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Abstract. The Schur method for computing a matrix square root re-
duces the matrix to the Schur triangular form and then computes a
square root of the triangular matrix. We show that by using either stan-
dard blocking or recursive blocking the computation of the square root of
the triangular matrix can be made rich in matrix multiplication. Numeri-
cal experiments making appropriate use of level 3 BLAS show significant
speedups over the point algorithm, both in the square root phase and in
the algorithm as a whole. In parallel implementations, recursive block-
ing is found to provide better performance than standard blocking when
the parallelism comes only from threaded BLAS, but the reverse is true
when parallelism is explicitly expressed using OpenMP. The excellent
numerical stability of the point algorithm is shown to be preserved by
blocking. These results are extended to the real Schur method. Blocking
is also shown to be effective for multiplying triangular matrices.

1 Introduction

A square root of a matrix A ∈ Cn×n is any matrix satisfying X2 = A. Matrix
square roots have many applications, including in Markov models of finance, the
solution of differential equations and the computation of the polar decomposition
and the matrix sign function [12].

A square root of a matrix (if one exists) is not unique. However, if A has
no eigenvalues on the closed negative real line then there is a unique principal
square root A1/2 whose eigenvalues all lie in the open right half-plane. This is the
square root usually needed in practice. If A is real, then so is A1/2. For proofs
of these facts and more on the theory of matrix square roots see [12].

The most numerically stable way of computing matrix square roots is via
the Schur method of Björck and Hammarling [6]. The matrix A is reduced to
upper triangular form and a recurrence relation enables the square root of the
triangular matrix to be computed a column or superdiagonal at a time. In §2 we
show that the recurrence can be reorganized using a standard blocking scheme or
recursive blocking in order to make it rich in matrix multiplications. We show ex-
perimentally that significant speedups result when level 3 BLAS are exploited in



the implementation, with recursive blocking providing the best performance. In
§3 we show that the blocked methods maintain the excellent backward stability
of the non-blocked method. In §4 we discuss the use of the new approach within
the Schur method and explain how it can be extended to the real Schur method
of Higham [10]. We compare our serial implementations with existing MAT-
LAB functions. In §5 we compare parallel implementations of the Schur method,
finding that standard blocking offers the greatest speedups when the code is ex-
plicitly parallelized with OpenMP. In §6 we discuss some further applications of
recursive blocking to multiplication and inversion of triangular matrices. Finally,
conclusions are given in §7.

2 The Use of Blocking in the Schur Method

To compute A1/2, a Schur decomposition A = QTQ∗ is obtained, where T is
upper triangular and Q is unitary. Then A1/2 = QT 1/2Q∗. For the remainder of
this section we will focus on upper triangular matrices only. The equation

U2 = T (1)

can be solved by noting that U is also upper triangular, so that by equating
elements,

U2
ii = Tii, (2)

UiiUij + UijUjj = Tij −
j−1∑
k=i+1

UikUkj . (3)

These equations can be solved either a column or a superdiagonal at a time,
but solving a column at a time is preferable since it allows more efficient use of
cache memory. Different choices of sign in the scalar square roots of (2) lead to
different matrix square roots. This method will be referred to hereafter as the
“point” method.

The algorithm can be blocked by letting the Uij and Tij in (2) and (3) refer
to m × m blocks, where m � n (we assume, for simplicity, that m divides
n). The diagonal blocks Uii are then obtained using the point method and the
off-diagonal blocks are obtained by solving the Sylvester equations (3) using
LAPACK routine xTRSYL (where ‘x’ denotes D or Z according to whether real
or complex arithmetic is used) [4]. Level 3 BLAS can be used in computing the
right-hand side of (3) so significant improvements in efficiency are expected. This
approach is referred to as the (standard) block method.

