Skip to main content

An Unstable Hypergraph Problem with a Unique Optimal Solution

  • Chapter
Information Theory, Combinatorics, and Search Theory

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7777))

  • 2119 Accesses

Abstract

There is a variety of problems in extremal combinatorics for which there is a unique configuration achieving the optimum value. Moreover, as the size of the problem grows, configurations that “almost achieve” the optimal value can be shown to be “almost equal” to the extremal configuration. This phenomenon, known as stability, has been formalized by Simonovits [A Method for Solving Extremal Problems in Graph Theory, Stability Problems, Theory of Graphs (Proc.Colloq., Tihany, 1966), 279–319] in the context of graphs, but has since been considered for several combinatorial structures. In this work, we describe a hypergraph extremal problem with an unusual combinatorial feature, namely, while the problem is unstable, it has a unique optimal solution up to isomorphism. To the best of our knowledge, this is the first such example in the context of (simple) hypergraphs.

More precisely, for fixed positive integers r and ℓ with 1 ≤ ℓ < r, and given an r-uniform hypergraph H, let κ(H, 4,ℓ) denote the number of 4-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least ℓ elements. Consider the function KC\((n,r,4,\ell)=\max_{H\in{\mathcal H}_{n,r}} \kappa (H, 4,\ell) \), where the maximum runs over the family \({\mathcal H}_{n,r}\) of all r-uniform hypergraphs on n vertices. We show that, for n large, there is a unique n-vertex hypergraph H for which κ(H, 4,ℓ) = KC(n,r,4,ℓ), despite the fact that the problem of determining KC(n,r,4,ℓ) is unstable for every fixed r > ℓ ≥ 2.

This work was partially supported by the University of São Paulo, through the MaCLinC/NUMEC project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlswede, R., Khachatrian, L.H.: The complete intersection theorem for systems of finite sets. European J. Combin. 18(2), 125–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blokhuis, A., Brouwer, A., Szőnyi, T., Weiner, Z.: On q-analogues and stability theorems. Journal of Geometry 101, 31–50 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brown, W.G.: On an open problem of Paul Turán concerning 3-graphs. Studies in pure mathematics, pp. 91–93. Birkhäuser, Basel (1983)

    MATH  Google Scholar 

  4. Brown, W.G., Simonovits, M.: Extremal multigraph and digraph problems. Paul Erdős and his Mathematics, II (Budapest, 1999), Bolyai Soc. Math. Stud., János Bolyai Math. Soc. 11, 157–203 (2002)

    Google Scholar 

  5. Erdős, P.: Some recent results on extremal problems in graph theory. In: Results, Theory of Graphs, Internat. Sympos., Rome, pp. 117–123 (English) (1966), pp. 124–130 (French). Gordon and Breach, New York (1967)

    Google Scholar 

  6. Erdős, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. 2(12), 313–320 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fon-Der-Flaass, D.G.: A method for constructing (3,4)-graphs. Mat. Zametki 44(4), 546–550, 559 (1988)

    Google Scholar 

  8. Frohmader, A.: More constructions for Turán’s (3,4)-conjecture. Electron. J. Combin. 15(1), Research Paper 137, 23 (2008)

    Google Scholar 

  9. Füredi, Z.: A new proof of the stability of extremal graphs: Simonovits’s stability from Szemerédi’s regularity. Talk at the Conference in Honor of the 70th Birthday of Endre Szemerédi, Budapest, August 2-7 (2010)

    Google Scholar 

  10. Füredi, Z.: Turán type problems, Surveys in combinatorics, Guildford. London Math. Soc. Lecture Note Ser., vol. 166, pp. 253–300. Cambridge Univ. Press, Cambridge (1991)

    Google Scholar 

  11. Füredi, Z., Simonovits, M.: Triple systems not containing a Fano configuration. Combin. Probab. Comput. 14(4), 467–484 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hoppen, C., Kohayakawa, Y., Lefmann, H.: Edge colourings of graphs avoiding monochromatic matchings of a given size. Combin. Probab. Comput. 21(1-2), 203–218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoppen, C., Kohayakawa, Y., Lefmann, H.: Hypergraphs with many Kneser colorings. European Journal of Combinatorics 33(5), 816–843 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keevash, P.: Hypergraph Turán problems, Surveys in combinatorics 2011. London Math. Soc. Lecture Note Ser., vol. 392, pp. 83–140. Cambridge Univ. Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  15. Keevash, P., Mubayi, D.: Set systems without a simplex or a cluster. Combinatorica 30(2), 175–200 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keevash, P., Sudakov, B.: The Turán number of the Fano plane. Combinatorica 25(5), 561–574 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kostochka, A.V.: A class of constructions for Turán’s (3,4)-problem. Combinatorica 2(2), 187–192 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simonovits, M.: A method for solving extremal problems in graph theory, stability problems. In: Theory of Graphs, Proc. Colloq., Tihany, 1966, pp. 279–319. Academic Press, New York (1968)

    Google Scholar 

  19. Simonovits, M.: Some of my favorite Erdős theorems and related results, theories. In: Paul Erdős and his Mathematics, II, Bolyai Soc. Math. Stud. (Budapest, 1999) János Bolyai Math. Soc. 11, 565–635 (2002)

    Google Scholar 

  20. Szőnyi, T., Weiner, Z.: On stability theorems in finite geometry, 38 pp. (2008) (preprint)

    Google Scholar 

  21. Turán, P.: Research problems. Magyar Tud. Akad. Mat. Kutató Int. Közl 6, 417–423 (1961)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoppen, C., Kohayakawa, Y., Lefmann, H. (2013). An Unstable Hypergraph Problem with a Unique Optimal Solution. In: Aydinian, H., Cicalese, F., Deppe, C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol 7777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36899-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36899-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36898-1

  • Online ISBN: 978-3-642-36899-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics