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Abstract. We explore a GPU implementation of the Krylov-accelerated
AMG algorithm with flexible preconditioning. We demonstrate by means
of two benchmarks from industrial CFD application that the acceleration
with multiple GPUs speeds up the solution phase by a factor of up to 13.
In order to achieve a good performance of the whole AMG algorithm, we
propose for the setup a substitution of the double-pairwise aggregation
by a simpler aggregation scheme skipping the calculation of temporary
grids and operators. The version with the revised setup reduces the total
computing time on multiple GPUs by further 30% compared to the GPU
implementation with the double-pairwise aggregation. We observe that
the GPU implementation of the entire Krylov-accelerated AMG runs up
to four times faster than the fastest CPU implementation.

Introduction

When the speech is on numerical simulation of physical phenomena, the notion
of most engineers and scientists outside the high-performance computing com-
munity is that computers similar to the well-known desktop personal computers
are used. Eventually, some of these computers might be linked by some kind of
network interconnect to local networks or to clusters. In fact, the technical basis
of the processing units, the vast majority of simulations in science and engineer-
ing runs on, is the same as that of a modern workstation, i.e. one or several
many-core CPUs that are recognised to be multiple instruction – multiple data
(MIMD) systems according to Flynn’s taxonomy [1].

Since a couple of years, however, also particular single instruction – multi-
ple data (SIMD) architectures in the form of graphics processing units (GPUs)
have started to attract the attention of both, users and developers of numerical
simulation software. Recent development in both, hardware design and software
tools made it possible to exploit the large computational power of the GPUs for
numerical calculations. However, so far not for every single algorithm a dedi-
cated efficient GPU implementation can be devised. A prominent example is the
Gauß-Seidel smoother: While on conventional CPUs this algorithm is frequently



used since it can be implemented efficiently, its employment on GPU is miti-
gated by its inherent sequential nature. In GPU implementations it is therefore
usually substituted by a ω-Jacobi smoother, although this algorithm has less
favourable smoothing properties. But due to such substitutions or due to algo-
rithmic adjustments in other cases it is today possible that many calculations
in science and engineering are executed on GPU. Nevertheless, it appears that
such GPU-accelerated simulations have not yet reached the significance of the
CPU-based ones in relevant applications in science and engineering. Since the
reduction of the computing times is the main motivation for the use of GPUs,
the improvement of the performance of GPU-accelerated simulations is a major
issue. We will report on a fast implementation of an algebraic multigrid (AMG)
solver for linear systems that has been shown to be efficient for problems in fluid
dynamics, but that can also be used in other applications.

It is known that k-cycle AMG, see Notay [2], has a particularly simple and
computationally inexpensive setup since it uses double-pairwise aggregation. It
is therefore well suited as linear solver within the iterative algorithms used in
computational fluid dynamics (CFD). Compared to other common methods like
Smoothed Aggregation, see Vaněk et al. [3], the inexpensive setup makes this
algorithm also attractive for GPU calculations, since it is particularly difficult
to implement the setup on the GPU efficiently. The absolute run-time of the
setup of the double-pairwise aggregation is small compared to the run-time of
the setup of other AMG algorithms. But it is still large in comparison to the
time spent in the GPU-accelerated solution phase.

In this contribution we show that the attractive run-times of k-cycle algo-
rithms on GPU-accelerated hardware can be even more reduced if the double-
pairwise aggregation is replaced by a simple greedy aggregation algorithm that
we refer to as plain aggregation. The latter method has the advantage that
it does not require the computation of an intermediate (and finally discarded)
grid level like the algorithm originally chosen by Notay [2] does. With GPU-
acceleration, the additional cost due to the slightly worse convergence of the
simpler aggregation scheme is outweighed by the dramatically reduced run-time
of the setup.

1 Aggregation AMG algorithms

The AMG algorithm is here applied as a preconditioner to the pressure-correction
equation in a finite volume based CFD-code, see Emans [4]. We denote this sys-
tem as

Ax = b (1)

where A ∈ Rn×n is symmetric and positive definite or semi-definite, b ∈ Rn is
some right-hand side vector and x ∈ Rn the solution where n is the number
of unknowns. We assume that the matrix is given in Compressed Row Storage
(CRS) format as e.g. described by Falgout et al. [5]. For parallel computations,
a domain decomposition is used to assign a certain set of nodes to each of
the parallel processes. The influences of the values associated with nodes on



neighbouring processes are handled through a buffer layer, i.e. those values are
calculated by the process they are associated with, but they are exchanged each
time they are needed by a neighbouring process.

