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Compositional Approximate Markov Chain

Aggregation for PEPA Models

Dimitrios Milios and Stephen Gilmore

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB, UK

Abstract. Approximate Markov chain aggregation involves the con-
struction of a smaller Markov chain that approximates the behaviour
of a given chain. We discuss two different approaches to obtain a nearly
optimal partition of the state-space, based on different notions of ap-
proximate state equivalence.
Both approximate aggregation methods require an explicit representa-
tion of the transition matrix, a fact that renders them inefficient for large
models. The main objective of this work is to investigate the possibility
of compositionally applying such an approximate aggregation technique.
We make use of the Kronecker representation of PEPA models, in or-
der to aggregate the state-space of components rather than of the entire
model.

1 Introduction

Markov chains have been used for many years for exploring the dynamic proper-
ties of systems that exhibit stochastic behaviour. They are supported by a great
variety of techniques to obtain the steady-state and the transient probability dis-
tributions of such models. Many modelling formalisms generate Markov chains
given some high-level description of the system. Unfortunately, even apparently
simple models can generate extremely large state-spaces, a problem known as
state-space explosion.

State-space aggregation can be an effective way to reduce the complexity of
large Markov models. Aggregated models feature a reduced number of states, a
fact that can accelerate transient and steady-state analysis techniques. Aggre-
gation can be either exact or approximate. Exact aggregation of a Markov chain
involves constructing a model with a smaller number of states that exhibits be-
haviour identical to that of the original system. If the original model is lumpable,
then the resulting aggregated model will be a Markov chain as well. In the case
of non-lumpable models, we use a reduced Markov model that approximates the
behaviour of the original system. In this way, the model can be solved efficiently
at the cost of loss of accuracy.

Existing approximate aggregation techniques [7][23][6] typically require the
computation of several eigenvectors of the probability matrix. The great compu-
tational cost of this requirement renders these approaches not particularly pop-
ular in performance modelling. Instead, we take advantage of a compositional
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representation of the state-space, in order to apply approximate aggregation
techniques on components rather than the entire system. The resulting reduced
components are then combined to form an overall reduced state-space.

The modelling paradigm which we work with here is the PEPA language
[13], and its Kronecker representation [15] in particular. A PEPA model is rep-
resented as a collection of interacting components, and each one of these has
its own state-space and performs a number of actions that change its internal
state. The global state of the system is expressed in terms of the local states
of the components included. PEPA components can be considered as labelled
continuous-time Markov chains (CTMC). We reduce the state-space of more
than one component at the same time. Intuitively, the more components we
approximate, the greater reduction of the global state-space we can achieve.

In order to partition the state-space of these CTMCs we apply two different
approaches. The first one is a traditional approach which is related to near
complete decomposability (NCD) and the spectral properties of Markov chains.
The second one is a novel method that relies on the notion of quasi-lumpability.
We note that in most cases we make use of the embedded discrete time Markov
chain that is obtained after uniformisation [16].

Related work is outlined in Sect. 2. Section 3 briefly outlines the NCD-based
approach. In Sect. 4 we present our approximate aggregation approach that
is based on quasi-lumpability. In Sect. 5 we describe how approximate aggre-
gation is applied in a compositional setting. Section 6 involves examples that
demonstrate the performance of the two aggregation techniques. Finally, the
conclusions and considerations for future work are summarized in Sect. 7.

2 Related Work

In terms of Markov chains, equivalence is formally described by the notion of
lumpability [17]. As can be seen in [1], given a lumpable Markov chain we can ob-
tain a lumped model which is also a Markov chain having identical transient and
steady-state behaviour. State-space aggregation techniques that rely on this con-
cept typically exploit the structure of some high-level description of the model.
For example in [11], a lumpable partition is obtained by identifying isomorphic
components of a PEPA model. In the general case though, a lumpable partition
might not exist.

Quasi-lumpability, which was introduced in [9], captures approximate be-
haviour for Markov models. The term near-lumpability has been used to de-
scribe the same notion in [1], where the concept was generalized towards exactly
and strictly lumpable Markov chains. Since we are interested in nearly ordinar-

ily lumpable Markov models only, we shall use the term quasi-lumpability for
the rest of the paper. Most of the research in the field so far aims at comput-
ing bounds for the state probabilities of quasi-lumpable Markov chains, assum-
ing some partition of the state-space [9][10][8][2]. The computation of bounds
of compositions of Markov chains has also been investigated in the context of
Markov reward models [4] and PEPA [24]. Our goal is to develop a strategy to
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automatically obtain a partition of the state-space that is nearly optimal with
respect to a measure related to quasi-lumpability.