To test this approach, a Fortran implementation was written and compiled
with gfortran on a 64 bit Intel Xeon machine, using the ACML Library for
LAPACK and BLAS calls. Complex upper triangular matrices were generated,
with random elements whose real and imaginary parts were chosen from the
uniform distribution on [0, 1). Figure 1 shows the run times for the methods, for
values of n up to 8000. A block size of 64 was chosen, although the speed did



not appear to be particularly sensitive to the block size—similar results were
obtained with blocks of size 16, 32, and 128. The block method was found to be
up to 6 times faster than the point method. The residuals ‖Û2−T‖/‖T‖, where

Û is the computed value of U , were similar for both methods. Table 1 shows
that, for n = 4000, approximately 85% of the run time is spent in ZGEMM
calls.
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Fig. 1. Run times for the point, block, and recursion methods for computing the square
root of a complex n× n triangular matrix for n ∈ [0, 8000].

A larger block size enables larger GEMM calls to be made. However, it leads
to larger calls to the point algorithm and to xTRSYL (which only uses level 2
BLAS). A recursive approach may allow increased use of level 3 BLAS.

Equation (1) can be rewritten as(
U11 U12

0 U22

)2

=

(
T11 T12
0 T22

)
, (4)

where the submatrices are of size n/2 or (n ± 1)/2 depending on the parity
of n. Then U2

11 = T11 and U2
22 = T22 can be solved recursively, until some

base level is reached, at which point the point algorithm is used. The Sylvester
equation U11U12 +U12U22 = T12 can then be solved using a recursive algorithm
devised by Jonsson and K̊agström [14]. In this algorithm, the Sylvester equation



AX +XB = C, with A and B triangular, is written as(
A11 A12

0 A22

)(
X11 X12

X21 X22

)
+(

X11 X12

X21 X22

)(
B11 B12

0 B22

)
=

(
C11 C12

C21 C22

)
,

where each submatrix is of size n/2 or (n± 1)/2. Then

A11X11 +X11B11 = C11 −A12X21, (5)

A11X12 +X12B22 = C12 −A12X22 −X11B12, (6)

A22X21 +X21B11 = C21, (7)

A22X22 +X22B22 = C22 −X21B12. (8)

Equation (7) is solved recursively, followed by (5) and (8), and finally (6). At
the base level a routine such as xTRSYL is used.

The run times for a Fortran implementation of the recursion method in com-
plex arithmetic, with a base level of size 64, are shown in Figure 1. The approach
was found to be consistently 10% faster than the block method, and up to 8 times
faster than the point method, with similar residuals in each case. The precise
choice of base level made little difference to the run time.

Table 2 shows that the run time is dominated by GEMM calls and that the
time spent in ZTRSYL and the point algorithm is similar to the block method.
The largest GEMM call uses a submatrix of size n/4.

Table 1. Profiling of the block method for computing the square root of a triangular
matrix, with n = 4000. Format: time in seconds (number of calls).

Total time taken: 24.03

Calls to point algorithm: 0.019 (63)
Calls to ZTRSYL 3.47 (1953)
Calls to ZGEMM: 20.54 (39711)

3 Stability of the Blocked Algorithms

We use the standard model of floating point arithmetic [11, §2.2] in which the
result of a floating point operation, op, on two scalars x and y is written as

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u,

where u is the unit roundoff. In analyzing a sequence of floating point operations
it is useful to write [11, §3.4]

n∏
i=1

(1 + δi)
ρi = 1 + θn, ρi = ±1,



Table 2. Profiling of the recursive method for computing the square root of a triangular
matrix, with n = 4000. Format: time in seconds (number of calls).

Total time taken: 22.04

Calls to point algorithm: 0.002 (64)
Calls to ZTRSYL 3.37 (2016)
Calls to ZGEMM total: 18.64 (2604)

Calls to ZGEMM with n = 1000 7.40 (4)
Calls to ZGEMM with n = 500 5.34 (24)
Calls to ZGEMM with n = 250 3.16 (112)
Calls to ZGEMM with n = 125 1.81 (480)
Calls to ZGEMM with n <= 63 0.94 (1984)

where
|θn| ≤

nu

1− nu
=: γn.