Any AMG scheme requires the definition of a grid hierarchy with lmax levels.
The matrices representing the problem on grid l are Al ∈ Rnl×nl (l = 1, ..., lmax)
with system size nl where nl+1 < nl holds for l = 1, ..., lmax − 1 and A1 = A as
well as n1 = n. As it is common practice in algebraic multigrid, the coarse-grid
operators are, starting with the finest grid, defined recursively by

Al+1 = PT
l AlPl (l = 1, ..., lmax − 1). (2)

where the prolongation operator Pl has to be determined for each level l while the
restriction operator is defined as PT

l . It is the choice of the coarse-grid selection
scheme that determines the elements of Pl and consequently the entire grid
hierarchy. The definition of the elements of Pl for all levels and the computation
of the operators Al (l = 2, ..., lmax) are referred to as the setup phase of AMG.

The prolongation operator Pl maps a vector on the coarse grid xl+1 to a
vector on the fine grid xl:

xl = Plxl+1 (3)

The aggregation methods split the number of nodes on the fine grid into a
lower number of disjoint sets of nodes, the so-called aggregates. The mapping
from the coarse grid to the fine grid is than achieved by simply assigning the
coarse-grid value of the aggregate to all the fine-grid nodes belonging to this
aggregate. This corresponds to a constant interpolation. The prolongation oper-
ator of this scheme has only one non-zero entry in each row with the value one
such that the evaluation of eqn. (2) is greatly simplified to an addition of rows
of the fine-grid operator. In the following we restrict ourselves to this group of
methods.

Double-pairwise aggregation The first step of the double-pairwise aggrega-
tion that has been used by Notay [2] is the aggregation of the set of nodes into
aggregates of pairs of nodes. For this we use algorithm 1.

For the pairwise aggregation the output of this algorithm, i.e. the set of
aggregates Gi (i = 1, ..., nl+1), is used to define the prolongation operator Pl.
The calculation of the elements of the coarse-grid matrix Al = PT

l AlPl with
eqn. (2) is implemented as the addition of two rows in two steps: First, the rows
are extracted from the matrix storage structure in a way that the corresponding
elements of the data array are put in a single array and the row pointers in
another array of the same size. Second, the column pointers are replaced by
the indices of the corresponding coarse-grid aggregates; then both arrays are
sorted with respect to the new column pointers where matrix elements with the
same column pointer are added. The parallel version of the method restricts the
aggregates to nodes belonging to the same parallel domain.

For the double-pairwise aggregation, the set of aggregates obtained with al-
gorithm 1 to Al is used to define the intermediate prolongation operator Pl1.



Algorithm 1 Pairwise aggregation (by Notay [2], simplified version)
Input: Matrix A = (aij) with n rows.
Output: Number of coarse variables nc and aggregates Gi, i = 1, ..., nc

(such that Gi ∩ Gj = ∅ for i 6= j).
Initialisation: U = [1, n]

for all i: Si =
{
j ∈ U \ {i} | aij < −0.25max(k)|aik|

}
,

for all i: mi = | {j|i ∈ Sj} |,
nc = 0.

Algorithm: While U 6= ∅ do:
1. select i ∈ U with minimal mi; nc = nc + 1.
2. select j ∈ U such that aij = mink∈Uaik

3. if j ∈ Si: Gnc = {i, j}, otherwise Gnc = {i}
4. U = U \ Gnc

5. for all k ∈ Gnc : ml = ml − 1 for l ∈ Sk

With this, the elements of the corresponding intermediate coarse-grid matrix
Al+1/2 = PT

l1AlPl1 are calculated in the same way as for the pairwise aggrega-
tion. In order to obtain the matrix Al+1, the double-pairwise aggregation applies
the same procedure a second time, this time with input Al+1/2 instead of Al for
algorithm 1 which gives rise to the prolongation operator Pl2. Al+1 is calculated
as Al+1 = PT

l2Al+1/2Pl2. The final prolongation operator is formally Pl = Pl2Pl1.
Since it contains only the information to which coarse-grid element or aggregate
a fine-grid node is assigned, it is sufficient to store it as an array of size nl car-
rying the index of the coarse-grid node. The operators Al+1/2, Pl1, and Pl2 are
discarded after Al+1 has been calculated. We refer to the method as P4.

Plain aggregation algorithm Our plain aggregation algorithm comprises the
following steps:

1. Determine strong connectivity: Edges of the graph of the matrix Al for
which the relation

|aij | > β · max(j)|aij | (4)

holds, are marked as strong connections. The criterion β depends on the
level of the grid hierarchy l and it is defined according to Vaněk et al. [3] as

β := 0.08
(

1
2

)l−1

(5)

2. Start-up aggregation: All nodes are visited in the arbitrary order of their
numeration. Once a certain node i is visited in this process, a new aggregate
is built if this node is not yet assigned to another aggregate. Each of the
neighbours of node i that is strongly connected to this node and that is not
yet assigned to another aggregate is grouped into this aggregate as long as
the number of nodes is lower than the maximum allowed aggregate size.



3. Enlarging the decomposition sets: Remaining unassigned nodes are joint
to aggregates containing any node they are strongly connected to as long as
the number of nodes in this aggregate is lower than twice the maximum
allowed aggregate size. If there is more than one strongly connected node in
different aggregates, the one with the strongest connection determines the
aggregate this node is joint with.

4. Handling the remnants: Unassigned nodes are grouped into aggregates of
a strongly connected neighbourhood. Twice the maximum allowed aggregate
size is allowed.

This algorithm follows closely the one proposed by Vaněk et al. [3] with the
essential difference that we restrict the number of nodes per aggregate which
gives rise to a parameter of this algorithm. In step (3) we allow twice the maxi-
mum number of nodes in order to avoid a large number of single-point aggregates.
Usually only a few such enlarged aggregates are formed. In parallel, only nodes
assigned to the same process are grouped into aggregates.

The aggregates generated this way are used in a scheme with constant in-
terpolation, i.e. in a way that all fine-grid nodes assigned to a certain aggregate
receive the value of the coarse-grid node this aggregate forms on the coarse-grid.
The corresponding prolongation operator will have a similarly simple structure
as that of the described pairwise aggregation method. The coarse-grid operator
is again obtained by adding the rows of the fine-grid matrix that are associated
with the nodes assigned to an aggregate. This is done exactly as for the pairwise
aggregation. The coarsening scheme that is defined by this procedure will be
only useful, if the maximum number of nodes per aggregate is kept relatively
low. In preliminary experiments we found that a maximum number of nodes per
aggregate of 6 results in an efficient and robust algorithm with good convergence
properties. We denote this aggregation scheme in a k-cycle scheme as K-R6.

Smoothed Aggregation The Smoothed Aggregation algorithm of Vaněk et
al. [3] is derived from this algorithm: It refines the aggregation scheme by apply-
ing a ω-Jacobi smoothing step (along the paths of the fine-grid matrix) to the
prolongation operator to obtain the final prolongation operator. This way the
quality of the interpolation is improved, but the structure of the operator is now
similarly complex as the structure of the operators of classical AMG with the
consequence, that the calculation of the coarse-grid operator with eqn. (2) can
no longer be simplified in the described way. For the use as Smoothed Aggrega-
tion scheme, the number of nodes per aggregate is not limited. The Smoothed
Aggregation is used in a v-cycle scheme; the algorithm is denoted as V-SA.

Implementation on GPU

The setup phase is implemented conventionally on the CPU as it has been de-
scribed in Emans [6]. The standard CRS format, see e.g. Falgout et al. [5], is used
for the matrices. After any matrix has been defined or calculated, it is translated



into the Interleaved Compressed Row Storage (ICRS) format on the CPU and
then transferred to GPU memory. The definition of this format is found e.g. in
Haase et al. [7]. The corresponding algorithm devised in the same publication is
used to carry out matrix-vector operations. This applies to the system matrices
on all levels. The particularly simple structure of the restriction and prolonga-
tion operators of the aggregation algorithms P4 and R6 gives rise to a simplified
version of the ICRS format: Since the value of all non-zero matrix elements is
the same (one), it does not make sense to store these values. Therefore, only the
number of elements per row, the displacement and the column index for each el-
ement is stored. The fill-in elements (due to the different number of elements per
row) are identified by a negative column index and ignored in the matrix-vector
multiplication kernel.