Many existing approximate Markov chain aggregation techniques ([7][6]) rely
on the notion of near complete decomposability (NCD) [3]. By definition, a com-
pletely decomposable Markov chain consists of uncoupled aggregates of states,
which means that a random walk will never transition from one aggregate to
another. This restriction is relaxed for nearly completely decomposable systems,
where the aggregates are almost uncoupled. The relation between the spectral
properties of probability matrices and NCD has been investigated in a number
of works [20][22][12]. In [7], the structure of the eigenvectors has been used to
partition the state-space of reversible Markov chains, in a way that minimizes
the probability of transitioning between partitions. In [23], this framework has
been extended to non-reversible models. In a more recent work [6], a similar
approach for partitioning Markov models has been presented which is based on
information theory.

However, spectral methods are not directly related to the notion of lumpabil-
ity which formally captures equivalence between Markov chains. At this point, it
is important to make a clear distinction between nearly completely decomposable
and quasi-lumpable models. A Markov chain is nearly completely decomposable
when there is a very small probability of transitioning from one part of the
system to another, a fact that also implies quasi-lumpability as shown in [5].
In the general case however, a lumpable or a quasi-lumpable model does not
have to be nearly completely decomposable. In this paper, we present results
with respect to both quasi-lumpability and NCD approaches to approximately
aggregate Markov models.

3 Aggregation based on NCD

3.1 Spectral Segmentation of Markov Chains

Let us consider a reversible Markov chain with probability matrix P and steady-
state distribution π. If ∆ = {A1, . . . , Ak} is a partition of the state-space, we
define the probability of the system moving from Ai to Aj in a single step:

Pr(Ai, Aj) =

∑

i∈Ai,j∈Aj
πiPij

∑

i∈Ai
πi

(1)

Given a completely decomposable Markov model, we have Pr(Ai, Ai) = 1 and
Pr(Ai, Aj) = 0, ∀i 6= j. This means that if the system is within a set of states Ai,
it will never transition out of Ai. This condition is relaxed for nearly completely
decomposable systems, where there is only a small probability of transitioning
between parts of the system.

The eigenstructure of a probability matrix contains information about which
parts of the Markov chain are almost invariant. As can be seen in [7], a probability
matrix P with K invariant aggregates of states will have K eigenvalues that are
equal to 1. It has been shown that states that belong to the same invariant
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set Ai have the same sign-structure when mapped onto the eigenvector that
corresponds to eigenvalue λ = 1. Perturbation analysis that was performed in
[7] shows that this property is mostly preserved for the largest K eigenvectors
for a nearly completely decomposable system as well. Hence, the sign-structure
of the corresponding eigenvectors has been used to identify almost invariant
aggregates of states.

3.2 The Non-Reversible Case

One key assumption made in the previous section is that we have a reversible
Markov chain. In order to apply spectral segmentation to non-reversible Markov
chains, we have to construct a reversible chain that approximates the original.
Given some Markov process with probability matrix P and steady-state proba-
bility vector π, its time reversal will have transition matrix P̄ with elements:

P̄ij = Pji

πj

πi

(2)

Of course in the reversible case, P = P̄ . In order to handle non-reversible models,
we could construct a reversible one that shares some properties of the initial
non-reversible Markov model and its time reversal. For instance, we consider the
following process:

P̃ =
P + P̄

2
(3)

In the equation above, P̃ can be thought of as the mean process of the two. It is
trivial to show that P̃ is a stochastic matrix with steady-state distribution π. A
similar approach appeared in [23], where a so-called multiplicative reversibilisa-

tion P̃ = PP̄ has been applied instead. In both cases though, there is an implicit
assumption that the original non-reversible model has properties similar to those
of the corresponding reversible process. This is true up to some extent, as both
models have the same steady-state distribution. Thus, the eigenstructure of P̃
is used to obtain a partition of the state-space of P . Equation (3) implies that
the closer to reversible P is, the better the approximation of its eigenproperties
will be, when using P̃ . However in cases where this is not true, this assumption
could be a significant source of error. This is a consideration we try to investigate
experimentally in Sect. 6.

4 Aggregation based on Quasi-lumpability

4.1 A Pseudo-metric related to Quasi-Lumpability

Given a partitioning of the state-space, lumpability implies that states that
belong to the same class have identical transition probabilities to each of the
partitions. To describe states with approximately similar rather than identical
behaviour, we have to relax this condition. Approximately similar behaviour is
captured by the concept of quasi-lumpability [9]:
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Definition 1 (Quasi-Lumpability). A Markov chain with probability matrix

P will be quasi-lumpable w.r.t. a partition ∆ = {A1, . . . , AK} with K equivalence

classes, if for any two classes Ak, Al ∈ ∆, and for any two states i, j ∈ Ak:

∣

∣

∣

∣

∣

∑

m∈Al

Pim −
∑

m∈Al

Pjm

∣

∣

∣

∣

∣

≤ ǫ, ǫ ≥ 0 (4)

The quantity ǫ in the equation above corresponds to the maximum difference
between elements that are assigned to the same class. If we consider the transition
probability matrix P of a quasi-lumpable model, this can be represented as
P = P− + P ǫ, where P− is a lumpable Markov chain and P ǫ a matrix with
no element greater than the ǫ quantity of (4). In general, most of the values
of P ǫ should be zero, while the non-zero elements should be small. As noted
in [1], if ǫ is sufficiently small, the lumpable model with transition matrix P−

approximates the behaviour of the quasi-lumpable one.
Using (4), we can define a pseudo-metric that captures a kind of similarity

distance between states. If we consider all the equivalence classes A1, . . . , AK ,
we define the following quantity for any two states i, j that belong to the same
equivalence class:

Ei,j =

K
∑

l=1

∣

∣

∣

∣

∣

∑

m∈Al

Pim − Pjm

∣

∣

∣

∣

∣

(5)

In the equation above, Ei,j will be equal to zero, iff the Markov chain is lumpable
with respect to the partition ∆ = {A1, . . . , AK}. Since it is possible that Ei,j = 0
when i 6= j, Ei,j is characterized as a pseudo-metric, rather than as a metric.

Hence, the optimal quasi-lumpable partition will be the one that minimizes
the quantity Ei,j for any two states in the same class. However, the value of Ei,j

depends not only on the transition probabilities of states i and j, but also on the
way that the states are distributed across the classes. In other words, a different
partitioning of the state-space will result in a completely different Ei,j quantity
for the very same i and j states. Thus, it is very difficult to design an algorithm
that minimizes Ei,j with respect to the partitioning.

Instead, we show that the pseudo-metric Ei,j is bounded by a proper distance
metric independent of the partitioning. Starting from (5), if we pull the inner
sum out of the absolute value, we will have a larger value:

Ei,j ≤

K
∑

l=1

∑

m∈Al

|Pim − Pjm| (6)

It is evident that the sums in the inequality above cover the entire state-space
of the original Markov model. Thus, given that the initial model has N states,
the right-hand side of the inequality above can be written as:

Di,j =

N
∑

n=1

|Pin − Pjn| (7)
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which is actually the Manhattan distance in the R
N space defined by the tran-

sition probabilities. To put it differently, we consider the states as N -valued
vectors, where each one of the values is a transition probability to another state.

This shows thatDi,j ≥ Ei,j . It is relatively straightforward to apply a cluster-
ing algorithm in order to identify K clusters such that the Manhattan distance
Di,j is minimized for instances that belong to the same cluster. The minimiza-
tion of Di,j will result in small values for Ei,j , and hence for the ǫ quantity in
(4) as well.

4.2 The Clustering Algorithm

In order to obtain a partitioning of the state-space that minimizes the Man-
hattan distance for states in the same cluster, we have to apply a clustering
algorithm. Such algorithms group the input data into clusters which minimize a
distance metric between data in the same group. Typical clustering techniques,
such as K-means or Expectation-Maximization, start from a randomly-picked
initial solution and they perform a number of iterations until they converge to
some optimum. Typically, multiple runs are required, as the solution obtained
at each run is dependent on the initial randomly-picked solution.

