Skip to main content

Time Propagation of Many-Body Quantum States on Graphics Processing Units

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7782))

Abstract

We demonstrate the effectiveness of graphics processing units (GPU) in computing the time evolution of a many-body quantum state. We study the Hubbard model with exact diagonalization. We discretize the time into small steps and expand the time evolution operator into a Taylor series. An algorithm for calculating the time evolution on a GPU is given and tested on a 1D lattice to observe spin-charge separation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kanamori, J.: Electron correlation and ferromagnetism of transition metals. Prog. Theor. Phys. 30(3), 275–289 (1963)

    Article  MATH  Google Scholar 

  2. Gutzwiller, M.C.: Effect of correlation on the ferromagnetism of transition metals. Phys. Rev. Lett. 10, 159–162 (1963)

    Article  Google Scholar 

  3. Hubbard, J.: Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238–257 (1963)

    Article  Google Scholar 

  4. Meng, Z.Y., Lang, T.C., Wessel, S., Assaad, F.F., Muramatsu, A.: Quantum spin liquid emerging in two-dimensional correlated Dirac fermions. Nature 464, 847–851 (2010)

    Article  Google Scholar 

  5. Lieb, E.H., Wu, F.Y.: Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. 20(25), 1445–1448 (1968)

    Article  Google Scholar 

  6. Lin, H.Q., Gubernatis, J.E.: Exact diagonalization methods for quantum systems. Comput. Phys. 7, 400 (1993)

    Google Scholar 

  7. NVIDIA: CUDA C Programming Guide, Version 4.0 (2011), http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

  8. Dziubak, T., Matulewski, J.: An object-oriented implementation of a solver of the time-dependent Schrödinger equation using the CUDA technology. Computer Physics Communications 183(3), 800–812 (2012)

    Article  Google Scholar 

  9. Broin, C.O., Nikolopoulos, L.A.A.: An OpenCL implementation for the solution of the time-dependent Schrödinger equation on GPUs and CPUs. Computer Physics Communications 183(10), 2071–2080 (2012)

    Article  Google Scholar 

  10. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2006)

    Article  Google Scholar 

  11. Siro, T., Harju, A.: Exact diagonalization of the Hubbard model on graphics processing units. Comp. Phys. Comm. 183, 1884–1889 (2012)

    Article  Google Scholar 

  12. Lipparini, E.: Modern Many-Particle Physics: Atomic Gases, Quantum Dots and Quantum Fluids. World Scientific (2003)

    Google Scholar 

  13. Kollath, C., Schollwöck, U.: Cold fermi gases: a new perspective on spin-charge separation. New J. Phys. 8, 220 (2006)

    Article  Google Scholar 

  14. Kim, C., Matsuura, A.Y., Shen, Z.-X., Motoyama, N., Eisaki, H., Uchida, S., Tohyama, T., Maekawa, S.: Observation of spin-charge separation in one-dimensional SrCuO2. Phys. Rev. Lett. 77, 4054 (1996)

    Article  Google Scholar 

  15. Jagla, E.A., Hallberg, K., Balseiro, C.A.: Numerical study of charge and spin separation in low-dimensional systems. Phys. Rev. B 47, 5849 (1993)

    Article  Google Scholar 

  16. Hiltunen, T., Harju, A.: Y-junction splitting spin states of a moving quantum dot. Phys. Rev. B 86, 121301 (2012)

    Article  Google Scholar 

  17. Särkkä, J., Harju, A.: Spin dynamics at the singlet-triplet crossings in a double quantum dot. New Journal of Physics 13(4), 043010 (2011)

    Article  Google Scholar 

  18. Särkkä, J., Harju, A.: Spin dynamics in a double quantum dot: Exact diagonalization study. Phys. Rev. B 77, 245315 (2008)

    Article  Google Scholar 

  19. Yuan, S., De Raedt, H., Katsnelson, M.I.: Modeling electronic structure and transport properties of graphene with resonant scattering centers. Phys. Rev. B 82, 115448 (2010)

    Article  Google Scholar 

  20. Uppstu, A., Saloriutta, K., Harju, A., Puska, M., Jauho, A.-P.: Electronic transport in graphene-based structures: An effective cross-section approach. Phys. Rev. B 85, 041401 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siro, T., Harju, A. (2013). Time Propagation of Many-Body Quantum States on Graphics Processing Units. In: Manninen, P., Öster, P. (eds) Applied Parallel and Scientific Computing. PARA 2012. Lecture Notes in Computer Science, vol 7782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36803-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36803-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36802-8

  • Online ISBN: 978-3-642-36803-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics