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1. Introduction

“One can conceive of Information Theory in the broad sence as covering the
theory of Gaining, Transferring, and Storing Information, where the first is
usually called Statistics.”[2].

Shannon information theory and mathematical statistics interaction revealed
to be effective. This interplay is mutually fruitful, in some works results of
probability theory and statistics were obtained with application of information-
theoretical methods and there are studies where statistical results provide ground
for new findings in information theory [12], [14], [16]–[19], [35], [39], [49], [54],
[57]–[59].

This paper can serve an illustration of application of information-theoretical
methods in statistics: on one hand this is analogy in problem formulation and
on the other hand this is employment of technical tools of proof, specifically of
the method of types [15], [17].

It is often necessary in statistical research to make decisions regarding the
nature and parameters of stochastic model, in particular, the probability distri-
bution of the object. Decisions can be made on the base of results of observations
of the object. The vector of results is called a sample. The correspondence be-
tween samples and hypotheses can be designed based on some selected criterion.
The procedure of statistical hypotheses detection is called test.

The classical problem of statistical hypothesis testing refers to two hypothe-
ses. Based on data samples a statistician makes decision on which of the two
proposed hypotheses must be accepted. Many mathematical investigations, some
of which have also applied significance, were implemented in this direction [50].
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The need of testing of more than two hypotheses in many scientific and ap-
plied fields has essentially increased recently. As an instance microarray analysis
could be mentioned [22].

The decisions can be erroneous due to randomness of the sample. The test
is considered as good if the probabilities of the errors in given conditions are as
small as possible.

Frequently the problem was solved for the case of a tests sequence, where
the probabilities of error decrease exponentially as 2−NE, when the number of
observations N tends to the infinity. We call the exponent of error probability
E the reliability. In case of two hypotheses both reliabilities corresponding to
two possible error probabilities could not be increased simultaneously, it is an
accepted way to fix the value of one of the reliabilities and try to make the tests
sequence get the greatest value of the remaining reliability. Such a test is called
logarithmically asymptotically optimal (LAO). Such optimal tests were consid-
ered first by Hoeffding [48], examined later by Csiszár and Longo [18], Tusnady
[57], [58] (he called such test series exponentially rate optimal (ERO)), Longo
and Sgarro [52]. The term LAO for testing of two hypotheses was proposed
by Birge [11]. Amongst papers on testing, associated with information theory,
we can also note works of Natarajan [54], Gutman [25], Anantharam [8], Han
[26] and of many others. Some objectives in this direction were first suggested
in original introductory article by Dobrushin, Pinsker and Shiryaev [21]. The
achievable region of error probability exponents was examined by Tuncel [56].

The problem has common features with the issue studied in the information
theory on interrelation between the rate R of the code and the exponent E of
the error probability. In information theory the relation E(R) is called according
to Shannon the reliability function, while R(E) is named the E-capacity, or the
reliability-rate function, as it was introduced by Haroutunian [28], [34], [43].

Simple but actual concept of not only separate but also simultaneous inves-
tigation of some number of objects of the same type, evidently, was first for-
mulated by Ahlswede and Haroutunian [6] for reliable testing of distributions
of multiple items. But simultaneous examination of properties of many similar
objects may be attractive and effective in plenty of other statistical situations.

The organization of this paper is as follows. We start with the definitions and
notations in the next section. In section 3 we introduce the problem of multihy-
potheses testing concerning one object. In section 4 we consider the reliability
approach to multihypotheses testing for many independent and dependent ob-
jects. Section 5 is dedicated to the problem of statistical identification under
condition of optimality. Section 6 is devoted to description of characteristics of
LAO hypotheses testing with permission of rejection of decision for the model
consisting of one and of more independent objects.

2. Definitions and Notations

We denote finite sets by script capitals. The cardinality of a set X is denoted as
|X |. Random variables (RVs), which take values in finite sets X , S are denoted
by X , S. Probability distributions (PDs) are denoted by Q, P , G, W , V , Q oV .
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Let PD of RV X , characterizing an object, be Q
△
= {Q(x), x ∈ X}, and con-

ditional PD of RV X for given value of state s of the object be V
△
= {V (x|s), x ∈

X , s ∈ S}.
The Shannon entropy HQ(X) of RV X with PD Q is:

HQ(X)
△
= −

∑

x∈X

Q(x) logQ(x).

The conditional entropy HP,V (X | S) of RV X for given RV S with correspond-
ing PDs is:

HP,V (X | S)
△
= −

∑

x∈X ,s∈S

P (s)V (x|s) log V (x|s).

The divergence (Kullback-Leibler information, or “distance”) of PDs Q and
G on X is:

D(Q||G)
△
=

∑

x∈X

Q(x) log
Q(x)

G(x)
,

and conditional divergence of the PD P oV ={P (s)V (x|s), x ∈ X , s ∈ S} and
PD P oW ={P (s)W (x|s), x ∈ X , s ∈ S} is:

D(P ◦ V ||P ◦W ) = D(V ||W |P )
△
=

∑

x,s

P (s)V (x|s) log
V (x|s)

Wx|s)
.

For our investigations we use the method of types, one of the important tech-
nical tools in Shannon theory [17, 15]. The type Qx of a vector x = (x1, ..., xN ) ∈
XN is a PD (the empirical distribution)

Qx =

{

Qx(x) =
N(x|x)

N
, x ∈ X

}

,

where N(x|x) is the number of repetitions of symbol x in vector x.
The joint type of vectors x ∈ X and s = (s1, s2, ..., sN ) ∈ SN is the PD

Px, s =

{

N(x, s|x, s)

N
, x ∈ X , s ∈ S

}

,

where N(x, s|x, s) is the number of occurrences of symbols pair (x, s) in the pair
of vectors (x, s). The conditional type of x for given s is conditional PD

Vx|s = {V (x|s), x ∈ X , s ∈ S},

defined by relation N(x, s|x, s) = N(x|x)Vx|s(x|s) for all x ∈ X , s ∈ S.
We denote by QN (X ) the set of all types of vectors in XN for given N , by

PN(S) – the set of all types of vectors s in SN and by VN (X|s) – the set of
all possible conditional types of vectors x in XN for given s ∈ SN . The set
of vectors x of type Q is denoted by T N

Q (X) and the family of vectors x of
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conditional type V for given s ∈ SN of type P by T N
P,V (X | s). The set of all

possible PDs Q on X and PDs P on S is denoted, correspondingly, by Q(X)
and P(S).

We need the following frequently used inequalities [17]:

| QN (X ) |≤ (N + 1)|X |, (2.1)

| VN(X|s) |≤ (N + 1)|S||X |, (2.2)

for any type Q ∈ QN(X )

(N + 1)−|X | exp{NHQ(X)} ≤| T N
Q (X) |≤ exp{HQ(X)}, (2.3)

and for any type P ∈ PN (S) and V ∈ VN (X|s)

(N + 1)−|S||X | exp{NHP,V (X |S)} ≤| T N
P,V (X | s) |≤ exp{HP,V (X |S)}. (2.4)

3. LAO Testing of Multiple Hypotheses for One Object

The problem of optimal testing of multiple hypotheses was proposed by Do-
brushin [20], and was investigated in [29]–[33]. Fu and Shen [23] explored the
case of two hypotheses when side information is absent. The problem concerning
arbitrarily varying sources solved in [38] was induced by the ideas of the paper
of Ahlswede [1]. The case of two hypotheses with side information about states
was considered in [3]. In the same way as in [23] from result on LAO testing, the
rate-reliability and the reliability-rate functions for arbitrarily varying source
with side information were obtained in [38].

The problem of multiple hypotheses LAO testing for discrete stationary
Markov source of observations was solved by Haroutunian [30]–[32]. In [37]
Haroutunian and Grigoryan generalized results from [23], [30]–[32] for multi-
hypotheses LAO testing by a non-informed statistician for arbitrarily varying
Markov source.

Here for clearness we expose the results on multiple hypotheses LAO testing
for the case of the most simple invariant object.

Let X be a finite set of values of random variable (RV) X . M possible PDs
Gm = {Gm(x), x ∈ X}, m = 1,M , of RV X characterizing the object are
known.

The statistician must detect one among M alternative hypotheses Gm, using
sample x = (x1, ..., xN ) of results of N independent observations of the object.

The procedure of decision making is a non-randomized test ϕN (x), it can
be defined by division of the sample space XN on M disjoint subsets AN

m =
{x : ϕN (x) = m}, m = 1,M . The set AN

m consists of all samples x for which
the hypothesis Gm must be adopted. We study the probabilities αl|m(ϕN ) of
the erroneous acceptance of hypothesis Gl provided that Gm is true

αl|m(ϕN )
△
= GN

m(AN
l ), l,m = 1,M, m 6= l. (3.1)
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The probability to reject hypothesis Gm, when it is true, is also considered

αm|m(ϕN )
△
=

∑

l 6=m

αl|m(ϕN )

= GN
m(AN

m)

= (1−GN
m(AN

m)). (3.2)

A quadratic matrix of M2 error probabilities {αl|m(ϕN ), m = 1,M, l =

1,M} is the power of the tests.
Error probability exponents of the infinite sequence ϕ of tests, which we call

reliabilities, are defined as follows:

El|m(ϕ)
△
= lim

N→∞

{

−
1

N
logαl|m(ϕN )

}

, m, l = 1,M. (3.3)

We see from (3.2) and (3.3) that

Em|m(ϕ) = min
l 6=m

El|m(ϕ), m = 1,M. (3.4)

The matrix

E(ϕ) =













E1|1 . . . El|1 . . . EM|1

. . . . . . . . . . . . . . . . . . . . .
E1|m . . . El|m . . . EM|m,
. . . . . . . . . . . . . . . . . . . . .
E1|M . . . El|M . . . EM|M













called the reliabilities matrix of the tests sequence ϕ is the object of our inves-
tigation.

We recognize that a sequence ϕ∗ of tests is LAO if for given positive values
of M − 1 diagonal, elements of matrix E(ϕ∗) the procedure provides maximal
values for all other elements of it.

Now we form the LAO test by constructing decision sets noted R
(N)
m . Given

strictly positive numbers Em|m, m = 1,M − 1, we define the following regions:

Rm
△
= {Q : D(Q||Gm) ≤ Em|m}, m = 1,M − 1, (3.5)

RM
△
= {Q : D(Q||Gm) > Em|m, m = 1,M − 1}, (3.6)

R(N)
m

△
= Rm

⋂

QN(X ), m = 1,M, (3.7)

and corresponding values:

E∗
m|m = E∗

m|m(Em|m)
△
= Em|m, m = 1,M − 1, (3.8)

E∗
m|l = E∗

m|l(Em|m)
△
= inf

Q∈Rm

D(Q||Gl), l = 1,M, m 6= l, m = 1,M − 1,

(3.9)
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E∗
M|m = E∗

M|m(E1|1, E2|2, ..., EM−1|M−1)
△
= inf

P∈RM

D(Q||Gm), m = 1,M − 1,

(3.10)

E∗
M|M = E∗

M|M (E1|1, E2|2, ..., EM−1|M−1)
△
= min

m:m=1,M−1
E∗

M|m. (3.11)

Theorem 3.1 [33]: If for described model all conditional PDs Gm, m = 1,M ,
are different in the sense that, D(Gl||Gm) > 0, l 6= m, and the positive numbers
E1|1, E2|2, ..., EM−1|M−1 are such that the following M − 1 inequalities, called
compatibility conditions, hold

E1|1 < min
m=2,M

D(Gm||G1),
(3.12)

Em|m < min

[

min
l=1,m−1

E∗
l|m(El|l), min

l=m+1,L
D(Gl||Gm)

]

, m = 2,M − 1,

then there exists a LAO sequence ϕ∗ of tests, the reliabilities matrix of which
E(ϕ∗) = {E∗

m|l} is defined in (3.8)–(3.11) and all elements of it are positive.

When one of inequalities (3.12) is violated, then at least one element of matrix
E(ϕ∗) is equal to 0.

The proof of Theorem 3.1 is postponed to the Appendix.
It is worth to formulate the following useful property of reliabilities matrix

of the LAO test.
Remark 3.1 [39]: The diagonal elements of the reliabilities matrix of the

LAO test in each row are equal only to the element of the last column:

E∗
m|m = E∗

M|m, and E∗
m|m < E∗

l|m, l = 1,M − 1, l 6= m, m = 1,M. (3.13)

That is the elements of the last column are equal to the diagonal elements of
the same row and due to (3.4) are minimal in this row. Consequently the first
M − 1 elements of the last column also can play a part as given parameters for
construction of a LAO test.

4. Reliability Approach to Multihypotheses Testing for Many
Objects

In [6] Ahlswede and Haroutunian proposed a new aspect of the statistical the-
ory – investigation of models with many objects. This work developed the ideas
of papers on Information theory [1], [5], of papers on many hypotheses testing
[29]-[33] and of book [9], devoted to research of sequential procedures solving
decision problems such as ranking and identification. The problem of hypotheses
testing for the model consisting of two independent and of two strictly depen-
dent objects (when they cannot admit the same distribution) with two possible
hypothetical distributions were solved in [6]. In [39] the specific characteristics
of the model consisting of K(≥ 2) objects each independently of others follow-
ing one of given M(≥ 2) probability distributions were explored. In [47] the
model composed by stochastically related objects was investigated. The result
concerning two independent Markov chains is presented in [36]. In this section
we expose these results.
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4.1. Multihypotheses LAO Testing for Many Independent Objects

Let us now consider the model with three independent similar objects. For
brevity we solve the problem for three objects, the generalization of the problem
for K independent objects will be discussed hereafter along the text.

Let X1, X2 and X3 be independent RVs taking values in the same finite
set X , each of them with one of M hypothetical PDs Gm = {Gm(x), x ∈ X}.
These RVs are the characteristics of the objects. The random vector (X1, X2, X3)
assumes values (x1, x2, x3) ∈ X 3.

Let (x1,x2,x3)
△
= ((x1

1, x
2
1, x

3
1), ... , (x

1
n, x

2
n, x

3
n), ... , (x

1
N , x2

N , x3
N )), xk

n ∈ X ,
k = 1, 3, n = 1, N, be a vector of results of N independent observations of the
family (X1, X2, X3). The test has to determine unknown PDs of the objects
on the base of observed data. The detection for each object should be made
from the same set of hypotheses: Gm, m = 1,M . We call this procedure the
compound test for three objects and denote it by ΦN , it can be composed of three
individual tests ϕ1

N , ϕ2
N , ϕ3

N for each of three objects. The test ϕi
N , i = 1, 3,

is a division of the space XN into M disjoint subsets Ai
m, m = 1,M . The set

Ai
m, m = 1,M , contains all vectors xi for which the hypothesis Gm is adopted.

Hence test ΦN is realised by division of the space XN × XN × XN into M3

subsets Am1,m2,m3 = A1
m1

× A2
m2

× A3
m3

, mi = 1,M , i = 1, 3. We denote the
infinite sequence of compound tests by Φ. When we have K independent objects
the test Φ is composed of tests ϕ1, ϕ2, ... , ϕK .

The probability of the falsity of acceptance of hypotheses triple (Gl1 , Gl2 , Gl3)
by the test ΦN provided that the triple of hypotheses (Gm1 , Gm2 , Gm3) is true,
where (m1,m2,m3) 6= (l1, l2, l3), mi, li = 1,M , i = 1, 3, is:

αl1,l2,l3|m1,m2,m3
(ΦN )

△
= GN

m1
◦GN

m2
◦GN

m3

(

AN
l1,l2,l3

)

△
= GN

m1

(

AN
l1

)

·GN
m2

(

AN
l2

)

·GN
m3

(

AN
l3

)

=
∑

x1∈AN
l1

GN
m1

(x1)
∑

x2∈AN
l2

GN
m2

(x2)
∑

x3∈AN
l3

GN
m3

(x3).

The probability to reject a true triple of hypotheses (Gm1 , Gm2 , Gm3) by
analogy with (3.2) is defined as follows:

αm1,m2,m3|m1,m2,m3
(ΦN )

△
=

∑

(l1,l2,l3) 6=(m1,m2,m3)

αl1,l2,l3|m1,m2,m3
(ΦN ). (4.1)

We study corresponding reliabilities El1,l2,l3|m1,m2,m3
(Φ) of the sequence of

tests Φ,

El1,l2,l3|m1,m2,m3
(Φ)

△
= lim

N→∞

{

−
1

N
logαl1,l2,l3|m1,m2,m3

(ΦN )

}

,

mi, li = 1,M, i = 1, 3. (4.2)
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Definitions (4.1) and (4.2) imply (compare with (3.4)) that

Em1,m2,m3|m1,m2,m3
(Φ) = min

(l1,l2,l3) 6=(m1,m2,m3)
El1,l2,l3|m1,m2,m3

(Φ). (4.3)

Our aim is to analyze the reliabilities matrix E(Φ∗) = {El1,l2,l3|m1,m2,m3
(Φ∗)}

of LAO test sequence Φ∗ for three objects. We call the test sequence LAO for the
model with many objects if for given positive values of certain part of elements of
reliabilities matrix the procedure provides maximal values for all other elements
of it.

Let us denote by E(ϕi) the reliabilities matrices of the sequences of tests ϕi,
i = 1, 3. The following Lemma is a generalization of Lemma from [6].

Lemma 4.1: If elements El|m(ϕi), m, l = 1,M , i = 1, 3, are strictly positive,

then the following equalities hold for E(Φ), Φ = (ϕ1, ϕ2, ϕ3), li,mi = 1,M :

El1,l2,l3|m1,m2,m3
(Φ) =

3
∑

i=1

Eli|mi
(ϕi),

mi 6= li, (4.4)

El1,l2,l3|m1,m2,m3
(Φ) =

∑

i∈[[1,2,3]−k]

Eli|mi
(ϕi),

mk = lk, mi 6= li, k = 1, 3, (4.5)

El1,l2,l3|m1,m2,m3
(Φ) = Eli|mi

(ϕi),

i = 1, 3, mk = lk, mi 6= li, k ∈ [[1, 2, 3]− i]. (4.6)

Equalities (4.4) are valid also if Eli|mi
(ϕi) = 0 for several pairs (mi, li) and

several i.
The proof of Lemma 4.1 is exposed in Appendix.
Now we shall show how we can erect the LAO test from the set of com-

pound tests when 3(M − 1) strictly positive elements of the reliabilities matrix
EM,M,M|m,M,M , EM,M,M|M,m,M and EM,M,M|M,M,m, m = 1,M − 1, are pre-
liminarily given.

The following subset of tests:

D = {Φ : Em|m(ϕi) > 0, m = 1,M, i = 1, 3}

is distinguished by the property that when Φ ∈ D the elements
EM,M,M|m,M,M (Φ), EM,M,M|M,m,M (Φ) and EM,M,M|M,M,m(Φ), m = 1,M − 1,
of the reliabilities matrix are strictly positive.

Really, because Em|m(ϕi) > 0, m = 1,M , i = 1, 3, then in view of (3.4)
EM|m(ϕi) are also strictly positive. From equalities (4.4)–(4.6) we obtain that

the noted elements are strictly positive for Φ ∈ D and m = 1,M − 1

EM,M,M|m,M,M (Φ) = EM|m(ϕ1), (4.7)

EM,M,M|M,m,M (Φ) = EM|m(ϕ2), (4.8)
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EM,M,M|M,M,m(Φ) = EM|m(ϕ3). (4.9)

For given positive elements

EM,M,M|m,M,M , EM,M,M|M,m,M , EM,M,M|M,M,m, m = 1,M − 1,

define the following family of decision sets of PDs:

R(i)
m

△
= {Q : D(Q||Gm) ≤ EM,M,M|m1,m2,m3

, mi = m, mj = M, i 6= j, j = 1, 3}

m = 1,M − 1, i = 1, 3, (4.10)

R
(i)
M

△
= {Q : D(Q||Gm) > EM,M,M|m1,m2,m3

, mi = m, mj = M, i 6= j, j = 1, 3,

m = 1,M − 1}, i = 1, 3. (4.11)

Define also the elements of the reliability matrix of the compound LAO test
for three objects:

E∗
M,M,M|m,M,M

△
= EM,M,M|m,M,M ,

E∗
M,M,M|M,m,M

△
= EM,M,M|M,m,M , (4.12)

E∗
M,M,M|M,M,m

△
= EM,M,M|M,M,m,

E∗
l1,l2,l3|m1,m2,m3

△
= inf

Q∈R
(i)

li

D(Q||Gmi),

i = 1, 3, mk = lk, mi 6= li, i 6= k, k ∈ [[1, 2, 3]− i], (4.13)

E∗
m1,m2,m3|l1,l2,m3

△
=

∑

i6=k

inf
Q∈R

(i)

li

D(Q||Gmi),

mk = lk, mi 6= li, k = 1, 3, i ∈ [[1, 2, 3]− k], (4.14)

E∗
l1,l2,l3|m1,m2,m3

△
=

3
∑

i=1

inf
Q∈R

(i)

li

D(Q||Gmi), mi 6= li, i = 1, 3. (4.15)

The following theorem is a generalization and improvement of the correspond-
ing theorem proved in [6] for the case K = 2, M = 2.

Theorem 4.1 [39]: For considered model with three objects, if all distribu-
tions Gm, m = 1,M , are different, (and equivalently D(Gl||Gm) > 0, l 6= m,
l,m = 1,M), then the following statements are valid:

a) when given strictly positive elements EM,M,M|m,M,M , EM,M,M|M,m,M and

EM,M,M|M,M,m, m = 1,M − 1, meet the following conditions

max(EM,M,M|1,M,M , EM,M,M|M,1,M , EM,M,M|M,M,1)
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< min
l=2,M

D(Gl||G1), (4.16)

and for m = 2,M − 1,

EM,M,M|m,M,M < min

[

min
l=1,m−1

E∗
l,m,m|m,m,m, min

l=m+1,M
D(Gl||Gm)

]

, (4.17)

EM,M,M|M,m,M < min

[

min
l=1,m−1

E∗
m,l,m|m,m,m, min

l=m+1,M
D(Gl||Gm)

]

, (4.18)

EM,M,M|M,M,m < min

[

min
l=1,m−1

E∗
m,m,l|m,m,m, min

l=m+1,M
D(Gl||Gm)

]

, (4.19)

then there exists a LAO test sequence Φ∗ ∈ D, the reliability matrix of which
E(Φ∗) is defined in (4.12)–(4.15) and all elements of it are positive,

b) if even one of the inequalities (4.16)–(4.19) is violated, then there exists at
least one element of the matrix E(Φ∗) equal to 0.

For the proof of Theorem 4.1 see Appendix.
When we consider the model with K independent objects the generalization

of Lemma 4.1 will take the following form.
Lemma 4.2: If elements Eli|mi

(ϕi), mi, li = 1,M , i = 1,K, are strictly
positive, then the following equalities hold for Φ = (ϕ1, ϕ2, ..., ϕK):

El1,l2,...,lK|m1,m2,...,mK
(Φ) =

K
∑

i=1

Eli|mi
(ϕi), mi 6= li, i = 1,K,

El1,l2,...,lK|m1,m2,...,mK
(Φ) =

∑

i: mi 6=li

Eli|mi
(ϕi).

For given K(M − 1) strictly positive elements EM,M,...,M|m,M,...,M ,

EM,M,...,M|M,m,...,M, .... , EM,...,M,M,|M,M...,m,m = 1,M − 1, forK independent
objects we can find the LAO test Φ∗ in a way similar to case of three independent
objects.

Comment 4.1: Idea to renumber K-distributions from 1 to MK and con-
sider them as PDs of one complex object offers an alternative way of testing for
models with K objects. We can give MK−1 diagonal elements of corresponding
large matrix E(Φ) and apply Theorem 3.2 concerning one composite object. In
this direct algorithm the number of the preliminarily given elements of the ma-
trix E(Φ) would be greater (because MK − 1 > K(M − 1), M ≥ 2,K ≥ 2) but
the procedure of calculations would be longer than in our algorithm presented
above in this section. Our approach to the problem gives also the possibility to
define the LAO tests for each of the separate objects, but the approach with
renumbering of K-vectors of hypotheses does not have this opportunity. In the
same time in the case of direct algorithm there is opportunity for the investigator
to define preliminarily the greater number of elements of the matrix E(Φ).

In applications one of two approaches may be used in conformity with pref-
erences of the investigator.
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4.1.1. Example

Some illustrations of exposed results are in an example concerning two objects.
The set X = {0, 1} contains two elements and the following PDs are given on
X : G1 = {0, 10; 0, 90}, G2 = {0, 85; 0, 15}, G3 = {0, 23; 0, 77}. As it follows
from relations (4.12)–(4.15), several elements of the reliability matrix are func-
tions of one of given elements, there are also elements which are functions of
two, or three given elements. For example, in Fig. 1 and Fig. 2 the results of
calculations of functions E1,2|2,1(E3,3|1,3, E3,3|3,2) and E1,2|2,2(E3,3|1,3) are pre-
sented. For these distributions we have min(D(G2||G1), D(G3||G1)) ≈ 2, 2 and
min(E2,2|2,1, D(G3||G2)) ≈ 1, 4. We see that, when the inequalities (4.16) or
(4.19) are violated, E1,2|2,1 = 0 and E1,2|2,2 = 0.
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Fig 1.

Fig 2.

4.2. Multihypotheses LAO Testing for Two Dependent Objects

We consider characteristics of procedures of LAO testing of probability distribu-
tions of two related (stochastically, statistically and strictly dependent) objects.
We use these terms for different kinds of dependence of two objects.

Let X1 and X2 be RVs taking values in the same finite set X and P(X ) be
the space of all possible distributions on X .

Let (x1,x2) = ((x1
1, x

2
1), (x

1
2, x

2
2), ...(x

1
N , x2

N )) be a sequence of results of N
independent observations of the pair of objects.

First we consider the model, which consists of two stochastically related ob-
jects. We name so the following more general dependence. There are given M1

PDs
Gm1 = {Gm1(x

1), x1 ∈ X}, m1 = 1,M1.
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The first object is characterized by RV X1 which has one of these M1 possible
PDs and the second object is dependent on the first and is characterized by RV
X2 which can have one of M1 ×M2 conditional PDs

Gm2|m1
= {Gm2|m1

(x2|x1), x1, x2 ∈ X}, m1 = 1,M1, m2 = 1,M2.

Joint PD of the pair of objects is

Gm1,m2 = Gm1 ◦Gm2|m1
= {Gm1,m2(x

1, x2), x1, x2 ∈ X},

where

Gm1,m2(x
1, x2) = Gm1(x

1)Gm2|m1
(x2|x1), m1 = 1,M1, m2 = 1,M2.

The probability GN
m1,m2

(x1,x2) of N -vector (x1,x2) is the following product:

GN
m1,m2

(x1,x2)
△
= GN

m1
(x1)G

N
m2|m1

(x2|x1)

△
=

N
∏

n=1

Gm1(x
1
n)Gm2|m1

(x2
n|x

1
n),

with GN
m1

(x1) =
N
∏

n=1
Gm1(x

1
n) and GN

m2m1
(x2|x1) =

N
∏

n=1
Gm2|m1

(x2
n|x

1
n).

In somewhat particular case, when X1 and X2 are related statistically [44],
[60], the second object depends on index of PD of the first object but not
depends on value x1 taken by the first object. The second object is character-
ized by RV X2 which can have one of M1 × M2 conditional PDs Gm2|m1

=

{Gm2|m1
(x2), x2 ∈ X}, m1 = 1,M1, m2 = 1,M2.

In the third case of strict dependence, the objects X1 and X2 can have only
different distributions from the same given family of M PDs G1, G2, ..., GM .

Discussed in Comment 4.1 the direct approach for LAO testing of PDs for
two related objects, consisting in consideration of the pair of objects as one
composite object and then use of Theorem 3.1, is applicable for first two cases
[45]. But now we consider also another approach.

Let us remark that test ΦN can be composed of a pair of tests ϕN
1 and

ϕN
2 for the separate objects: ΦN = (ϕN

1 , ϕN
2 ). Denote by ϕ1, ϕ2 and Φ the

infinite sequences of tests for the first, for the second and for the pair of objects,
respectively.

Let X1 and X2 be related stochastically. For the object characterized by X1

the non-randomized test ϕ1
N (x1) can be determined by partition of the sample

space XN on M1 disjoint subsets AN
l1

= {x1 : ϕ1
N (x1) = l1}, l1 = 1,M1, i.e. the

set AN
l1

consists of vectors x1 for which the PD Gl1 is adopted. The probability
αl1|m1

(ϕ1
N ) of the erroneous acceptance of PD Gl1 provided that Gm1 is true,

l1,m1 = 1,M1, m1 6= l1, is defined by the set AN
l1

αl1|m1
(ϕ1

N )
△
= GN

m1
(AN

l1 ).
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We define the probability to reject Gm1 , when it is true, as follows

αm1|m1
(ϕ1

N )
△
=

∑

l1:l1 6=m1

αl1|m1
(ϕ1

N ) = GN
m1

(AN
m1

). (4.20)

Corresponding error probability exponents are:

El1|m1
(ϕ1)

△
= lim

N→∞

{

−
1

N
logαl1|m1

(ϕ1
N )

}

, m1, l1 = 1,M1. (4.21)

It follows from (4.20) and (4.21) that

Em1|m1
(ϕ1) = min

l1:l1 6=m1

El1|m1
(ϕ1), l1,m1 = 1,M1.

For construction of the LAO test we assume given strictly positive numbers
Em1|m1

, m = 1,M1 − 1 and we define regions Rl1 , l = 1,M1 as in (3.5)–(3.6).
For the second object characterized by RV X2 depending on X1 the non-

randomized test ϕ2
N (x2,x1, l1), based on vectors (x1,x2) and on the index of

the hypothesis l1 adopted for X1, can be given for each l1 and x1 by division of
the sample space XN on M2 disjoint subsets

AN
l2|l1

(x1)
△
= {x2 : ϕN

2 (x2,x1, l1) = l2}, l1 = 1,M1, l2 = 1,M2. (4.22)

Let

AN
l1,l2

△
= {(x1,x2) : x1 ∈ AN

l1 , x2 ∈ AN
l2|l1

(x1)}. (4.23)

The probabilities of the erroneous acceptance for (l1, l2) 6= (m1,m2) are

αl1,l2|m1,m2

△
= GN

m1,m2
(AN

l1,l2).

Corresponding reliabilites are denoted El1,l2|m1,m2
and are defined as in (4.2).

We can upper estimate the probabilities of the erroneous acceptance for (l1, l2) 6=
(m1,m2)

GN
m1,m2

(AN
l1,l2) =

∑

(x1,x2)∈AN
l1,l2

GN
m1

(x1)G
N
m2|m1

(x2|x1)

=
∑

x1∈AN
l1

GN
m1

(x1)G
N
m2|m1

(AN
l2|l1

(x1)|x1)

≤ max
x1∈AN

l1

GN
m2|m1

(AN
l2|l1

(x1)|x1)
∑

x1∈AN
l1

GN
m1

(x1)

= GN
m1

(AN
l1 ) max

x1∈AN
l1

GN
m2|m1

(AN
l2|l1

(x1)|x1).

These upper estimates of αl1,l2|m1,m2
(ΦN ) for each (l1, l2) 6= (m1,m2) we

denote by

βl1,l2|m1,m2
(ΦN )

△
= GN

m1
(AN

l1 ) max
x1∈AN

l1

GN
m2|m1

(AN
l2|l1

(x1)|x1).
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Consequently we can deduce that for l1,m1 = 1,M1, l2,m2 = 1,M2, new
parameters

Fl1,l2|m1,m2
(Φ)

△
= lim

N→∞
{−

1

N
log βN

l1,l2|m1,m2
(ΦN )},

are lower estimates for reliabilities El1,l2|m1,m2
(Φ).

We can introduce for l1,m1 = 1,M1, l2,m2 = 1,M2, m2 6= l2,

βl2|l1,m1,m2
(ϕ2

N )
△
= max

x1∈AN
l1

GN
m2|m1

(AN
l2|l1

(x1)|x1),

and also consider

βm2|l1,m1,m2
(ϕ2

N )
△
= max

x1∈AN
l1

GN
m2|m1

(AN
m2|l1

(x1)|x1)

=
∑

l2 6=m2

βl2|l1,m1,m2
(ϕ2

N ). (4.24)

The corresponding estimates of the reliabilities of test ϕ2
N , are the following

Fl2|l1,m1,m2
(ϕ2)

△
= lim

N→∞

{

−
1

N
log βl2|l1,m1,m2

(ϕ2
N )

}

,

l1,m1 = 1,M1, l2,m2 = 1,M2, m2 6= l2. (4.25)

It is clear from (4.24) and (4.25) that for every l1,m1 = 1,M1, l2,m2 = 1,M2

Fm2|l1,m1,m2
(ϕ2) = min

l2:l2 6=m2

Fl2|l1,m1,m2
(ϕ2). (4.26)

For given positive numbers Fl2|l1,m1,l2 , l2 = 1,M2 − 1, for Q ∈ Rl1 and for each

pair l1,m1 = 1,M1 let us define the following regions and values:

Rl2|l1(Q)
△
= {V : D(V ||Gl2|l1 |Q) ≤ Fl2|l1,m1,l2}, l2 = 1,M2 − 1, (4.27)

RM2|l1(Q)
△
=

{

V : D(V ||Gl2|l1 |Q) > Fl2|l1,m1,l2 , l2 = 1,M2 − 1
}

, (4.28)
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F ∗
l2|l1,m1,l2

(Fl2|l1,m1,l2)
△
= Fl2|l1,m1,l2 , l2 = 1,M2 − 1, (4.29)

F ∗
l2|l1,m1,m2

(Fl2|l1,m1,l2)
△
= inf

Q∈Rl1

inf
V ∈Rl2|l1

(Q)
D(V ||Gm2|m1

|Q),

m2 = 1,M2, ,m2 6= l2, l2 = 1,M2 − 1, (4.30)

F ∗
M2|l1,m1,m2

(F1|l1,m1,1, ..., FM2−1|l1,m1,M2−1)

△
= inf

Q∈Rl1

inf
V ∈RM2|l1

(Q)
D(V ||Gm2|m1

|Q),

m2 = 1,M2 − 1, (4.31)

F ∗
M2|l1,m1,M2

(F1|l1,m1,1, ..., FM2−1|l1,m1,M2−1)

△
= min

l2=1,M2−1
F ∗
l2|l1,m1,M2

. (4.32)

We denote by F(ϕ2) the matrix of lower estimates for elements of matrix E(ϕ2).
Theorem 4.2 [47]: If for given m1, l1 = 1,M1, all conditional PDs Gl2|l1 ,

l2 = 1,M2, are different in the sense that D(Gl2|l1 ||Gm2|m1
|Q) > 0, for all

Q ∈ Rl1 , l2 6= m2, m2 = 1,M2, when the strictly positive numbers F1|l1,m1,1,
F2|l1,m1,2,...,FM2−1|l1,m1,M2−1 are such that the following compatibility condi-
tions hold

F1|l1,m1,1 < min
l2=2,M2

inf
Q∈Rl1

D(Gl2|l1 ||G1|m1
|Q), (4.33)

Fm2|l1,m1,m2
< min

(

min
l2=m2+1,M2

inf
Q∈Rl1

D(Gl2|l1 ||Gm2|m1
|Q),

min
l2=1,m2−1

F ∗
l2|l1,m1,m2

(Fl2|l1,m1,l2)

)

, m2 = 1,M2 − 1, (4.34)

then there exists a sequence of tests ϕ2,∗, such that the lower estimates are
defined in (4.29)– (4.32) and are strictly positive.

Inequalities (4.33), (4.34) are necessary for existence of test sequence with
matrix F(ϕ2,∗) of positive lower estimates having given elements Fl2|l1,m1,l2 , l2 =

1,M2 − 1 in diagonal.

Let us define the following subsets of P(X ) for given strictly positive elements
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EM1,l2|l1,l2 , Fl1,M2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1:

Rl1
△
= {Q : D(Q||Gl1) ≤ EM1,l2|l1,l2}, l1 = 1,M1 − 1, l2 = 1,M2 − 1,

(4.35)

Rl2|l1(Q)
△
= {V : D(V ||Gl2|l1 |Q) ≤ Fl1,M2|l1,l2}, l1 = 1,M1 − 1, l2 = 1,M2 − 1,

(4.36)

RM1

△
= {Q : D(Q||Gl1) > EM1,l2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1},

(4.37)

RM2|l1(Q)
△
= {V : D(V ||Gl2|l1 |Q) > Fl1,M2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1}.

(4.38)

Assume also that

F ∗
l1,M2|l1,l2

△
= Fl1,M2|l1,l2 , (4.39)

E∗
M1,l2|l1,l2

△
= EM1,l2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1, (4.40)

E∗
l1,l2|m1,l2

△
= inf

Q:Q∈Rl1

D(Q||Gm1), m1 6= l1, (4.41)

F ∗
l1,l2|l1,m2

△
= inf

Q∈Rl1

inf
V :V ∈Rl2/l1

(Q)
D(V ||Gm2/m1

|Q), m2 6= l2, (4.42)

F ∗
l1,l2|m1,m2

△
= F ∗

m1,l2|m1,m2
+ E∗

l1,m2|m1,m2
, mi 6= li, i = 1, 2, (4.43)

F ∗
m1,m2|m1,m2

△
= min

(l1,l2) 6=(m1,m2)
F ∗
l1,l2|m1,m2

. (4.44)

Theorem 4.3 [44]: If all PDs Gm1 , m1 = 1,M1, are different, that is
D(Gl1 ||Gm1) > 0, l1 6= m1, l1,m1 = 1,M1, and all conditional PDs Gl2|l1 ,

l2 = 1,M2, are also different for all l1 = 1,M1, in the sense that
D(Gl2|l1 ||Gm2|m1

|Q) > 0, l2 6= m2, then the following statements are valid.
When given strictly positive elements EM1,l2|m1,l2 and Fl1,M2|l1,m2

, m1 =

1,M1 − 1, m2 = 1,M2 − 1, meet the following conditions

EM1,l2|1,l2 < min
l1=2,M1

D(Gl1 ||G1), (4.45)

Fl1,M2|l1,1 < min
l2=2,M2

inf
Q∈Rl1

D(Gl2|l1 ||G1|m1
|Q), (4.46)

EM1,l2|m1,l2 < min[ min
l1=1,m1−1

E∗
l1,l2|m1,l2

, min
l1=m1+1,M1

D(Gl1 ||Gm1)],

m1 = 2,M1 − 1, (4.47)

Fl1,M2|l1,m2
< min[ min

l2=1,m2−1
F ∗
l1,l2|l1,m2

, min
l2=m2+1,M2

inf
Q∈Rl1

D(Gl2|l1 ||Gm2|m1
|Q)],

m2 = 2,M2 − 1, (4.48)
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then there exists a LAO test sequence Φ∗, the matrix of lower estimates of which
F(Φ∗) = {Fl1,l2|m1,m2

(Φ∗)} is defined in (4.39)-(4.44) and all elements of it are
positive.

When even one of the inequalities (4.45)-(4.48) is violated, then at least one
element of the lower estimate matrix F(Φ∗) is equal to 0.

When X1 and X2 are related statistically [44], [60] we will have instead of
(4.24), (4.25) AN

l2|l1
= {x2 : ϕN

2 (x2, l1) = l2}, l1 = 1,M1, l2 = 1,M2, and

AN
l1,l2

△
= {(x1,x2) : x1 ∈ AN

l1
, x2 ∈ AN

l2|l1
(x1)}. In that case we have error

probabilities

GN
m1,m2

(AN
l1,l2)

△
=

∑

(x1,x2)∈AN
l1,l2

GN
m1

(x1)G
N
m2|m1

(x2)

=
∑

x1∈AN
l1

GN
m1

(x1)
∑

x2∈AN
l2|l1

GN
m2|m1

(x2)

= GN
m2|m1

(AN
l2|l1

)Gm1(A
N
l1 ), (l1, l2) 6= (m1,m2).

For the second object the conditional probabilities of the erroneous acceptance
of PD Gl2|l1 provided that Gm2|m1

is true, for l1,m1 = 1,M1, l2,m2 = 1,M2,
are the following

αN
l2|l1,m1,m2

(ϕ2
N )

△
= GN

m2|m1
(AN

l2|l1
), l2 6= m2.

The probability to reject Gm2|m1
, when it is true is denoted as follows

αN
m2|l1,m1,m2

(ϕ2
N )

△
= GN

m2|m1
(Am2|l1) =

∑

l2 6=m2

αN
l2|l1,m1,m2

(ϕ2
N ).

Thus in the conditions and in the results of Theorems 4.2 and Theorems 4.3
instead of conditional divergences inf

Q∈Rl1

D(Gl2|l1 ||Gm2|m1
|Q),

inf
Q∈Rl1

D(V ||Gm2|m1
|Q) we will have just divergences D(Gl2|l1 ||Gm2|m1

),

D(V ||Gm2|m1
) and in place of Fl2|l1,m1,m2

(Φ), Fl1,l2|m1,m2
(Φ), l1,m1 = 1,M1,

l2,m2 = 1,M2, will be El2|l1,m1,m2
(Φ), El1,l2|m1,m2

(Φ), l1,m1 = 1,M1, l2,m2 =

1,M2 . And in that case regions defined in (4.27), (4.28) will be changed as fol-
lows:

Rl2|l1

△
= {V : D(V ||Gl2|l1) ≤ El2|l1,m1,l2}, l2 = 1,M2 − 1,

RM2|l1

△
= {V : D(V ||Gl2|l1) > El2|l1,m1,l2 , l2 = 1,M2 − 1},
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In case of two statistically dependent objects the corresponding regions will be

Rl1
△
= {Q : D(Q||Gl1) ≤ EM1,l2|l1,l2}, l1 = 1,M1 − 1, l2 = 1,M2 − 1,

Rl2|l1

△
= {V : D(V ||Gl2|l1) ≤ El1,M2|l1,l2}, l1 = 1,M1 − 1, l2 = 1,M2 − 1,

RM1

△
= {Q : D(Q||Gl1) > EM1,l2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1},

RM2|l1

△
= {V : D(V ||Gl2|l1) > El1,M2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1}.

So in this case the matrix of reliabilities E(Φ∗) = {E∗l1,l2|m1,m2
, l1,m1 =

1,M1, l1,m1 = 1,M1}, will have the following elements:

E∗
l1,M2|l1,l2

△
= El1,M2|l1,l2 ,

E∗
M1,l2|l1,l2

△
= EM1,l2|l1,l2 ,

l1 = 1,M1 − 1, l2 = 1, L2 − 1,

E∗
l1,l2|m1,l2

△
= inf

Q:Q∈Rl1

D(Q||Gm1), m1 6= l1,

E∗
l1,l2|l1,m2

△
= inf

V :V ∈Rl2|l1

D(V ||Gm2|m1
), m2 6= l2,

E∗
l1,l2|m1,m2

△
= E∗

m1,l2|m1,m2
+ E∗

l1,m2|m1,m2
, mi 6= li, i = 1, 2,

E∗
m1,m2|m1,m2

△
= min

(l1,l2) 6=(m1,m2)
E∗

l1,l2|m1,m2
.

Theorem 4.4: [44] If all PDs Gm1 , m1 = 1,M1, are different, that is
D(Gl1 ||Gm1) > 0, l1 6= m1, l1,m1 = 1,M1, and all conditional PDs Gl2|l1 , l2 =

1,M2, are also different for all l1 = 1,M1, in the sense that D(Gl2|l1 ||Gm2|m1
) >

0, l2 6= m2, then the following statements are valid.
When given strictly positive elements EM1,l2|l1,l2 and El1,M2|l1,l2 , l1 = 1,M1 − 1,

l2 = 1,M2 − 1, meet the following compatibility conditions

EM1,l2|1,l2 < min
l1=2,M1

D(Gl1 ||G1),

El1,M2|l1,1 < min
l2=2,M2

D(Gl2|l1 ||G1|m1
),

EM1,l2|m1,l2 < min

[

min
l1=1,m1−1

E∗
l1,l2|m1,l2

, min
l1=m1+1,M1

D(Gl1 ||Gm1)

]

,

m1 = 2,M1 − 1,

El1,M2|l1,m2
< min

[

min
l2=1,m2−1

E∗
l1,l2|l1,m2

, min
l2=m2+1,M2

D(Gl2|l1 ||Gm2|m1
)

]

,

m2 = 2,M2 − 1,

then there exists a LAO test sequence Φ∗, the matrix of which E(Φ∗) is stated
above and all elements of it are positive.

When even one of the compatibility conditions is violated, then at least one
element of the matrix E(Φ∗) is equal to 0.
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5. Identification of Distribution for One and for Many Objects

In [9] Bechhofer, Kiefer, and Sobel presented investigations on sequential multiple-
decision procedures. This book concerns principally with a particular class of
problems referred to as ranking problems. Chapter 10 of the book by Ahlswede
and Wegener [7] is devoted to statistical identification and ranking. Problems
of distribution identification and distributions ranking for one object applying
the concept of optimality developed in [11], [48], [29]–[32] were solved in [6]. In
papers [40], [46], [47] and [53] identification problems for models composed with
two independent, or strictly dependent objects were investigated.

In [6], [40], [47] and [53] models considered in [9] and [7] and variations of these
models inspired by the pioneering paper by Ahlswede and Dueck [5], applying
the concept of optimality developed in [11], [29]–[32], [48], were studied.

First we formulate the concept of the identification for one object, which was
considered in [6]. There are known M ≥ 2 possible PDs, related with the object
in consideration. Identification gives the answer to the question whether r-th
PD occured, or not. This answer can be given on the base of a sample x and
by a test ϕ∗

N (x). More precisely, identification can be considered as an answer
to the question: is result l of testing algorithm equal to r (that is l = r), or not
equal l (that is l 6= r).

