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Abstract. We study whether, when restricted to using polylogarithmic memory and polylogarithmic

passes, we can achieve qualitatively better data compression with multiple read/write streams than

we can with only one. We first show how we can achieve universal compression using only one pass

over one stream. We then show that one stream is not sufficient for us to achieve good grammar-

based compression. Finally, we show that two streams are necessary and sufficient for us to achieve

entropy-only bounds.

1 Introduction

Massive datasets seem to expand to fill the space available and, in situations where they no

longer fit in memory and must be stored on disk, we may need new models and algorithms.

Grohe and Schweikardt [21] introduced read/write streams to model situations in which we

want to process data using mainly sequential accesses to one or more disks. As the name

suggests, this model is like the streaming model (see, e.g., [28]) but, as is reasonable with

datasets stored on disk, it allows us to make multiple passes over the data, change them and

even use multiple streams (i.e., disks). As Grohe and Schweikardt pointed out, sequential disk

accesses are much faster than random accesses — potentially bypassing the von Neumann

bottleneck — and using several disks in parallel can greatly reduce the amount of memory

and the number of accesses needed. For example, when sorting, we need the product of the

memory and accesses to be at least linear when we use one disk [27,20] but only polylogarith-

mic when we use two [9,21]. Similar bounds have been proven for a number of other problems,

such as checking set disjointness or equality; we refer readers to Schweikardt’s survey [34] of

upper and lower bounds with one or more read/write streams, Heinrich and Schweikardt’s

paper [23] relating read/write streams to classic complexity theory, and Beame and Huynh’s

paper [4] on the value of multiple read/write streams for approximating frequency moments.

Since sorting is an important operation in some of the most powerful data compression

algorithms, and compression is an important operation for reducing massive datasets to
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a more manageable size, we wondered whether extra streams could also help us achieve

better compression. In this paper we consider the problem of compressing a string s of n

characters over an alphabet of size σ when we are restricted to using logO(1) n bits of memory

and logO(1) n passes over the data. Throughout, we write log to mean log2 unless otherwise

stated. In Section 2, we show how we can achieve universal compression using only one pass

over one stream. Our approach is to break the string into blocks and compress each block

separately, similar to what is done in practice to compress large files. Although this may

not usually significantly worsen the compression itself, it may stop us from then building

a fast compressed index (see [29] for a survey) unless we somehow combine the indexes

for the blocks, or clustering by compression [11] (since concatenating files should not help

us compress them better if we then break them into pieces again). In Section 3 we use a

vaguely automata-theoretic argument to show one stream is not sufficient for us to achieve

good grammar-based compression. Of course, by ‘good’ we mean here something stronger

than universal compression: we want to build a context-free grammar that generates s and

only s and whose size is nearly minimum. In a paper with Gawrychowski [17] we showed

that with constant memory and logarithmic passes over a constant number of streams, we

can build a grammar whose size is at most quadratic in the minimum. Finally, in Section 4

we show that two streams are necessary and sufficient for us to achieve entropy-only bounds.

Along the way, we show we need two streams to find strings’ minimum periods or compute

the Burrows-Wheeler Transform. As far as we know, this is the first paper on compression

with read/write streams, and among the first papers on compression in any streaming model;

we hope the techniques we have used will prove to be of independent interest.

2 Universal compression

An algorithm is called universal with respect to a class of sources if, when a string is drawn

from any of those sources, the algorithm’s redundancy per character approaches 0 with

probability 1 as the length of the string grows. The class most often considered, and which

we consider in this section, is that of stationary, ergodic Markov sources (see, e.g., [12]). Since

the kth-order empirical entropy Hk(s) of s is the minimum self-information per character of

s with respect to a kth-order Markov source (see [33]), an algorithm is universal if it stores

any string s in nHk(s) + o(n) bits for any fixed σ and k. The kth-order empirical entropy of

s is also our expected uncertainty about a randomly chosen character of s when given the k
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preceding characters. Specifically,

Hk(s) =











(1/n)
∑

a occ(a, s) log n
occ(a,s)

if k = 0,

(1/n)
∑

|w|=k |ws|H0(ws) otherwise,

where occ(a, s) is the number of times character a occurs in s, and ws is the concatenation

of those characters immediately following occurrences of k-tuple w in s.

In a previous paper [19] we showed how to modify the well-known LZ77 compression

algorithm [35] to use sublinear memory while still storing s in nHk(s) +O(n log log n/ logn)

bits for any fixed σ and k. Our algorithm uses nearly linear memory and so does not fit into

the model we consider in this paper, but we mention it here because it fits into some other

streaming models (see, e.g., [28]) and, as far as we know, was the first compression algorithm

to do so. In the same paper we proved several lower bounds using ideas that eventually led

to our lower bounds in Sections 3 and 4 of this paper.

Theorem 1 (Gagie and Manzini, 2007). We can achieve universal compression using

one pass over one stream and O
(

n/ log2 n
)

bits of memory.

To achieve universal compression with only polylogarithmic memory, we use a algorithm

due to Gupta, Grossi and Vitter [22]. Although they designed it for the RAM model, we can

easily turn it into a streaming algorithm by processing s in small blocks and compressing

each block separately.

Theorem 2 (Gupta, Grossi and Vitter, 2008). In the RAM model, we can store any

string s in nHk(s) + O
(

σk logn
)

bits, for all k simultaneously, using O(n) time.

Corollary 1. We can achieve universal compression using one pass over one stream and

O
(

log1+ǫ n
)

bits of memory.

Proof. We process s in blocks of logǫ n characters, as follows: we read each block into memory,

apply Theorem 2 to it, output the result, empty the memory, and move on to the next block.

(If n is not given in advance, we increase the block size as we read more characters.) Since

Gupta, Grossi and Vitter’s algorithm uses O(n) time in the RAM model, it uses O(n log n)

bits of memory and we use O
(

log1+ǫ n
)

bits of memory. If the blocks are s1, . . . , sb, then we

store all of them in a total of

b
∑

i=1

(

|si|Hk(si) + O
(

σk log logn
))

≤ nHk(s) + O
(

σkn log log n/ logǫ n
)
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bits for all k simultaneously. Therefore, for any fixed σ and k, we store s in nHk(s) + o(n)

bits. ⊓⊔

A bound of nHk(s) + O
(

σkn log log n/ logǫ n
)

bits is not very meaningful when k is not

fixed and grows as fast as log log n, because the second term is ω(n). Notice, however, that

Gupta et al.’s bound of nHk(s)+O
(

σk log n
)

bits is also not very meaningful when k ≥ log n,

for the same reason. As we will see in Section 4, it is possible for s to be fairly incompressible

but still to have Hk(s) = 0 for k ≥ log n. It follows that, although we can prove bounds that

hold for all k simultaneously, those bounds cannot guarantee good compression in terms of

Hk(s) when k ≥ log n.

By using larger blocks — and, thus, more memory — we can reduce the O
(

σkn log logn/ logǫ n
)

redundancy term in our analysis, allowing k to grow faster than log log n while still having a

meaningful bound. Specifically, if we process s in blocks of c characters, then we use O(c logn)

bits of memory and achieve a redundancy term of O
(

σkn log c / c
)

, allowing k to grow nearly

as fast as logσ c while still having a meaningful bound. We will show later, in Theorem 15,

that this tradeoff is nearly optimal: if we use m bits of memory and p passes over one stream

and our redundancy term is O
(

σkr
)

, then mpr = Ω(n/f(n)) for any function f that in-

creases without bound. It is not clear to us, however, whether we can modify Corollary 1 to

take advantage of multiple passes.

Open Problem 1 With multiple passes over one stream, can we achieve better bounds on

the memory and redundancy than we can with one pass?

3 Grammar-based compression

Charikar et al. [8] and Rytter [32] independently showed how to build a nearly minimal

context-free grammar APPROX that generates s and only s. Specifically, their algorithms

yield grammars that are an O(logn) factor larger than the smallest such grammar OPT,

which has size Ω(log n) bits.

Theorem 3 (Charikar et al., 2005; Rytter, 2003). In the RAM model, we can approx-

imate the smallest grammar with |APPROX| = O(|OPT|2) using O(n) time.

In this section we prove that, if we use only one stream, then in general our approximation

must be superpolynomially larger than the smallest grammar. Our idea is to show that

periodic strings whose periods are asymptotically slightly larger than the product of the

memory and passes, can be encoded as small grammars but, in general, cannot be compressed
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well by algorithms that use only one stream. Our argument is based on the following two

lemmas.

Lemma 1. If s has period ℓ, then the size of the smallest grammar for that string is

O(ℓ log σ + log n log logn) bits.

Proof. Let t be the repeated substring and t′ be the proper prefix of t such that s = t⌊n/ℓ⌋t′.

We can encode a unary string X⌊n/ℓ⌋ as a grammar G1 with O(log n) productions of total

size O(logn log logn) bits. We can also encode t and t′ as grammars G2 and G3 with O(ℓ)

productions of total size O(ℓ log σ) bits. Suppose S1, S2 and S3 are the start symbols of

G1, G2 and G3, respectively. By combining those grammars and adding the productions

S0 → S1S3 and X → S2, we obtain a grammar with O(ℓ + logn) productions of total size

O(ℓ log σ + log n log logn) bits that maps S0 to s. ⊓⊔

Lemma 2. Consider a lossless compression algorithm that uses only one stream, and a

machine performing that algorithm. We can compute any substring from

– its length;

– for each pass, the machine’s memory configurations when it reaches and leaves the part

of the stream that initially holds that substring;

– all the output the machine produces while over that part.

Proof. Let t be the substring and assume, for the sake of a contradiction, that there exists

another substring t′ with the same length that takes the machine between the same con-

figurations while producing the same output. Then we can substitute t′ for t in s without

changing the machine’s complete output, contrary to our specification that the compression

be lossless. ⊓⊔

Lemma 2 implies that, for any substring, the size of the output the machine produces

while over the part of the stream that initially holds that substring, plus twice the product of

the memory and passes (i.e., the number of bits needed to store the memory configurations),

must be at least that substring’s complexity. Therefore, if a substring is not compressible by

more than a constant factor (as is the case for most strings) and asymptotically larger than

the product of the memory and passes, then the size of the output for that substring must

be at least proportional to the substring’s length. In other words, the algorithm cannot take

full advantage of similarities between substrings to achieve better compression. In particular,

if s is periodic with a period that is asymptotically slightly larger than the product of the

memory and passes, and s’s repeated substring is not compressible by more than a constant
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factor, then the algorithm’s complete output must be Ω(n) bits. By Lemma 1, however, the

size of the smallest grammar that generates s and only s is bounded in terms of the period.

Theorem 4. With one stream, we cannot approximate the smallest grammar with |APPROX| ≤
|OPT|O(1).

Proof. Suppose an algorithm uses only one stream, m bits of memory and p passes to com-

press s, with mp = logO(1) n, and consider a machine performing that algorithm. Further-

more, suppose s is binary and periodic with period mp logn and its repeated substring

t is not compressible by more than a constant factor. Lemma 2 implies that the ma-

chine’s output while over a part of the stream that initially holds a copy of t, must be

Ω(mp log n −mp) = Ω(mp log n). Therefore, the machine’s complete output must be Ω(n)

bits. By Lemma 1, however, the size of the smallest grammar that generates s and only s is

O(mp log n + logn log logn) ⊂ logO(1) n bits. Since n = logω(1) n, the algorithm’s complete

output is superpolynomially larger than the smallest grammar. ⊓⊔

As an aside, we note that a symmetric argument shows that, with only one stream, in

general we cannot decode a string encoded as a small grammar. To see why, instead of

considering a part of the stream that initially holds a copy of the repeated substring t,

consider a part that is initially blank and eventually holds a copy of t. (Since s is periodic

and thus very compressible, its encoding takes up only a fraction of the space it eventually

occupies when decompressed; without loss of generality, we can assume the rest is blank.)

An argument similar to the proof of Lemma 2 shows we can compute t from the machine’s

memory configurations when it reaches and leaves that part, so the product of the memory

and passes must again be greater than or equal to t’s complexity.

Theorem 5. With one stream, we cannot decompress strings encoded as small grammars.

Theorem 4 also has the following corollary, which may be of independent interest.

Corollary 2. With one stream, we cannot find strings’ minimum periods.

Proof. Consider the proof of Theorem 4. Notice that, if we could find s’s minimum period,

then we could store s in logO(1) n bits by writing n and one copy of its repeated substring t.

It follows that we cannot find strings’ minimum periods. ⊓⊔

Corollary 2 may at first seem to contradict work by Ergün, Muthukrishnan and Sahi-

nalp [13], who gave streaming algorithms for determining approximate periodicity. Whereas
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we are concerned with strings which are truly periodic, however, they were concerned with

strings in which the copies of the repeated substring can differ to some extent. To see why

this is an important difference, consider the simple case of checking whether s has period n/2

(i.e., whether or not it is a square). Suppose we know the two halves of s are either identical

or differ in exactly one position, and we want to determine whether s truly has period n/2;

then we must compare each corresponding pair of characters and, by a crossing-sequences

argument (see, e.g., [27] for details of a similar argument), this takes Ω(n/m) passes. Now

suppose we care only whether the two halves of s match only in nearly all positions; then we

need compare only a few randomly chosen pairs to decide correctly with high probability.

Theorem 6. With one stream, we cannot even check strings’ minimum periods.

In the conference version of this paper we left as an open problem proving whether or not

multiple streams are useful for grammar-based compression. As we noted in the introduction,

in a subsequent paper with Gawrychowski [17] we showed that with constant memory and

logarithmic passes over a constant number of streams, we can approximate the smallest

grammar with |APPROX| = O(|OPT|2), answering our question affirmatively.

4 Entropy-only bounds

Kosaraju and Manzini [25] pointed out that proving an algorithm universal does not nec-

essarily tell us much about how it behaves on low-entropy strings. In other words, showing

that an algorithm encodes s in nHk(s) + o(n) bits is not very informative when nHk(s) =

o(n). For example, although the well-known LZ78 compression algorithm [36] is universal,

|LZ78(1n)| = Ω(
√
n) while nH0(1

n) = 0. To analyze how algorithms perform on low-entropy

strings, we would like to get rid of the o(n) term and prove bounds that depend only on

nHk(s). Unfortunately, this is impossible since, as the example above shows, even nH0(s)

can be 0 for arbitrarily long strings.

It is not hard to show that only unary strings have H0(s) = 0. For k ≥ 1, recall that

Hk(s) = (1/n)
∑

|w|=k |ws|H0(ws). Therefore, Hk(s) = 0 if and only if each distinct k-tuple

w in s is always followed by the same distinct character. This is because, if a w is always

followed by the same distinct character, then ws is unary, H0(ws) = 0 and w contributes

nothing to the sum in the formula. Manzini [26] defined the kth-order modified empirical

entropy H∗
k(s) such that each context w contributes at least ⌊log |ws|⌋+1 to the sum. Because

modified empirical entropy is more complicated than empirical entropy — e.g., it allows for
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variable-length contexts — we refer readers to Manzini’s paper for the full definition. In our

proofs in this paper, we use only the fact that

nHk(s) ≤ nH∗
k(s) ≤ nHk(s) + O

(

σk logn
)

.

Manzini showed that, for some algorithms and all k simultaneously, it is possible to bound

the encoding’s length in terms of only nH∗
k(s) and a constant gk that depends only on σ and k;

he called such bounds ‘entropy-only’. In particular, he showed that an algorithm based on the

Burrows-Wheeler Transform (BWT) [7] stores any string s in at most (5+ǫ)nH∗
k(s)+log n+gk

bits for all k simultaneously (since nH∗
k(s) ≥ log(n− k), we could remove the log n term by

adding 1 to the coefficient 5 + ǫ).

Theorem 7 (Manzini, 2001). Using the BWT, move-to-front coding, run-length coding

and arithmetic coding, we can achieve an entropy-only bound.

The BWT sorts the characters in a string into the lexicographical order of the suffixes

that immediately follow them. When using the BWT for compression, it is customary to

append a special character $ that is lexicographically less than any in the alphabet. For a

more thorough description of the BWT, we again refer readers to Manzini’s paper. In this

section we first show how we can compute and invert the BWT with two streams and, thus,

achieve entropy-only bounds. We then show that we cannot achieve entropy-only bounds

with only one stream. In other words, two streams are necessary and sufficient for us to

achieve entropy-only bounds.

One of the most common ways to compute the BWT is by building a suffix array. In his

PhD thesis, Ruhl introduced the StreamSort model [31,2], which is similar to the read/write

streams model with one stream, except that it has an extra primitive that sorts the stream

in one pass. Among other things, he showed how to build a suffix array efficiently in this

model.

Theorem 8 (Ruhl, 2003). In the StreamSort model, we can build a suffix array using

O(log n) bits of memory and O(log n) passes.

Corollary 3. With two streams, we can compute the BWT using O(log n) bits of memory

and O
(

log2 n
)

passes.

Proof. We can compute the BWT in the StreamSort model by appending $ to s, building a

suffix array, and replacing each value i in the array by the (i− 1)st character in s (replacing
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either 0 or 1 by $, depending on where we start counting). This takes O(logn) bits of memory

and O(log n) passes. Since we can sort with two streams using O(logn) bits memory and

O(log n) passes (see, e.g., [34]), it follows that we can compute the BWT using O(log n) bits

of memory and O
(

log2 n
)

passes. ⊓⊔

We note as an aside that, once we have the suffix array for a periodic string, we can

easily find its minimum period. To see why, suppose s has minimum period ℓ, and consider

the suffix u of s that starts in position ℓ + 1. The longest common prefix of s and u has

length n − ℓ, which is maximum; if another suffix v shared a longer common prefix with s,

then s would have period n− |v| < ℓ. It follows that, if the first position in the suffix array

contains i, then the (ℓ + 1)st position contains i− 1 (assuming s terminates with $, so u is

lexicographically less than s). With two streams we can easily find the position ℓ + 1 that

contains i− 1 and then check that s is indeed periodic with period ℓ.

Corollary 4. With two streams, we can compute a string’s minimum period using O(log n)

bits and O
(

log2 n
)

passes.

Now suppose we are given a permutation π on n+ 1 elements as a list π(1), . . . , π(n+ 1),

and asked to rank it, i.e., to compute the list π0(1), . . . , πn(1). This problem is a special case

of list ranking (see, e.g., [3]) and has a surprisingly long history. For example, Knuth [24,

Solution 24] described an algorithm, which he attributed to Hardy, for ranking a permutation

with two tapes. More recently, Bird and Mu [5] showed how to invert the BWT by ranking

a permutation. Therefore, reinterpreting Hardy’s result in terms of the read/write streams

model gives us the following bounds.

Theorem 9 (Hardy, c. 1967). With two streams, we can rank a permutation using O(log n)

bits of memory and O
(

log2 n
)

passes.

Corollary 5. With two streams, we can invert the BWT using O(log n) bits of memory and

O
(

log2 n
)

passes.

Proof. The BWT has the property that, if a character is the ith in BWT(s), then its successor

in s is the lexicographically ith in BWT(s) (breaking ties by order of appearance). Therefore,

we can invert the BWT by replacing each character by its lexicographic rank, ranking the

resulting permutation, replacing each value i by the ith character of BWT(s), and rotating

the string until $ is at the end. This takes O(log n) memory and O
(

log2 n
)

passes. ⊓⊔
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Since we can compute and invert move-to-front, run-length and arithmetic coding using

O(log n) bits of memory and O(1) passes over one stream, by combining Theorem 7 and

Corollaries 3 and 5 we obtain the following theorem.

Theorem 10. With two streams, we can achieve an entropy-only bound using O(log n) bits

of memory and O
(

log2 n
)

passes.

It follows from Theorem 10 and a result by Hernich and Schweikardt [23] that we can

achieve an entropy-only bound using O(1) bits of memory, O
(

log3 n
)

passes and four streams.

It follows from their theorem below that, with more streams, we can even reduce the number

of passes to O(logn).

Theorem 11 (Hernich and Schweikardt, 2008). If we can solve a problem with loga-

rithmic work space, then we can solve it using O(1) bits of memory and O(log n) passes over

O(1) streams.

Corollary 6. With O(1) streams, we can achieve an entropy-only bound using O(1) bits of

memory and O(logn) passes.

Proof. To compute the ith character of BWT(s), we find the ith lexicographically largest

suffix. To find this suffix, we loop though all the suffixes and, for each, count how many

other suffixes are lexicographically less. Comparing two suffixes character by character takes

O(n2) time, so we use a total of O(n4) time; it does not matter now how much time we use,

however, just that we need only a constant number of O(log n)-bit counters. Since we can

compute the BWT with logarithmic work space, it follows from Theorem 11 that we can

compute it — and thereby achieve an entropy-only bound — with O(1) bits of memory and

O(log n) passes over O(1) streams. ⊓⊔

Although we have not been able to prove an Ω(log n) lower bound on the number of

passes needed to achieve an entropy-only bound with O(1) streams, we have been able to

prove such a bound for computing the BWT. Our idea is to reduce sorting to the BWT,

since Grohe and Schweikardt [21] showed we cannot sort n numbers with o(logn) passes

over O(1) streams. It is trivial, of course, to reduce sorting to the BWT if the alphabet is

large enough — e.g., linear in n — but our reduction is to the more reasonable problem of

computing the BWT of a ternary string.

Theorem 12. With O(1) streams, we cannot compute the BWT using o(logn) passes.
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0 0
1 0
0 1

1 1

1 0 0 0 0 1
1 0
1 0
1 0 1 0 1 1

Fig. 1. Examples of binary De Bruijn cycles of orders 3 and 4.

Proof. Suppose we are given a sequence of n numbers x1, . . . , xn, each of 2 logn bits. Grohe

and Schweikardt showed we cannot generally sort such a sequence using o(logn) passes over

O(1) tapes. We now use o(logn) passes to turn x1, . . . , xn into a ternary string s such that,

by calculating BWT(s), we sort x1, . . . , xn. It follows from this reduction that we cannot

compute the BWT using o(log n) passes, either.

With one pass, O(logn) bits of memory and two tapes, for 1 ≤ i ≤ n and 1 ≤ j ≤ 2 logn,

we replace the jth bit xi[j] of xi by xi[j] 2 xi i j, writing 2 as a single character, xi in

2 logn bits, i in log n bits and j in log log n + 1 bits; the resulting string s is of length

2n logn(3 logn + log logn + 2). The only characters followed by 2s in s are the bits at the

beginning of replacement phrases, so the last 2n logn characters of BWT(s) are the bits of

x1, . . . , xn; moreover, since the lexicographic order of equal-length binary strings is the same

as their numeric order, the xi[j] bits will be arranged by the xi values, with ties broken by

the i values (so if xi = xi′ with i < i′, then every xi[j] comes before every xi′ [j
′]) and further

ties broken by the j values; therefore, the last 2n logn bits of the transformed string are

x1, . . . , xn in sorted order. ⊓⊔

To show we need at least two streams to achieve entropy-only bounds, we use De Bruijn

cycles in a proof similar to the one for Theorem 4. A σ-ary De Bruijn cycle of order k is a

cyclic sequence in which every possible k-tuple appears exactly once. For example, Figure 1

shows binary De Bruijn cycles of orders 3 and 4. Our argument this time is based on Lemma 2

and the results below about De Bruijn cycles. We note as a historical aside that Theorem 13

was first proven for the binary case in 1894 by Flye Sainte-Marie [15], but his result was

later forgotten; De Bruijn [6] gave a similar proof for that case in 1946, then in 1951 he and

Van Aardenne-Ehrenfest [1] proved the general version we state here.

Lemma 3. If s ∈ d∗ for some binary σ-ary De Bruijn cycle d of order k, then nH∗
k(s) =

O
(

σk log n
)

.

Proof. By definition, each distinct k-tuple is always followed by the same distinct character;

therefore, nHk(s) = 0 and nH∗
k(s) = O

(

σk log n
)

. ⊓⊔
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Theorem 13 (Van Aardenne-Ehrenfest and De Bruijn, 1951). There are
(

σ!σ
k−1

/σk
)

σ-ary De Bruijn cycles of order k.

Corollary 7. We cannot store most kth-order De Bruijn cycles in o(σk log σ) bits.

Proof. By Stirling’s Formula, log
(

σ!σ
k−1

/σk
)

= Θ(σk log σ). ⊓⊔

Since there are σk possible k-tuples, kth-order De Bruijn cycles have length σk, so Corol-

lary 7 means that we cannot compress most De Bruijn cycles by more than a constant factor.

Therefore, we can prove a lower bound similar to Theorem 4 by supposing that s’s repeated

substring is a De Bruijn cycle, then using Lemma 3 instead of Lemma 1.

Theorem 14. With one stream, we cannot achieve an entropy-only bound.

Proof. As in the proof of Theorem 4, suppose an algorithm uses only one stream, m bits of

memory and p passes to compress s, with mp = logO(1) n, and consider a machine per-

forming that algorithm. This time, however, suppose s is binary and periodic with pe-

riod mpf(n), where f(n) = O(log n) is a function that increases without bound; further-

more, suppose s’s repeated substring t is a kth-order De Bruijn cycle, k = log(mpf(n)),

that is not compressible by more than a constant factor. Lemma 2 implies that the ma-

chine’s output while over a part of the stream that initially holds a copy of t, must be

Ω(mpf(n) −mp) = Ω(mpf(n)). Therefore, the machine’s complete output must be Ω(n)

bits. By Lemma 3, however, nH∗
k(s) = O

(

2k log n
)

= O(mpf(n) logn) ⊂ logO(1) n. ⊓⊔

Recall that in Section 2 we asserted the following claim, which we are now ready to prove.

Theorem 15. If we use m bits of memory and p passes over one stream and achieve

universal compression with an O
(

σkr
)

redundancy term, for all k simultaneously, then

mpr = Ω(n/f(n)) for any function f that increases without bound.

Proof. Consider the proof of Theorem 14: nHk(s) = 0 but we must output Ω(n) bits, so

r = Ω(n/σk) = Ω(n/(mpf(n))). ⊓⊔

Notice Theorem 14 also implies a lower bound for computing the BWT: if we could

compute the BWT with one stream then, since we can compute move-to-front, run-length

and arithmetic coding using O(logn) bits of memory and O(1) passes over one stream, we

could thus achieve an entropy-only bound with one stream, contradicting Theorem 14.

Corollary 8. With one stream, we cannot compute the BWT.

12



In the conference version of this paper [16] we closed with a brief discussion of three

entropy-only bounds that we proved with Manzini [18]. Our first bound was an improved

analysis of the BWT followed by move-to-front, run-length and arithmetic coding (which

lowered the coefficient from 5 + ǫ to 4.4 + ǫ), but our other bounds (one of which had a

coefficient of 2.69 + ǫ) were analyses of the BWT followed by algorithms which we were not

sure could be implemented with O(1) streams. We now realize that, since both of these other

algorithms can be computed with logarithmic work space, it follows from Theorem 11 that

they can indeed be computed with O(1) streams.

After having proven that we cannot compute the BWT with one stream, we promptly

start working with Ferragina and Manzini on a practical algorithm [14] that does exactly

that. However, that algorithm does not fit into the streaming models we have considered in

this paper; in particular, the product of the internal memory and passes there is O(n log n)

bits, but we use only n bits of workspace on the disk. The existence of a practical algorithm

for computing the BWT in external memory raises the question of whether we can query

BWT-based compressed indexes quickly in external memory. Chien et al. [10] proved lower

bounds for indexed pattern matching in the external-memory model, but that model allows

does not distinguish between sequential and random access to blocks. The read/write-streams

model is also inappropriate for analyzing the complexity of this task, since we can trivially

use only one pass over one stream if we leave the text uncompressed and scan it all with

a classic sequential pattern-matching algorithm. Orlandi and Venturini [30] recently showed

how we can store a sample of the BWT that lets us estimate what parts of the full BWT we

need to read in order to answer a query. If we modify their data structure slightly, we can

make it recursive; i.e., with a smaller sample we can estimate what parts of the sample we

need to read in order to estimate what parts of the full BWT we need to read. Suppose we

store on disk a set of samples whose sizes increase exponentially, finishing with the BWT

itself. We use each sample in turn to estimate what parts of the next sample we need to

read, then read them into internal memory using only one pass over the next sample. This

increases the size of the whole index only slightly and lets us answer queries by reading

few blocks and in the order they appear on disk. We are currently working to optimize and

implement this idea.
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