For an efficient parallel implementation, the concept of overlapping the data
exchange with the internal operations, implemented by means of the asyn-
chronous point-to-point exchange mechanism of MPI, see e.g. Emans [8], needed
to be modified: While the internal work is done on the device, the host manages
the data exchange by means of the same asynchronous point-to-point exchange
mechanism of MPI, and computes t
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Fig. 1. Flow chart of parallel matrix-vector product on machines with multiple GPUs,
the parallel execution on CPU and GPU is marked grey (left), notation (right)

The solver algorithms described above are integrated into the program FIRE
2011, developed and distributed by AVL GmbH, Graz. The solver part of this
program is coded in FORTRAN 90 and compiled by the hp FORTRAN compiler,
version 11.1. The used MPI library is Platform MPI, version 7.01. The GPU
related code is written in Cuda and compiled by the Nvidia compiler version 4.0.
The link between the MPI library and the Cuda part is ensured by C-binding.



Benchmarks

Problem 1 is the unsteady simulation of the flow of cold air into the cylinder of
an automotive gasoline engine. The cylinder has a diameter of 0.08m. During the
observed time the piston head is moving from its top position downwards and
air at a temperature of 293K flows at a rate of around 1 kg/s into the cylinder.
The mass flow at the boundary is prescribed as a function of time according to
experimental data for this engine. The volume of the computational domain is
initially 0.18l. The mesh consists of around 1.4 · 106 finite volumes 80% of which
are hexagonal.

Problem 2 is the steady simulation of the internal flow through a water-
cooling jacket of an engine block. Cooling water, i.e. a 50% water/glycol mixture,
flows at a rate of 2.21 kg/s into the geometry through an inlet area of 0.61·10−3m2

and leaves it though an outlet area of 0.66 ·10−3m2. The maximum fluid velocity
is 4.3m/s. The volume of the cooling jacket is 1.14l. The turbulence is modelled
by a k-ζ-f model according to Hanjalic et al. [9]. The computational domain is
discretised by an unstructured mesh of about 5 · 106 cells of which around 88%
are hexagonal.

For both problems, the Navier-Stokes equations are solved by the finite-
volume based SIMPLE scheme with collocated variable arrangement, see Patan-
kar and Spalding [10]. We apply our AMG algorithms to the pressure-correction
equation only. This system is symmetric and positive definite and its solution
is usually the most time consuming part of the whole simulation. In the case of
problem 1, the SIMPLE iteration is terminated after 50 iterations, i.e. for this
problem we consider the solution of 50 systems with different matrix and differ-
ent right-hand side. For problem 2 three time steps with together 89 SIMPLE
iterations are calculated, i.e. here 89 different systems are solved.

The benchmarks were run on two different computers. Both computers had
four Intel X5650 CPUs. Additionally, both computers were equipped with four
graphics boards by Nvidia: computer 1 with four Tesla C2070, computer 2 with
four GeForce GTX480. The most important specifications of the hardware are
compiled in Table 1.

Table 1. Hardware specification

computer 1 & 2

CPUs Intel X5650
cores 2·6
main memory 96 GB
L3-cache 4·6 MB, shared
clock rate 2.67 GHz
memory bus QPI, 26.7 GB/s

computer 1 computer 2

GPUs (Nvidia) Tesla C2070 GeForce GTX480
multiprocessors 14 15
L2-cache – 768 kB
global memory 5375 MB 1535 MB
memory clock rate 1.49 GHz 1.85 GHz
memory bus 136.8 GB/s 169.2 GB/s



Fig. 2. Problem 1: average number of iterations (left) and average time per iteration
on CPU and different GPUs (right)

Problem 1: different types of GPUs The average number of iterations in the
left diagram of figure 5 shows that the number of iterations is increased by about
10 % if the Gauß-Seidel smoother is replaced by the Jacobi smoother, which is
common practice in AMG on GPU. The substitution of the double-pairwise
aggregation (K-P4-J) by the plain aggregation with six nodes per aggregate (K-
R6-J) increases the accumulated number of iterations by about a similar amount.

The comparison of the average computing time per iteration shows that com-
puter 2 with the GeForce GTX480 graphics boards is around 40% faster than
computer 1 with the Tesla C2070. This is essentially due to the faster memory
bus of the GeForce GTX480. The execution of the same solution algorithm on
the faster GPU is up to 13 times faster than on the CPU. The comparison of
the computing times for setup phase and solution phase in figure 2 shows that
for the Smoothed Aggregation AMG (V-SA-G) the setup is the dominant part.
Since on the GPU we essentially reduce only the solution phase, this algorithm
appears not to be favourable, although the time per iteration is short due to the
v-cycle. The setup of the algorithm with the plain aggregation scheme (K-R6-J)
is significantly faster than that of the double-pairwise aggregation (K-P4-J).
Since the setup becomes dominant on the GPU, this leads to a significant reduc-
tion of the total computing time, too, see figure 3. Thus, while on the CPU, the
fastest algorithm employs the double-pairwise aggregation, the fastest algorithm
on th GPU employs the plain aggregation scheme. The total computing times
with computer 2 using the GeForce GTX480 graphics boards is up to four times
faster than the fastest calculation on the CPU, see again figure 3. Finally, the
parallel efficiency

Ep :=
t1

p · tp
(6)



Fig. 3. Computing times for problem 1: CPU calculations (left), GPU calculations
(right), filled symbols: AMG solution, empty symbols: AMG setup

Fig. 4. Total computing times for problem 1 (left), Parallel efficiency for problem 1
(right)

where tp is the run-time with p parallel processes, is presented in the right
diagram of figure 3. Although the parallel efficiency of the calculations with
GPU acceleration is inferior to that of the CPU calculations, it is within an
acceptable range for practical applications.

Problem 2: multiple GPUs on different nodes With regard to the increase
of the number of iterations due to the use of algorithms better adapted to the re-
quirements of the GPU, i.e. the replacement of the Gauß-Seidel smoother by the
Jacobi smoother and the replacement of the double-pairwise aggregation by the
plain aggregation, we make for problem 2 the same observations as for problem



1, see figure 5. The right diagram in this figure shows that in this case, too, the
cost per iteration of the double-pairwise aggregation and the plain aggregation
scheme are almost identical. It is, however, more important to observe that the
usage of additional nodes with GPUs still accelerates the calculation in a reason-
able manner: Remember that we have four GPUs per node, i.e. the calculation
with 8 and 16 parallel processes runs on two and four nodes, respectively.

Fig. 5. Cumulative iteration count of various aggregation AMG algorithms (left) and
Average time per iteration of various AMG algorithms on CPU and GPU (right)

Fig. 6. Cumulative computing times: dashed line, empty symbols: AMG setup phase



The left diagram in figure 6 shows that the plain aggregation scheme leads
to a significantly faster AMG method than the double-pairwise aggregation. For
the GPU calculations the portion of the computing time spent in the setup
is larger than for the CPU calculations. The reduction of the total computing
time by substituting the double-pairwise aggregation by the plain aggregation is
therefore for the GPU computations relatively large (30 %) whereas for the CPU
computations it is only around 10 %. In total, i.e. including the setup on the
CPU, the GPU implementation on the Tesla C2050 is around twice as fast as the
fastest conventional implementation. Computations for problem 2 on computer
2 could not be carried out since the memory of the GeForce GTX480 graphics
boards of computer 2 was not sufficient.

2 Conclusions

We have presented a parallel k-cycle AMG for GPUs. The conventional double-
pairwise aggregation, implemented on the CPU, contributes significantly to the
total computing time of the k-cycle AMG on GPU-accelerated hardware. It
has been shown that it can be replaced by a more efficient plain aggregation
algorithm. We have tested our implementation on a GPU cluster with four nodes
each of which was equipped with four Nvidia Tesla C2050 GPUs. On a computer
with four of the faster GeForce GTX480 graphics boards we could show that the
entire AMG algorithm runs up to four times faster than the fastest AMG variant
on the CPU. Although the parallel efficiency is already acceptable, future effort
should be directed to an improved parallel performance.
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