There are two types of error probabilities of identification for each r = 1,M :
the probability αl 6=r|m=r(ϕN ) to accept l different from r, when r is in reality,
and the probability αl=r|m 6=r(ϕN ) that r is accepted by test ϕN , when r is not
correct.

The probability αl 6=r|m=r(ϕN ) coincides with the error probability of testing
αr|r(ϕN ) (see (6)) which is equal to

∑

l:l 6=r

αl|r(ϕN ). The corresponding reliability

El 6=r|m=r(ϕ) is equal to Er|r(ϕ) which satisfies the equality (3.4).
And what is the reliability approach to identification? It is necessary to de-

termine the dependence of optimal reliability E∗
l=r|m 6=r upon given E∗

l 6=r|m=r =

E∗
r|r, which can be assigned a value satisfying conditions analogical to (3.12).

The result from paper [6] is:
Theorem 5.1: In the case of distinct hypothetical PDs G1, G2, ..., GM , for

a given sample x we define its type Q, and when Q ∈ R
(N)
l (see (3.5)–(3.7)) we

accept the hypothesis l. Under condition that the a priori probabilities of all M
hypotheses are positive the reliability of such identification El=r|m 6=r for given
El 6=r|m=r = Er|r is the following:

El=r|m 6=r(Er|r) = min
m:m 6=r

inf
Q:D(Q‖Gr)≤Er|r

D(Q‖Gm), r = 1,M.

We can accept the supposition of positivity of a priory probabilities of all
hypotheses with loss of generality, because the PD which is known to have
probability 0, that is being impossible, must not be included in the studied
family.

Now let us consider the model consisting of two independent objects. Let
hypothetical characteristics of objects X1 and X2 be independent RVs tak-
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ing values in the same finite set X with one of M PDs. Identification means
that the statistician has to answer the question whether the pair of distri-
butions (r1, r2) occurred or not. Now the procedure of testing for two ob-
jects can be used. Let us study two types of error probabilities for each pair

(r1, r2), r1, r2 = 1,M . We denote by α
(N)
(l1,l2) 6=(r1,r2)|(m1,m2)=(r1,r2)

the proba-

bility, that pair (r1, r2) is true, but it is rejected. Note that this probability

is equal to αr1,r2|r1,r2(ΦN ). Let α
(N)
(l1,l2)=(r1,r2)|(m1,m2) 6=(r1,r2)

be the probability

that (r1, r2) is identified, when it is not correct. The corresponding reliabilities
are E(l1,l2) 6=(r1,r2)|(m1,m2)=(r1,r2) = Er1,r2|r1,r2 and E(l1,l2)=(r1,r2)|(m1,m2) 6=(r1,r2).
Our aim is to determine the dependence of E(l1,l2)=(r1,r2)|(m1,m2) 6=(r1,r2) on given
Er1,r2|r1,r2(ΦN ).

Let us define for each r, r = 1,M , the following expression:

A(r) = min

[

min
l=1,r−1

D(Gl||Gr), min
l=r+1,M

D(Gl||Gr)

]

.

Theorem 5.2 [40]:For the model consisting of two independent objects if the
distributions Gm, m = 1,M , are different and the given strictly positive number
Er1,r2|r1,r2 satisfy condition

Er1,r2|r1,r2 < min [A(r1), A(r2)] ,

then the reliability E(l1,l2)=(r1,r2)|(m1,m2) 6=(r1,r2) is defined as follows:

E(l1,l2)=(r1,r2)|(m1,m2) 6=(r1,r2)

(

Er1,r2|r1,r2

)

= min
m1 6=r1,m2 6=r2

[

Em1|r1(Er1,r2|r1,r2), Em2|r2(Er1,r2|r1,r2)
]

,

where Em1|r1(Er1,r2|r1,r2) and Em2|r2(Er1,r2|r1,r2) are determined by (3.9).

Now we will present the lower estimates of the reliabilities for LAO identi-
fication for the dependent object which can be then applied for deducing the
lower estimates of the reliabilities for LAO identification of two related ob-
jects. There exist two error probabilities for each r2 = 1,M2: the probability
αl2 6=r2|l1,m1,m2=r2(ϕ

2
N ) to accept l2 different from r2, when r2 is in reality, and

the probability
αl2=r2|l1,m1,m2 6=r2(ϕ

2
N ) that r2 is accepted, when it is not correct.

The upper estimate βl2 6=r2|l1,m1,m2=r2(ϕ
2
N ) for αl2 6=r2|l1,m1,m2=r2(ϕ

2
N ) is al-

ready known, it coincides with βr2|l1,m1,r2(ϕ
2
N ) which is equal to

∑

l2:l2 6=r2

βl2|l1,m1,r2(ϕ
2
N ). The corresponding Fl2 6=r2|l1,m1,m2=r2(ϕ

2) is equal to

Fr2|l1,m1,r2(ϕ
2), which satisfies the equality (4.3).

We determine the optimal dependence of F ∗
l2=r2|l1,m1,m2 6=r2

upon given
F ∗
l2 6=r2|l1,m1,m2=r2

.

Theorem 5.3 [47]: In case of distinct PDs G1|l1 , G2|l1 , ..., GM2|l1 , under
condition that a priori probabilities of all M2 hypotheses are strictly positive, for
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each r2 = 1,M2 the estimate of Fl2=r2|l1,m1,m2 6=r2 for given Fl2 6=r2|l1,m1,m2=r2 =
Fr2|l1,m1,r2 is the following:

Fl2=r2|l1,m1,m2 6=r2(Fr2|l1,m1,r2) =

min
m2:m2 6=r2

inf
Q∈Rl1

inf
V :D(V ‖Gr2|l1

|Q)≤Fr2|l1,m1,r2

D(V ‖Gm2|m1
|Q).

The result of the reliability approach to the problem of identification of the
probability distributions for two related objects is the following.

Theorem 5.4: If the distributions Gm1 and Gm2|m1
, m1 = 1,M1, m2 =

1,M2, are different and the given strictly positive number Fr1,r2|r1,r2 satisfies
the condition

Er1|r1 < min

[

min
l=1,r1−1

D(Gr1 ||Gl1), min
l1=r1+1,M1

D(Gl1 ||Gr1)

]

,

or

Fr2|l1,m1,r2 < min

[

inf
Q∈Rl1

min
l2=1,r2−1

D(Gr2|m1
||Gl2|l1 |Q),

inf
Q∈Rl1

min
l2=r2+1,M2

D(Gl2|l1 ||Gr2|m1
|Q)

]

,

then the lower estimate F(l1,l2)=(r1,r2)|(m1,m2) 6=(r1,r2) of the reliability
E(l1,l2)=(r1,r2)|(m1,m2) 6=(r1,r2) can be calculated as follows

F(l1,l2)=(r1,r2)|(m1,m2) 6=(r1,r2)

(

Fr1,r2|r1,r2

)

= min
m1 6=r1,m2 6=r2

[

Er1|m1
(Fr1,r2|r1,r2), Fr2|l1,m1,m2

(Fr1,r2|r1,r2)
]

,

where Er1|m1
(Fr1,r2|r1,r2) and Fr2|l1,m1,m2

(Fr1,r2|r1,r2) are determined respec-
tively by (3.9) and (4.30).

The particular case, when X1 and X2 are related statistically, was studied in
[44], [60].

6. Multihypotheses Testing With Possibility of Rejection of Decision

This section is devoted to description of characteristics of LAO hypotheses test-
ing with permission of decision rejection for the model consisting of one or more
objects. The multiple hypotheses testing problem with possibility of rejection of
decision for arbitrarily varying object with side information and for the model of
two or more independent objects was examined by Haroutunian, Hakobyan and
Yessayan [41], [42]. These works ware induced by the paper of Nikulin [55] con-
cerning two hypotheses testing with refusal to take decision. An asymptotically
optimal classification, in particular hypotheses testing problem with rejection
of decision ware considered by Gutman [25].
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6.1. Many Hypothesis Testing With Rejection of Decision by

Informed Statistician for Arbitrarily Varying Object

In this section we consider multiple statistical hypotheses testing with possibility
of rejecting to make choice between hypotheses concerning distribution of a
discrete arbitrarily varying object. The arbitrarily varying object is a generalized
model of the discrete memoryless one. Let X be a finite set of values of RV X ,
and S is an alphabet of states of the object.

M possible conditional PDs of the characteristic X of the object depending
on values s of states, are given:

Wm
△
= {Wm(x|s), x ∈ X , s ∈ S}, m = 1,M, ...|S ≥ 1|,

but it is not known which of these alternative hypotheses Wm, m = 1,M , is
real PD of the object. The statistician must select one among M hypotheses, or
he can withdraw any judgement. It is possible for instance when it is supposed
that real PD is not in the family of M given PDs. An answer must be given

using the vector of results of N independent experiments x
△
= (x1, x2, ...xN ) and

the vector of states of the object s
△
= (s1, s2, ..., sN ), sn ∈ S, n = 1, N .

