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Abstract. We review the development of the quantum version of Ahls-
wede and Dueck’s theory of identification via channels. As is often the
case in quantum probability, there is not just one but several quantiza-
tions: we know at least two different concepts of identification of classical
information via quantum channels, and three different identification ca-
pacities for quantum information.
In the present summary overview we concentrate on conceptual points
and open problems, referring the reader to the small set of original arti-
cles for details.

Dem Andenken an Rudolf Ahlswede (15/9/1938—18/12/2010)

0 Quantum and classical channels

Our communication model is the quantum channel, also known as completely
positive and trace preserving (cptp) linear map between quantum systems,

N : L(A) −→ L(B).

Here, as in the rest of the paper, we assume that A, B, etc, are finite dimensional
(complex) Hilbert spaces and L(A) is the set of linear operators (matrices) over
A.

The cptp condition is necessary and sufficient for N mapping states on A,
i.e. density operators ρ ≥ 0 with Tr ρ = 1, whose set we denote as S(A), to
states on B, and the same for N ⊗ idC for arbitrary systems C. Thus, the class
of cptp maps is closed under composition, tensor products and taking convex
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combinations. One of the most useful characterizations of cptp maps is in terms
of the Stinespring dilation [29]: namely, N is cptp if and only if there exists
an ancilla (environment) system E and an isometry V : A →֒ B ⊗ E such
that N (ρ) = TrE V ρV

†. The isometry V is essentially unique, up to unitary
equivalence of E; hence it makes sense to define, for a chosen dilation V , the
complementary channel

N̂ : L(A) −→ L(E),

by N̂ (ρ) := TrB V ρV
†.

For a given channel N , we are interested in the asymptotic performance of
many iid copies, N⊗n. One can also consider more complicated channel models
(such as with feedback, or with pre-shared correlations), but here we will restrict
ourselves to the simple forward channel – see however [33] and [1].

Classical channels are of course transition probability kernels N : X → Y
(with finite input and output alphabets X and Y, respectively). Such a channel
may be identified with the cptp map

N : L(CX ) −→ L(CY)

ρ 7−→
∑

xy

N(y|x)|y〉〈x|ρ|x〉〈y|,

while a probability distribution P on X is identified with the state
∑

x P (x)|x〉〈x|.
Two special classes of channels we will have occasion to consider are the

following, either whose input or whose output is classical: A cq-channel N :
X −→ S(B) is a cptp map of the form

N (ξ) =
∑

x

〈x|ξ|x〉ρx,

with states ρx onB. A qc-channel M : S(A) −→ Y instead is given by a quantum
measurement, i.e. a positive operator values measure (POVM) (My)y∈Y such
that My ≥ 0 and

∑
yMy = 1l. The channel then has the form

M(ρ) =
∑

y

Tr ρMy|y〉〈y|.

We refer the reader to the excellent text [31] for more details on quantum and
classical channels, and the various transmission capacities associated with them,
including their history. Here we need only two, the classical and the quantum
capacity of a channel, C(N ) and Q(N ), respectively, defined as the maximum
rates of asymptotically faithful transmission of classical bits and qubits, respec-
tively, over many iid copies of the channel. They can be expressed as regular-
izations of entropic information quantities, based on the von Neumann entropy
S(ρ) = −Tr ρ log ρ of a quantum state ρ. They are given by the formulas

C(N ) = lim
n→∞

1

n
C(1)(N⊗n), with

C(1)(N ) = max
{px,ρx}

S

(∑

x

pxN (ρx)

)
−
∑

x

pxS
(
N (ρx)

)
,

(1)
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and

Q(N ) = lim
n→∞

1

n
Q(1)(N⊗n), with

Q(1)(N ) = max
ρ∈S(A)

S
(
N (ρ)

)
− S

(
N̂ (ρ)

)
,

(2)

both of which represent the culmination of concerted efforts of several researchers
in the 1990s and early 2000s (Holevo-Schumacher-Westmoreland and Schumacher
& Lloyd-Shor-Devetak, respectively). The classical capacity generalizes Shan-
non’s channel capacity for classical channels N , for which C(N) = C(1)(N)
reduces to the famous formula in terms of the mutual information [28].

The structure of the rest of the paper is as follows: In section 1 we present the
definitions for identification of classical information via quantum channels, after
Löber [25], generalizing the model of Ahlswede and Dueck [8,9]. In section 2 we
move to identification of quantum information; section 3 presents the recently
developed theoretical underpinning to prove capacity formulas for two of the
three quantum models. In section 4 we show how the quantum identification
results imply new lower bounds on classical identification capacities, which we
illustrate with several examples, shedding new light also on Löber’s founding
work [25]. Finally, section 5 is devoted to an outlook on open questions and
possible conjectures.