In contrast, spectral clustering [19][21] implies that a dataset is partitioned
depending on the eigenvectors of the Laplacian matrix, rather than on the local
proximities of data-points. Concisely, the K eigenvectors that correspond to the
largest K eigenvalues of the Laplacian are selected. The data is mapped to the
rows of the N × K matrix formed by stacking these eigenvectors as columns.
The clusters of data are well separated in this RK space, meaning that it should
be easy to identify a globally optimal clustering, in contrast to “conventional”
clustering techniques whose solutions are only locally optimal. The algorithm of
our choice is the one proposed by Ng et al in [21].

4.3 Quasi-Lumping

Assuming that we have a nearly optimal partition of the state-space, the next
step is to construct a Markov chain that approximates the original model. Given
some N × N lumpable matrix P with K equivalence classes A1, . . . , AK , we
define the corresponding K ×K lumped matrix P ′ with entries:

P ′
ij =

∑

l∈Aj

Pil (8)

where i, j = 1, . . .K. We define a model to be quasi-lumped with respect to some
matrix P , if it is lumped with respect to some matrix P−, and P = P− + P ǫ.

According to the definition of lumpability, the sums P ′
ij in (8) for different

states in the same class Ai will be the same. However, in the case of quasi-
lumpable models they will only be approximately the same. The mean value
is a reasonable approximator for populations characterized by almost the same
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value, so we construct the quasi-lumped matrix P̂ with entries:

P̂ij =

∑

k∈Ai

∑

l∈Aj
Pkl

|Ai|
(9)

where |Ai| denotes the number of states included in class Ai. It is evident that
in the lumpable case, Equation (9) degrades to (8).

5 Compositional Aggregation

So far, we have discussed two ways to approximately aggregate a Markov chain.
However, neither of these is directly applicable in practice, as they both require
an explicit representation of the generator matrix. Instead, we attempt to reduce
only parts of the model that are going to be combined in a compositional way.

For that reason, we can use a high-level modelling formalism such as PEPA
[13], that enables us to model the system as a collection of cooperating com-
ponents. The idea is to utilize a compositional representation of the underlying
Markov chain of a PEPA model, or more accurately, a compositional represen-
tation of the corresponding generator matrix. This is actually possible by using
the Kronecker form of a PEPA model, where the “global” generator matrix is
defined in terms of the “partial” generator matrices of cooperating components
combined via Kronecker algebra. It should be feasible to produce reduced ver-
sions of such partial generator matrices, and then combine them to obtain an
approximately aggregated state-space.

As shown in [15], the generator matrix Q that corresponds to a PEPA model
can be represented as a Kronecker product of terms in the following way:

Q =

N
⊕

i=1

Ri +
∑

a∈A

ra ×

(

N
⊗

i=1

Pi,a −

N
⊗

i=1

P̄i,a

)

(10)

where

– N is the number of components in the PEPA model.
– A is the set of shared actions.
– Ri is the rate matrix of i-th component based on its individual actions.
– ra is the minimum functional rate of the shared action a over all components.

The term ‘functional rate’ implies that the rate of an action depends on
the state of one or more components. Equivalently, there is a single rate
function rα(C) that describes the apparent rate of action α for each state of
component C. The minimum of the functional rates over all components Ci,
i = 1 . . . N is defined as follows:

rα = min(rα(C1), rα(C2), . . . rα(CN )) (11)

– Pi,a is the probability matrix of the i-th component for the shared action a.
P̄i,a is a diagonal matrix that ensures that the row sums of the corresponding
probability matrix are zero, i.e. it is a valid generator matrix.
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A useful observation regarding (10) is that any component Ci is described
by two transition rate matrices: Ri which depends on its individual actions only,

and R
(coop)
i =

∑

a∈A raPi,a which cannot be determined, since we do not know
the apparent rates of the cooperating components. If the set of shared actions is

relatively small, we can expect that Ri will be much more dense than R
(coop)
i . If

this condition holds, it should be reasonable to apply an approximate aggregation
algorithm to Ri, in order to obtain a nearly optimal partition of this partial
state-space.

This approach could be problematic though, as eliminating a shared action in
a particular component may introduce deadlocks in its behaviour. For example,
consider a component Ci with rate matrices:

Ri =













0 0 0 0 2
3 0 6 0 0
0 3 0 0 4
0 0 0 0 0
0 0 0 5 0













R
(coop)
i =













0 0 3 0 0
0 0 0 0 0
0 0 0 1 0
0 3 0 6 0
0 0 2 0 0













In the example above, Ri contains a deadlock at the fourth state, meaning that
there is no non-trivial steady-state distribution overRi in isolation, hence no way
to compute the reversible process needed to apply the NCD-based approach, as
described in Sect. 3.2. To solve this problem, we use the R̂i matrix instead, which
is constructed as in the following example:

R̂i =













0 0 ε 0 2
3 0 6 0 0
0 3 0 ε 4
0 ε 0 ε 0
0 0 ε 5 0













where ε > 0 is a small rate added to some transition for each shared action.
Hence, if the original PEPA model contains no deadlocks, we can be sure that
R̂i will have no deadlocks either. By doing so, we obtain a partition of the
component’s state-space by using only a part of its behaviour. The ε rates added
are equally distributed and therefore imply ignorance about the shared action
rates.

The partitioning obtained using R̂i is applied to both Ri and R
(coop)
i . Thus,

the Ni ×Ni partial generator matrix Qi = Ri +R
(coop)
i is approximated by the

Ki ×Ki matrix Q′
i = R′

i +R
′(coop)
i , where Ki is the number of partitions for the

component Ci. Combining the reduced partial generator matrix Qi using the
Kronecker operations defined in (10), will result in a reduced global generator
as well.

The state-space of a single sequential component does not usually involve
more than a few states in typical models. It would be more effective if we could
approximate components with a few hundreds of states instead. For that purpose,
we apply clustering to cooperations of components rather than applying it to
single sequential components. The cooperation rate matrix R(coop) of a non-
sequential C component involves only actions that are shared with components
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outside the cooperation. Hence, actions shared between sequential components
included in the cooperation will only affect the individual rate matrix of C.
In the context of this work, we apply the approximate reduction algorithms to
populations of identical components.

6 A Multi-Scale Example

We compare the two different approaches for approximate Markov chain ag-
gregation. The quasi-lumpability based approach described in Sect. 4 involves
applying a clustering algorithm on the row entries of the transition probabil-
ity matrix of a Markov chain. The NCD based approach discussed in Sect. 3
partitions the Markov chain according to the eigenvectors that correspond to
the top eigenvalues of the probability matrix. Irreversible chains are handled by
constructing a reversible process according to (3). For each one of the examples
that follow, we explicitly note which components have been approximated and
what compression ratio has been used. Once a nearly optimal partition of the
state-space is obtained using either of the two methods, a reduced Markov chain
is constructed as described in Sect. 4.3.

Eventually, we compare the transient and the steady-state behaviour of the
initial model with those of the approximately aggregated models. The PRISM
model checker [18], its sparse engine in particular, has been used for that pur-
pose. The Jacobi algorithm has been applied for computing the steady-state
distribution, and the uniformisation method for the transient probabilities. The
experiments have been performed in an Intel R© Quad-Core XeonTM @ 3.20GHz
PC running Linux.

At this point, we define a simple example to demonstrate the potential of
the compositional approximate aggregation. We shall consider models featuring
high-population components, as even simple model descriptions can lead to very
large state-spaces. In particular, multi-scale models are of interest since more
efficient approaches such as fluid flow approximation [14] are not as readily
applicable, because they make an assumption of continuity which is strained
at low population numbers. So we consider a peer-to-peer system that involves
large numbers of peers that communicate with each other with the help of an
indexing server, as described in the following PEPA model:

PeerA
def
= (localActionA, rlocalA).PeerAlocal

+ (lookupB ,⊤).PeerAlookup

PeerAlocal
def
= (finishA, rfinishA).PeerA

PeerAlookup
def
= (cacheA, rcacheA).PeerAlocal

+ (exchange, rexchangeA).P eerA

PeerB
def
= (localActionB , rlocalB ).PeerBlocal

+ (lookupA,⊤).PeerBlookup

PeerBlocal
def
= (finishB , rfinishB ).PeerB

PeerBlookup
def
= (cacheB , rcacheB ).PeerBlocal

+ (exchange , rexchangeB ).PeerB
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Our system involves two classes of peers which exchange data pairwise.
Both types of peers have some local functionality and a shared activity called
exchange. Moreover, a peer will have to look up other peers in an indexing server
before proceeding to any data exchange.