The procedure of decision making is a non-randomized test ϕN (x, s), it can
be defined by division of the sample space XN for each s on M + 1 disjoint
subsets AN

m(s) = {x : ϕN (x, s) = m}, m = 1,M + 1. The set AN
l (s), l = 1,M ,

consists of vectors x for which the hypothesis Wl is adopted, and AN
M+1(s)

includes vectors for which the statistician refuses to take a certain answer.
We study the probabilities of the erroneous acceptance of hypothesis Wl

provided that Wm is true

αl|m(ϕN )
△
= max

s∈SN
WN

m

(

AN
l (s)|s

)

, m, l = 1,M, m 6= l. (6.1)

When decision is declined, but hypothesis Wm is true, we consider the following
probability of error:

αM+1|m(ϕN )
△
= max

s∈SN
WN

m

(

AN
M+1(s)|s

)

.

If the hypothesis Wm is true, but it is not accepted, or equivalently while the
statistician accepted one of hypotheses Wl, l = 1,M , l 6= m, or refused to make
decision, then the probability of error is the following:

αm|m(ϕN )
△
=

∑

l: l 6=m

αl|m(ϕN ) = max
s∈SN

WN
m

(

AN
m(s)|s

)

, m = 1,M. (6.2)

Corresponding reliabilities are defined similarly by to (3.2):

El|m(ϕ)
△
= lim

N→∞

{

−
1

N
logαl|m(ϕN )

}

, m = 1,M, l = 1,M + 1. (6.3)
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It also follows that for every test ϕ

Em|m(ϕ) = min
l=1,M+1, l 6=m

El|m(ϕ), m = 1,M. (6.4)

The matrix

E(ϕ) =













E1|1 . . . El|1 . . . EM|1, EM+1|1

. . . . . . . . . . . . . . . . . . . . .
E1|m . . . El|m . . . EM|m, EM+1|m

. . . . . . . . . . . . . . . . . . . . .
E1|M . . . El|M . . . EM|M EM+1|M













is the reliabilities matrix of the tests sequence ϕ for the described model.
We call the test LAO for this model if for given positive values of certain M

elements of the matrix E(ϕ) the procedure provides maximal values for other
elements of it.

For construction of LAO test positive elements E1|1, ..., EM|M are supposed
to be given preliminarily. The optimal dependence of error exponents was deter-
mined in [41]. This result can be easily generalized for the case of an arbitrarily
varying Markov source.

6.2. Multiple Hypotheses LAO Testing With Rejection of Decision

for Many Independent Objects

For brevity we consider the problem for two objects, the generalization of the
problem for K independent objects will be discussed along the text.

LetX1 andX2 be independent RVs taking values in the same finite set X with
one of M PDs Gm ∈ P(X ), m = 1,M . These RVs are the characteristics of the
corresponding independent objects. The random vector (X1, X2) assumes values

(x1, x2) ∈ X × X . Let (x1,x2)
△
=

(

(x1
1, x

2
1), ..., (x

1
n, x

2
n), ..., (x

1
N , x2

N )
)

, xk
n ∈ X ,

k = 1, 2, n = 1, N , be a vector of results of N independent observations of the
pair of RVs (X1, X2). On the base of observed data the test has to determine
unknown PDs of the objects or withdraw any judgement. The selection for each
object should be made from the same set of hypotheses: Gm, m = 1,M . We
call this procedure the compound test for two objects and denote it by ΦN ,
it can be composed of two individual tests ϕ1

N , ϕ2
N for corresponding objects.

The test ϕi
N , i = 1, 2, can be defined by division of the space XN into M + 1

disjoint subsets Ai
m, m = 1,M + 1. The set Ai

m, m = 1,M contains all vectors
xi for which the hypothesis Gm is adopted and Ai

M+1 includes all vectors for
which the test refuses to take a certain answer. Hence ΦN is division of the
space XN × XN into (M + 1)2 subsets Am1,m2 = A1

m1
×A2

m2
, mi = 1,M + 1.

We again denote the infinite sequences of tests by Φ, ϕ1, ϕ2.
Let αl1,l2|m1,m2

(ΦN ) be the probability of the erroneous acceptance of the pair
of hypotheses (Gl1 , Gl2) by the test ΦN provided that the pair of hypotheses
(Gm1 , Gm2) is true, where (m1,m2) 6= (l1, l2), mi = 1,M , li = 1,M , i = 1, 2:

αl1,l2|m1,m2
(ΦN ) = Gm1 ◦Gm2 (Al1,l2)

= GN
m1

(Al1) ·G
N
m2

(Al2).
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When the pair of hypotheses (Gm1 , Gm2), m1,m2 = 1,M is true, but we
decline the decision the corresponding probabilities of errors are:

αM+1,M+1|m1,m2
(ΦN ) = Gm1 ◦Gm2(AM+1,M+1)

= GN
m1

(A1
M+1) ·G

N
m2

(A2
M+1).

or
αM+1,l2|m1,m2

(ΦN ) = GN
m1

(A1
M+1) ·G

N
m2

(A2
l2)

or
αl1,M+1|m1,m2

(ΦN ) = GN
m1

(A1
l1) ·G

N
m2

(A2
M+1).

If the pair of hypotheses (Gm1 , Gm2) is true, but it is not accepted, or equiv-
alently while the statistician accepted one of hypotheses (Gl1 , Gl2), or refused
to make decision, then the probability of error is the following:

αm1,m2|m1,m2
(ΦN ) =

∑

(l1,l2) 6=(m1,m2)

αl1,l2|m1,m2
(ΦN ), (6.5)

li = 1,M + 1, mi = 1,M, i = 1, 2.

We study reliabilities El1,l2|m1,m2
(Φ) of the sequence of tests Φ,

El1,l2|m1,m2
(Φ)

△
= lim

N→∞
−

1

N
logαl1,l2|m1,m2

(ΦN ), (6.6)

mi,= 1,M, li = 1,M + 1, i = 1, 2.

Definitions (6.5) and (6.6) imply that

Em1,m2|m1,m2
(Φ) = min

(l1,l2) 6=(m1,m2)
El1,l2|m1,m2

(Φ). (6.7)

We can erect the LAO test from the set of compound tests when 2M strictly
positive elements of the reliability matrix EM+1,m|m,m and Em,M+1|m,m, m =

1,M , are preliminarily given (see [41]).
Remark 6.1: It is necessary to note that the problem of reliabilities inves-

tigation for LAO testing of many hypotheses with possibility of rejection of
decision for the model consisting of two or more independent objects can not
be solved by the direct method of renumbering.

7. Conclusion and Open Problems

“A broad class of statistical problems arises in the framework of hypothesis
testing in the spirit of identification for different kinds of sources, with complete
or partial side information or without it. Paper [6] is a start.” [2].

In this paper, we exposed solutions of a part of possible problems concerning
algorithms of distributions optimal testing for certain classes of one, or multiple
objects. For the same models PD optimal identification is discussed again in the
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spirit of error probability exponents optimal dependence. But these investiga-
tions can be continued in plenty directions.

Some problems formulated in [6] and [43], particularly, concerning the remote
statistical inference formulated by Berger [10], examined in part by Ahlwede and
Csiszár [4] and Han and Amari [27] still rest open.

All our results concern with discrete distribution, it is necessary to study
many objects with general distributions as in [26]. For multiple objects mul-
tistage and sequential testing [13] can be also considered. Problems for many
objects are present in statistics with fuzzy data [24], bayessian detection of
multiple hypotheses testing [51] and geometric interpretations of tests [61].

8. Appendix

Proof of Theorem 3.1: Probability GN
m(x) for x ∈ T N

Q (X) can be presented as
follows:

GN
m(x) =

N
∏

n=1

Gm(xn)

=
∏

x

Gm(x)N(x|x)

=
∏

x

Gm(x)NQ(x))

= exp

{

N
∑

x

(

−Q(x) log
Q(x)

Gm(x)
+Q(x) logQ(x)

)

}

= exp {−N [D(Q ‖ Gm) +HQ(X)]}. (8.1)

Let us consider the sequence of tests ϕ∗
N (x) defined by the sets

B(N)
m

△
=

⋃

P∈R
(N)
m

T N
Q (X), m = 1,M. (8.2)

Each x is in one and only in one of B
(N)
m , that is

B
(N)
l

⋂

B(N)
m = ∅, l 6= m, and

M
⋃

m=1

B(N)
m = XN .

Really, for l = 1,M − 2, m = 2,M − 1, for each l < m let us consider arbitrary

x ∈ B
(N)
l . It follows from (3.5) and (3.7) that there exists type Q ∈ QN (X )

such that D(Q||Gl) ≤ El|l and x ∈ T N
Q (X). From (3.12) and (3.9) we have

Em|m < E∗
l|m(El|l) < D(Q||Gm). From definition of B

(N)
m we see that x /∈ B

(N)
m .

Definitions (3.10), (3.12) and (3.7) show also that

B
(N)
M

⋂

B(N)
m = ∅, m = 1,M − 1.
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Now, let us remark that for m = 1,M − 1, using (2.1), (2.3), (3.1)–(3.3) and

(8.1) we can estimate α
(N)
m|m(ϕ∗) as follows:

αm|m(ϕ∗
N ) = GN

m

(

B
(N)
m

)

= GN
m





⋃

Q:D(Q||Gm)>Em|m

T N
Q (X)





≤ (N + 1)|X | sup
Q:D(Q||Gm)>Em|m

Gm(T N
Q (X))

≤ (N + 1)|X | sup
Q:D(Q||Gm)>Em|m

exp{−ND(Q||Gm)}

≤ exp

{

−N [ inf
Q:D(Q||Gm)>Em|m

D(Q||Gm)− oN (1)]}

}

≤ exp
{

−N [Em|m − oN (1)]
}

,

where oN (1) → 0 with N → ∞.
For l = 1,M − 1, m = 1,M , l 6= m, using (2.1), (2.3), (3.1)–(3.3) and (8.1),

we can obtain similar estimates:

αl|m(ϕ∗
N ) = GN

m

(

B
(N)
l

)

= GN
m





⋃

Q :D(Q||Gl)El|l

T N
Q (X)





≤ (N + 1)|X | sup
Q:D(Q||Gm)≤El|l

GN
m(T N

Q (X)

≤ (N + 1)|X | sup
Q:D(Q||Gm)≤El|l

exp{−ND(Q||Gm)}

= exp

{

−N

(

inf
Q:D(Q||Gm)≤El|l

D(Q||Gm)− oN (1)

)}

. (8.3)
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Now let us prove the inverse inequality:

αl|m(ϕ∗
N ) = GN

m

(

B
(N)
l

)

= GN
m





⋃

Q:D(Q||Gl)≤El|l

T N
Q (X)





≥ sup
Q:D(Q||Gl)≤El|l

GN
m(TQ(X)

≥ (N + 1)−|X | sup
Q:D(Q||Gl)≤El|l

exp {−ND (Q||Gm)}

= exp

{

−N

(

inf
Q:D(Q||Gl)≤El|l

D(Q||Gm) + oN (1)

)}

. (8.4)

According to the definition (3.3) El|m(ϕ∗) = lim
N→∞

{

−N−1 logαl|m(ϕ∗
N )

}

, tak-

ing into account (8.3), (8.4) and the continuity of the functional D(Q||Gl) we
obtain that
lim

N→∞

{

−N−1 logαm|l(ϕ
∗
N )

}

exists and in correspondence with (3.9) equals to

E∗
m|l. Thus El|m(ϕ∗) = E∗

l|m, m = 1,M , l = 1,M − 1, l 6= m. Similarly we can

obtain upper and lower bounds for αM|m(ϕ∗
N ), m = 1,M . Applying the same

resonnement we get that the reliability EM|m(ϕ∗) = E∗
M|m. By the definition

(3.4) EM|M (ϕ∗) = E∗
M|M . The proof of the first part of the theorem will be

accomplished if we demonstrate that the sequence of tests ϕ∗ is LAO, that is
for given E1|1, ..., EM−1|M−1 and every sequence of tests ϕ for all l,m ∈ 1,M ,
Em|l(ϕ) ≤ E∗

m|l.
Let us consider any other sequence ϕ∗∗ of tests which are defined by the sets

D
(N)
1 , ...,D

(N)
M such that

El|m(ϕ∗∗) ≥ E∗
l|m, m, l = 1,M. (8.5)

These conditions are equivalent for N large enough to the inequalities

αl|m(ϕ∗∗
N ) ≤ αl|m(ϕ∗

N ), m, l = 1,M. (8.6)

Let us examine the sets D
(N)
m

⋂

B
(N)
m , m = 1,M . This intersection cannot be

empty, because in that case

αm|m(ϕ∗∗
N ) = GN

m

(

D
(N)

m

)

≥ GN
m

(

B(N)
m

)

≥ max
Q:D(Q||Gm)≤Em|m

GN
m

(

T N
Q (X)

)

≥ exp{−N(Em|m + oN (1))}.
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Let us show that D
(N)
l

⋂

B
(N)
m = ∅, m, l = 1,M − 1, m 6= l. If there exists Q

such that D(Q||Gm) ≤ Em|m and T N
Q (X) ∈ D

(N)
l , then

αl|m(ϕ∗∗
N ) = GN

m

(

D
(N)
l

)

> GN
m

(

T N
Q (X)

)

≥ exp{−N(Em|m + oN (1))}.

When ∅ 6= D
(N)
l

⋂

T N
Q (X) 6= T N

Q (X), we also obtain that

αl|m(ϕ∗∗
N ) = GN

m(D
(N)
l

> GN
m(D

(N)
l

⋂

T N
Q (X)

≥ exp{−N(Em|m + oN (1))}.

Thus it follows that El|m(ϕ∗∗) ≤ Em|m, which in turn according to (3.4) provides
that El|m(ϕ∗∗) = Em|m. From condition (3.12) it follows that Em|m < E∗

l|m , for

all l = 1,m− 1, hence El|m(ϕ∗∗) < E∗
l|m for all l = 1,m− 1, which contradicts

to (8.5). Hence we obtain that D
(N)
m

⋂

B
(N)
m = B

(N)
m for m = 1,M − 1. The

intersection D
(N)
m

⋂

B
(N)
M is empty too, because otherwise

αM|m(ϕ∗∗
N ) ≥ αM|m(ϕ∗

N ),

which contradicts to (8.6), hence D
(N)
m = B

(N)
m , m = 1,M .

The proof of the second part of the Theorem 3.1 is simple. If one of the
conditions (3.12) is violated, then from (3.9)–(3.11) it follows that at least one
of the elements Em|l is equal to 0. For example, let in (3.12) the m-th condition
be violated. It means that Em|m ≥ min

l=m+1,M
D(Gl||Gm), then there exists l∗ ∈

m+ 1,M such that Em|m ≥ D(G∗
l ||Gm). From latter and (3.9) we obtain that

E∗
m|l = 0.
The theorem is proved.

Proof of Lemma 4.1: It follows from the independence of the objects that

αl1,l2,l3|m1,m2,m3
(ΦN ) =

3
∏

i=1

αli|mi
(ϕi

N ), if mi 6= li, (8.7)

αl1,l2,l3|m1,m2,m3
(ΦN ) =

(

1− αlk|mk
(ϕk

N )
)

∏

i∈[[1,2,3]−k]

αli|mi
(ϕi

N ),

mk = lk, mi 6= li, k = 1, 3, i 6= k, (8.8)

αl1,l2,l3|m1,m2,m3
(ΦN ) = αli|mi

(ϕi
N )

∏

k∈[[1,2,3]−i]

(

1− αlk|mk
(ϕi

N )
)

,

mk = lk, mi 6= li, i = 1, 3. (8.9)
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Remark that here we consider also the probabilities of right (not erroneous)
decisions. Because El|m(ϕi) are strictly positive then the error probability
αl|m(ϕi

N ) tends to zero, when N −→ ∞. According this fact we have

lim
N→∞

{

−
1

N
log

(

1− αl|m(ϕi
N )

)

}

= lim
N→∞

αl|m

(

ϕi
N

)

N

log
(

1− αl|m(ϕi
N )

)

−αl|m(ϕi
N )

= 0. (8.10)

From definitions (4.2), equalities (8.7)–(8.9), applying (8.10) we obtain relations
(4.4)–(4.6).

The Lemma is proved.

Proof of Theorem 4.1: The test Φ∗ = (ϕ1,∗, ϕ2,∗, ϕ3,∗), where ϕi,∗, i = 1, 3
are LAO tests of objects Xi, belongs to the set D. Our aim is to prove that such
Φ∗ is a compound LAO test. Conditions (4.16)–(4.19) imply that inequalities
analogous to (3.12) hold simultaneously for tests for three separate objects.

Let the test Φ ∈ D be such that EM,M,M|m,M,M (Φ) = EM,M,M|m,M,M

EM,M,M|M,m,M (Φ) = EM,M,M|M,m,M , andEM,M,M|m,M,M (Φ) = EM,M,M|M,M,m,

m = 1,M − 1.
Taking into account (4.7)–(4.9) we can see that conditions (4.16)–(4.19) for

every m = 1,M − 1 may be replaced by the following inequalities:

EM|m(ϕi) < min

[

min
l=1,m−1

inf
Q:D(Q||Gm)≤EM|m(ϕi)

D(Q||Gl), min
l=m+1,M

D(Gl||Gm)

]

.

(8.11)
According to Remark 3.1 for LAO test ϕi,∗, i = 1, 3, we obtain that (8.11)

meets conditions (3.12) of Theorem 3.1 for each test Φ ∈ D, Em|m(ϕi) > 0,
i = 1, 3, hence it follows from (3.3) that Em|l(ϕ

i) are also strictly positive. Thus
for a test Φ ∈ D conditions of Lemma 4.1 are fulfilled and the elements of the
reliability matrix E(Φ) coincide with elements of matrix E(ϕi), i = 1, 3, or sums
of them. Then from definition of LAO test it follows that El|m(ϕi) ≤ El|m(ϕi,∗),
then El1,l2,l3|m1,m2,m3

(Φ) ≤ El1,l2,l3|m1,m2,m3
(Φ∗). Consequently Φ∗ is a LAO

test and El1,l2,l3|m1,m2,m3
(Φ∗) verify (4.12)–(4.15).

b) When even one of the inequalities (4.16)–(4.19) is violated, then at least
one of inequalities (8.11) is violated. Then from Theorem 3.2 one of elements
Em|l(ϕ

i,∗) is equal to zero. Suppose E3|2(ϕ
1,∗) = 0, then the elements

E3,m,l|2,m,l(Φ
∗) = E3|2(ϕ

1,∗) = 0.
The Theorem is proved.
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[57] Tusnády, G. (1977). On asymptotically optimal tests. Annals of Statatis-
tics. vol. 5, no. 2, pp. 385-393.
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