1 Classical Identification

Ahlswede and Dueck [8,9] introduced identification by noting that while Shan-
non’s theory of transmission presumes that the receiver wants to know everything
about the message, in reality he may be interested only in certain aspects of it.
In other words, the receiver may want to compute a function of the message.
The most extreme case is that of identification: for sent message m and an arbi-
trary message m′, the receiver would like to be able to answer the question “Is
m = m′?” as accurately as possible.

Definition 1 (Löber [25]). A classical identification code for the channel N
with error probability λ1 of first, and λ2 of second kind is a set {(ρi, Di) : i =
1, . . . , N} of states ρi on A and operators Di on B with 0 ≤ Di ≤ 1l, i.e. the
pair (Di, 1l−Di) forms a measurement, such that

∀i Tr
(
N (ρi)Di

)
≥ 1− λ1,

∀i 6= j Tr
(
N (ρi)Dj

)
≤ λ2.

For the special case of memoryless channels N⊗n, we speak of an (n, λ1, λ2)-ID
code, and denote the largest size N of such a code N(n, λ1, λ2).

An identification code as above is called simultaneous if all the Di are coex-
istent: this means that there exists a positive operator valued measure (POVM)
(Et)

T
t=1 and subsets Di ⊂ {1, . . . , T } such that Di =

∑
t∈Di

Et. The largest size
of a simultaneous (n, λ1, λ2)-ID code is denoted Nsim(n, λ1, λ2).
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Note that Nsim(n, λ1, λ2) = N(n, λ1, λ2) = ∞ if λ1 + λ2 ≥ 1, hence to avoid
this triviality one has to assume λ1 + λ2 < 1.

It is straightforward to verify that in the case of a classical channel, this
definition reduces to the famous one of Ahlswede and Dueck [8], in particular
all codes are without loss of generality automatically simultaneous. It was in
fact Löber [25] in his PhD thesis who noticed that in the quantum case we have
to make a choice – whether the receiver should be able to answer all or any
one of the “Is the message = m′?” questions. It was the original realization of
Ahlswede and Dueck [8] that N(n, λ1, λ2) grows doubly exponential in n, hence
the following definition of the (classical) identification capacity:

Definition 2. The (simultaneous) classical ID-capacity of a quantum channel
N is given by

CID(N ) = inf
λ>0

lim inf
n→∞

1

n
log logN(n, λ, λ),

Csim
ID (N ) = inf

λ>0
lim inf
n→∞

1

n
log logNsim(n, λ, λ),

respectively. We say that the strong converse holds for the identification capacity
if for all λ1 + λ2 < 1,

lim
n→∞

1

n
log logN(n, λ1, λ2) = CID(N ),

and similarly for Csim
ID .

Theorem 3 (Ahlswede/Dueck [8], Han/Verdu [18,19], Ahlswede [4]).
For a classical channel N and any λ1, λ2 > 0 with λ1 + λ2 < 1,

lim
n→∞

1

n
log logN(n, λ1, λ2) = C(N),

in particular, Csim
ID (N) = CID(N) = C(N). ⊓⊔

The direct part of the above theorem, due to Ahlswede and Dueck [8], can be
seen by concatenating a sufficiently good Shannon channel code with an identifi-
cation code for the ideal bit channel. For the latter, [8] contains a combinatorial

construction showing that by k-bit encodings, one can identify ≥ 2Ω(2k) mes-
sages. Using this, the direct part of the following result is immediate:

Theorem 4 (Löber [25], Ahlswede/Winter [10]). For quantum channel N ,

CID(N ) ≥ Csim
ID (N ) ≥ C(N ).

The simultaneous ID-capacity obeys a strong converse under the additional re-

striction that the signal states ρi are from a set that is the convex hull of ≤ 22
o(n)
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quantum states on An. I.e., denoting the maximum number of messages under
this constraint by N sim(n, λ1, λ2),

lim sup
n→∞

1

n
log logN sim(n, λ1, λ2) ≤ C(N ),

for λ1 + λ2 < 1. (For instance, the ρi could be restricted to be – approximately
– separable states.)

For cq-channels, the constraint is w.l.o.g. satisfied since there are only |X |n
classical input symbols, so for these channels the simultaneous ID-capacity obeys
a strong converse, with Csim

ID (N ) = C(N ) = C(1)(N ).
Indeed, in the case of cq-channels, the strong converse holds even without the

simultaneity constraint:

lim
n→∞

1

n
log logN(n, λ1, λ2) = C(N ) = C(1)(N ),

for λ1 + λ2 < 1. ⊓⊔

[To be precise, Löber’s results are in the framework of Han and Verdú [18,19], of
“arbitrary” sequences of channels and using information spectrum methods. As
we are focusing on the iid case here, we stated only a special case of his theorem.]