It is also convenient to define γ̃n = γcn for some small integer c whose precise
value is unimportant. We use a hat denote a computed quantity and write |A|
for the matrix whose elements are the absolute values of the elements of A.

Björck and Hammarling [6] obtained a normwise backward error bound for

the Schur method. The computed square root X̂ of the full matrix A satisfies
X̂2 = A+∆A, where

‖∆A‖F ≤ γ̃n3‖X̂‖2F . (9)

Higham [12, §6.2] obtained a componentwise bound for the triangular phase of

the algorithm. The computed square root Û of the triangular matrix T satisfies
Û2 = T +∆T , where

|∆T | ≤ γ̃n|Û |2. (10)

This bound implies (9). We now investigate whether the bound (10) still holds
when the triangular phase of the algorithm is blocked.

Consider the Sylvester equation AX + XB = C in n × n matrices with
triangular A and B. When it is solved in the standard way by the solution of n
triangular systems the residual of the computed X̂ satisfies [11, §16.1]

|C − (AX̂ + X̂B)| ≤ γ̃n(|A||X̂|+ |X̂||B|). (11)

In the (non-recursive) block method, to bound ∆Tij we must account for
the error in performing the matrix multiplications on the right-hand side of (3).
Standard error analysis for matrix multiplication yields, for blocks of size m,∣∣∣∣∣fl

(
j−1∑
k=i+1

ÛikÛkj

)
−

j−1∑
k=i+1

ÛikÛkj

∣∣∣∣∣ ≤ γ̃n|Û |2ij .
Substituting this into the residual for the Sylvester equation in the off-diagonal
blocks, we obtain the componentwise bound (10).



To obtain a bound for the recursive blocked method we must first check if
(11) holds when the Sylvester equation is solved using Jonsson and K̊agström’s
recursive algorithm. This can be done by induction, assuming that (11) holds at
the base level. For the inductive step, if suffices to incorporate the error estimates
for the matrix multiplications in the right hand sides of (5)–(8) into the residual
bound.

Induction can then be applied to the recursive blocked method for the square
root. The bounds (10) and (11) are assumed to hold at the base level. The
inductive step is similar to the analysis for the block method. Overall, (10) is
obtained.

We conclude that both our blocked algorithms for computing the matrix
square root satisfy backward error bounds of the same forms (9) and (10) as the
point algorithm.

4 Serial Implementations

When used with full (non-triangular) matrices, more modest speedups are ex-
pected because of the significant overhead in computing the Schur decomposi-
tion. Figure 2 compares run times of the MATLAB function sqrtm (which does
not use any blocking) and Fortran implementations of the the point method
(fort point) and the recursive blocked method (fort recurse), called from
within MATLAB using a mex interface, on a 64 bit Intel i3 machine. The matri-
ces have elements whose real and imaginary parts are chosen from the uniform
random distribution on the interval [0, 1). The recursive routine is found to be
up to 2.5 times faster than sqrtm and 2 times faster than fort point.

An extension of the Schur method due to Higham [10] enables the square
root of a real matrix to be computed without using complex arithmetic. A real
Schur decomposition of A is computed. Square roots of the 2×2 diagonal blocks
of the upper quasi-triangular factor are computed using an explicit formula. The
recurrence (3) now proceeds either a block column or a block superdiagonal at
a time, where the blocks are of size 1 × 1, 1 × 2, 2 × 1, or 2 × 2 depending
on the diagonal block structure. A MATLAB implementation of this algorithm
sqrtm real is available in the Matrix Function Toolbox [9]. The algorithm can
also be implemented in a recursive manner, the only subtlety being that the
“splitting point” for the recursion must be chosen to avoid splitting any 2 ×
2 diagonal blocks. A similar error analysis to §3 applies to the real recursive
method, though since only a normwise bound is available for the point algorithm
applied to the quasi-triangular matrix the backward error bound (10) holds in
the Frobenius norm rather than elementwise.