Index
def
= (lookupA, rlookupA).IndexbusyA
+ (lookupB , rlookupB ).IndexbusyB
+ (fail , rfail ).Indexbroken

IndexbusyA
def
= (refresh , rrefresh ).Index
+ (fail , rfail ).Indexbroken

IndexbusyB
def
= (refresh , rrefresh ).Index
+ (fail , rfail ).Indexbroken

Indexbroken
def
= (repair , rrepair ).Index

Table 1. Rate values used in the examples

Name Value Name Value Name Value

rlocalA 5 rlocalB 2 rlookupA 10
rfinishA 4 rfinishB 3 rlookupB 10
rcacheA 1 rcacheB 2 rfail 0.02

rexchangeA 1 rexchangeB 0.5 rrefresh 10
rrepair 0.5

6.1 Compositional vs Global Aggregation

In this experiment we define a system small enough to compare the compositional
approximate aggregation with a globally applied approach. The first system’s
structure is summarized in the following system equation, with cooperation sets
L = {exchange} and K = {lookupA, lookupB}.

System5 :5 :1
def

= PeerA[5]⊲⊳
L

PeerB [5]⊲⊳
K

Index

If we apply exact aggregation as described in [11], the number of states for the
PeerA[5] and PeerB [5] components will be 21 (these would be 243 for each with
no aggregation). Therefore, we distinguish the following cases:

i. PeerA[5] and PeerB [5] components are further reduced independently. The
compression ratio used is 0.5 for both, resulting in a reduced chain of 400
states.

ii. Approximate aggregation is applied on the entire system’s generator matrix.
The compression ratio used was such that it results in a reduced chain of
400 states again.
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Table 2. Execution Times for System5 :5 :1

Original
Quasi-

Lumpability
(Compositional)

NCD
(Compositional)

Quasi-
Lumpability
(Global)

NCD
(Global)

Approximation - 0.15 sec 0.2 sec 205 sec 130 sec

PRISM Loading 2 sec 0.5 sec 0.5 sec 0.5 sec 0.5 sec

Transient Solutiona 2.1 sec 0.6 sec 0.6 sec 0.6 sec 0.6 sec

Steady-State solution 0.2 sec 0.05 sec 0.05 sec 0.05 sec 0.05 sec

Total Time 4.3 sec 1.3 sec 1.35 sec 206.15 sec 131.15 sec

Number of states 1764 400 400 400 400
a 100 points: 0 ≤ t ≤ 2

The K-L divergence is a very popular measure for comparing probability
distributions. For two probability vectors p and q, it is defined as:

KL(p||q) =
∑

i

pi log
pi

qi
(12)

Given a partition of the state-space with K classes, we define p as a K-valued
vector containing the aggregated probabilities of the original system according
to the partition of the state-space used. Then, q will be a K-valued vector con-
taining the probabilities of the corresponding reduced model, which is produced
by either the quasi-lumpability or the NCD approach. We want to see which one
of the approximation approaches results in the lowest K-L divergence from the
original state distribution.

The quasi-lumpability and the NCD based approaches have been applied in
both a compositional and a global setting. Figure 1(a) summarizes the K-L di-
vergences at different times t, for the four approximate aggregation methods.
Judging by the K-L divergences, global aggregation does not appear to be far
superior to the compositional approaches. Although there is no proof that this
statement generalizes to every possible model, it seems reasonable to use com-
positional aggregation in order to produce a reasonable approximation of the
original stochastic process. This argument is supported by Table 2, which sum-
marizes the running times for aggregating and solving the model. As expected,
compositional aggregation requires a very small initial cost to reduce the model,
in contrast to the global case.

A second observation with respect to Fig. 1(a) is that neither the quasi-
lumpability nor the NCD based approach seems to produce significantly more
accurate results. In fact, the graphs are rather contradictory, as the global set-
ting seems to favour quasi-lumpability, while in the compositional case NCD is
the method that performs better. Figure 1(b) depicts the K-L divergences for
System10 :20 :2 of the next section. For this larger model, the compositionally
applied quasi-lumpability approach is more accurate. Therefore, it seems rea-
sonable to conclude that approximation accuracy is dependent on the properties
of the model.
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Fig. 1. Evolution of K-L divergences of various methods from the original state distri-
bution

6.2 Approximation of Component Behaviour

This second example provides a more detailed view of component behaviour. The
following system equation is considered, with cooperation sets L = {exchange}
and K = {lookupA, lookupB}.

