result for deriving product-
form solutions in Markovian models. In Proceedings of First Joint WOSP/SIPEW
International Conference on Performance Engineering, January 2010.

17. R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

18. Thomas G. Robertazzi. Computer Networks and Systems. Springer & Verlag, 1994.
19. Matteo Sereno. Towards a product form solution for stochastic process algebras.

The Computer Journal, 38(7):622–632, December 1995.

	Operational semantics for product-form solution