Figure 3 compares the run times of sqrtm and sqrtm real with Fortran
implementations of the real point method (fort point real) and the real re-
cursive method (fort recurse real), also called from within MATLAB. The
matrix elements are chosen from the uniform random distribution on [0, 1). The
recursive routine is found to be up to 6 times faster than sqrtm and sqrtm real

and 2 times faster than fort point real.
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Fig. 2. Run times for sqrtm, fort recurse, and fort point for computing the square
root of a full n× n matrix for n ∈ [0, 2000].

Both the real and complex recursive blocked routines spend over 90% of
their run time in computing the Schur decomposition, compared with 44% for
fort point, 46% for fort point real, 25% for sqrtm, and 16% for sqrtm real.
The latter two percentages reflect the overhead of the MATLAB interpreter in
executing the recurrences for the (quasi-) triangular square root phase. The 90%
figure is consistent with the flop counts of 28n3 flops for computing the Schur
decomposition and transforming back from Schur form and n3/3 flops for the
square root of the triangular matrix.

5 Parallel Implementations

The blocked and recursive algorithms allow parallel architectures to be exploited
simply by using threaded BLAS. Further performance gains might be extracted
by explicitly parallelizing the triangular phase using OpenMP.

In (3), the (i, j) element of U can be computed only after the elements to its
left in the ith row and below it in the jth column have been found. Computing
U by column therefore offers no opportunity for parallelism within the column
computation. Instead we will compute U by superdiagonal, which allows the
elements on each superdiagonal to be computed in parallel. Parallelization of
the blocked algorithm is analogous.
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Fig. 3. Run times for sqrtm, sqrtm real, fort recurse real and fort point real for
computing the square root of a full n× n matrix for n ∈ [0, 2000].

The recursive block method can be parallelized using OpenMP tasks. Each
recursive call generates a new task. Synchronization points are required to ensure
that data dependencies are preserved. Hence, in equation (4), U11 and U22 can
be computed in parallel, and only then can U12 be found. When solving the
Sylvester equation recursively, only (5) and (8) can be solved in parallel.

When sufficient threads are available (for example when computing the Schur
decomposition) threaded BLAS should be used. When all threads are busy (for
example during the triangular phase of the algorithm), serial BLAS should be
used, to avoid the overhead of creating threads unnecessarily. Unfortunately, it
is not possible to control the number of threads available to individual BLAS
calls in this way. In the implementations described below threaded BLAS are
used throughout, despite this “overparallelization” overhead.

The parallelized Fortran test codes were compiled on a machine containing
4 Intel Xeon CPUs, with 8 available threads, linking to ACML threaded BLAS
[1]. Figure 4 compares run times for the triangular phase of the algorithm, with
triangular test matrices generated with elements having real and imaginary parts
chosen from the uniform random distribution on the interval [0, 1).

The point algorithm does not use BLAS, but 2-fold speedups on eight cores
are obtained using OpenMP. With standard blocking, threaded BLAS alone
gives a 2-fold speed up, but using OpenMP gives a 5.5 times speedup. With
recursive blocking, a 3-fold speedup is obtained by using threaded BLAS, but



using OpenMP then decreases the performance because of the multiple synchro-
nization points at each level of the recursion. Overall, if the only parallelization
available is from threaded BLAS, then the recursive algorithm is the fastest.
However, if OpenMP is used then shorter run times are obtained using the stan-
dard blocking method.
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Fig. 4. Run times for parallel implementations of the point, block, and recursion meth-
ods for computing the square root of a 4000× 4000 triangular matrix.

Figure 5 compares run times for computing the square root of a full square
matrix. Here, the run times are dominated by the Schur decomposition, so the
most significant gains are obtained by simply using threaded BLAS and the gains
due to the new triangular algorithms are less apparent.