System10 :20 :2
def

= PeerA[10]⊲⊳
L

PeerB [20]⊲⊳
K

Index [2]

If we apply exact aggregation as described in [11], the number of states for the
PeerA[10] component will be 66, while PeerB [20] will have 231 states (these
would be 59, 049 and 3, 486, 784, 401 states with no aggregation). Although nei-
ther of the components is particularly large, their combination results in a
large state-space. However, it is relatively easy to further reduce PeerA[10] and
PeerB [20] independently. The compression ratio used is 0.5 for both components.

This approximation of individual components results in significant reduction
of the total state-space. As can be seen in Table 3, this reduction required only a
small initial cost, while it resulted in a considerable decrease of the analysis time.
A global reduction of the state-space would be practically infeasible for a models
of such size. Figure 2(a) depicts the evolution of the average populations of the
model components that have been reduced. Those figures seem to be reasonable
approximations of the original model’s average behaviour.

It would also be interesting though to look at the behaviour of the compo-
nents that have not been approximated. Figure 2(b) depicts the evolution of the
average Index populations. Both quasi-lumpability and NCD-based approach re-
sult in approximations very close to the original solution. This provides evidence
that supports the claim that the behaviour of the unreduced components will be
mostly unaffected, given a good partition of the state-space. Intuitively, we can
approximately aggregate components whose behaviour is of minor importance
and still obtain a very good approximation for the components that have not
been approximated, which might be critical. In our example, if we were inter-
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Table 3. Execution Times for System10 :20 :2

Original
Quasi-

Lumpability
NCD

Approximation - 1.2 sec 1.5 sec

PRISM Loading 433 sec 105 sec 105 sec

Transient Solutionb 310 sec 93 sec 93 sec

Steady-State solution 21 sec 6 sec 6 sec

Total Time 764 sec 205.2 sec 205.5 sec

Number of states 152460 37950 37950
b 100 points: 0 ≤ t ≤ 2

ested in the indexing servers’ behaviour only, the approximation error would be
negligible.
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Fig. 2. Evolution of average populations for System10 :20 :2

7 Conclusions

Although approximate Markov chain aggregation is not a new concept, it has
not been particularly popular in the field of Markovian modelling, since an ex-
plicit representation of the transition matrix is typically required. In this paper,
we have examined two different methods to approximately aggregate a Markov
chain, and we have explored the potential of applying aggregation in a compo-
sitional way.

The traditional method for selecting a nearly optimal partition of the state-
space makes use of the eigenstructure of the probability matrix. We have de-
scribed this family of approaches as the NCD approach, since the eigenvectors
convey information about parts of the state-space that are nearly completely
decomposable. We have tried to define an alternative strategy of state-space
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aggregation that relies on the concept of quasi-lumpability instead. More specif-
ically, quasi-lumpability has been associated with the minimization of the Ei,j

measure between states in the same class. It has been shown that a simple clus-
tering algorithm can be used to obtain an upper bound for this measure.

Intuitively, the quasi-lumpability approach should be superior, since a nearly
completely decomposable system is essentially quasi-lumpable, but not vice-
versa. Experimental results do not support this hypothesis though. In fact, it
appears that some models favour the quasi-lumpability approach, while others
the NCD approach. This can be attributed to the fact that the quasi-lumpability
method is suboptimal, since it minimizes only an upper bound for Ei,j . A better
approximation of the total Ei,j error will be the subject of future work.

By using the Kronecker representation of PEPA models, we were able to re-
duce the local state-space of the labelled CTMCs that correspond to PEPA com-
ponents. This practice resulted in a great reduction of the state-space size with a
small initial cost for aggregating the PEPA components, in contrast with aggre-
gating the entire Markov chain. The multi-scale example presented demonstrates
the potential of compositional approximate aggregation in two ways. Firstly, the
compositional approach resulted in a reasonable approximation of the original
model, especially when compared to a global approach. Secondly, the error in the
approximation of the unreduced components was found to be negligible, which
means that critical components can be excluded from aggregation.

A final note on the applicability of our approach is that the approximated
components are required to have a set of shared actions that is relatively small
when compared to their set of individual actions. That would mean that the indi-
vidual rate matrix is dense enough to apply a partitioning algorithm on it. There-
fore, our approach is mostly applicable to models that can be decomposed to
weakly dependent components. This is apparently related to the notion of quasi-
separability, which has been applied to PEPA before [25]. A characterisation of
the applicability of compositional aggregation in terms of quasi-separability is
an interesting direction for future work.
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