6 Further Applications of Recursive Blocking

We briefly mention two further applications of recursive blocking schemes.
Currently there are no LAPACK or BLAS routines designed specifically for

multiplying two triangular matrices, T = UV (the closest is the BLAS routine
xTRMM which multiplies a triangular matrix by a full matrix). However, a block
algorithm is easily derived by partitioning the matrices into blocks. The product
of two off-diagonal blocks is computed using xGEMM. The product of an off-
diagonal block and a diagonal block is computed using xTRMM. Finally the
point method is used when multiplying two diagonal blocks.



1 Thread 8 Threads − BLAS 8 Threads − OpenMP
0

100

200

300

400

500

600

700

800

900

1000

tim
e 

(s
)

 

 
point
block
recursion

Fig. 5. Run times for parallel implementations of the point, block, and recursion meth-
ods for computing the square root of a 4000× 4000 full matrix.

In the recursive approach, T = UV is rewritten as(
T11 T12
0 T22

)
=

(
U11 U12

0 U22

)(
V11 V12
0 V22

)
.

Then T11 = U11V11 and T22 = U22V22 are computed recursively and T12 =
U11V12 + U12V22 is computed using two calls to xTRMM.

Figure 6 shows run times for some triangular matrix multiplications using
serial Fortran implementations of the point method, standard blocking, and re-
cursive blocking on a single Intel Xeon CPU (the block size and base levels were
both 64 in this case, although the results were not too sensitive to the precise
choice of these parameters). As for the matrix square root, the block algorithms
significantly outperform the point algorithm, with the recursive approach out-
performing the standard blocking approach by approximately 5%. However, if
the result of the multiplication is required to overwrite one of the matrices (so
that U ← UV , as is the case in xTRMM) then standard blocking may be prefer-
able because less workspace is required.

The inverse of a triangular matrix can be computed recursively, by expanding
UU−1 = I as (

U11 U12

0 U22

)(
(U−1)11 (U−1)12

0 (U−1)22

)
=

(
I 0
0 I

)
.

Then (Û−1)11 and (Û−1)22 are computed and (Û−1)12 is obtained by solving

U11(Û−1)12 + U12(Û−1)22 = 0. Provided that forward substitution is used, the
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Fig. 6. Run times for the point, block, and recursion methods for multiplying randomly
generated n× n triangular matrices for n ∈ [0, 8000].

right (or left) recursive inversion method can be shown inductively to satisfy
the same right (or left) elementwise residual bound as the point method [7]. A
Fortran implementation of this idea was found to perform similarly to LAPACK
code xTRTRI, so no real benefit was derived from recursive blocking.

7 Conclusions

We investigated two different blocking techniques within Björck and Hammar-
ling’s recurrence for computing a square root of a triangular matrix, finding that
in serial implementations recursive blocking gives the best performance. Neither
approach entails any loss of backward stability. We implemented the recursive
blocking with both the Schur method and the real Schur method (which works
entirely in real arithmetic) and found the new codes to be significantly faster
than corresponding point codes, which include the MATLAB functions sqrtm

(built-in) and sqrtm real (from [9]). Parallel implementations were investigated
using a combination of threaded BLAS and explicit parallelization via OpenMP.
When the only parallelization comes from threaded BLAS recursive blocking still
gives the best performance. However, when OpenMP is used better performance
is obtained using standard blocking. The new codes will appear in a future mark
of the NAG Library [15]. Since future marks of the NAG Library will be imple-



mented explicitly in parallel with OpenMP, the standard blocking algorithm will
be used. Recursive blocking is also fruitful for multiplying triangular matrices.

Because of the importance of the (quasi-) triangular square root, which arises
in algorithms for computing the matrix logarithm [2], [3], matrix pth roots [5], [8],
and arbitrary matrix powers [13], this computational kernel is a strong contender
for inclusion in any future extensions of the BLAS.
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