The last, non-simultaneous part of the Theorem is the main identification
result of [10], which was proved by developing a theory of tail bounds for
sums of random matrices, extending classical Hoeffding bounds, and inspired
by Ahlswede’s strong converse for the ID-capacity of classical channels [4]. The
simplest, and most useful, version is as follows.

Lemma 5 (Ahlswede/Winter [10]). For i.i.d. random variables Xi in d× d
Hermitian matrices and 0 ≤ Xi ≤ 1l, such that EXi = µ1l. Then, for µ ≤ α ≤ 1
and 0 ≤ α ≤ µ, respectively,

Pr

{
1

n

n∑

i=1

Xi 6≤ α1l

}
≤ d e−nD(α‖µ),

Pr

{
1

n

n∑

i=1

Xi 6≥ α1l

}
≤ d e−nD(α‖µ),

with the binary relative entropy D(α‖µ) = α ln α
µ + (1− α) ln 1−α

1−µ .

As a consequence, for all 0 ≤ ǫ ≤ 1
2 ,

Pr

{
1

n

n∑

i=1

Xi 6∈ [(1− ǫ)µ1l, (1 + ǫ)µ1l]

}
≤ 2d e−

1
4nµǫ

2

.

using elementary estimates for the relative entropy. ⊓⊔
The power of this Lemma is in its giving explicit and simple tail bounds, useful
already for finite n and d, whereas general abstract large deviation theory –
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which applies, see [7] for a version in infinite dimension – often incurs complex
finite n behaviour, only yielding clear asymptotic statements. The proof of the
Lemma is simple, too: it requires generalizing the elementary Markov-Chebyshev
inequalities and the Bernstein trick from real random variables to matrices. It has
since found countless applications in quantum information theory and beyond:
The first proofs of some core results such as the quantum channel capacity,
remote state preparation or decoupling heavily relied on it, cf. [31], as did the
structurally simple proof of the Alon-Roichman theorem and matrix versions
of compressed sensing, cf. [30] and references therein. The latter also presents
far-reaching generalizations of the above bounds.

It is not known whether simultaneous and non-simultaneous ID-capacity co-
incide or not for general quantum channels. In any case, going beyond simul-
taneity seems to provide major freedom:

Example 6. Buhrman et al. [15] found that in the space of n qubits, whilst the
largest number of orthogonal pure state vectors is clearly the dimension of the
Hilbert space, 2n, there are N ≥ 2Ω(2n) pairwise almost orthogonal pure states,
i.e. |〈ψi|ψj〉| ≤ ǫ for i 6= j.

They dubbed this “fingerprinting” because a verifier who gets a copy of each
|ψi〉 and |ψj〉 can efficiently determine whether i = j or not. In particular, the
set of these vectors forms a (non-simultaneous) ID-code, with ρi = Di = |ψi〉〈ψi|.

One can obtain a set of such vectors also by turning the probability distri-
butions on n bits form [8] into superpositions – cf. [32] for details.

Fingerprinting ID-codes use quantum superpositions in a nontrivial way, al-
beit the almost-orthogonality is somewhat analogous to the way the classical
distributions in [8] do not overlap too much. However, they only use pure states,
whereas the power of classical identification comes from randomization. Hence
it is natural to ask whether mixed states offer any improvement. As the clas-
sical capacity of a noiseless qubit channel is 1, the following result came as a
bit of a surprise. It was proved using powerful geometric measure concentration
techniques – cf. [21,11] for other applications in quantum information theory.

Theorem 7 (Winter [32]). For the noiseless qubit channel id2 = idC2 , and
0 < λ1, λ2, λ1 + λ2 < 1,

2Ω(22n) ≤ N(n, λ1, λ2) ≤ 2O(22n).

As a consequence, CID(id2) = 2 and the strong converse holds. If the encodings
are restricted to pure states, the capacity is only 1. ⊓⊔
[In [32] (Remark 13; the technical argument there has been elaborated in [17])
it was heuristically argued that one would expect Csim

ID (id2) to be 1 rather than
2.1]

1 This conjecture has been proved recently [34], indeed by showing that C
sim

ID (id2) is
attained by codes using only pure states as encodings, so the above theorem applies.
In fact, the same argument proves that Csim

ID (N ) for any channel is attained by codes
using only pure state encodings [35].
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To appreciate why this result was so surprising, we need to go back to the
insights from the original identification papers [8,9]: It was understood that
what determines identification capacity of a communication system is its ability
to establish common randomness (cf. [6]), as long as some sublinear amount
of actual communication is available. But the common randomness capacity
of a noiseless qubit channel is 1. However, a noiseless qubit channel can also
establish entanglement (ebits) at rate 1. And indeed, in [33,1] it was found that
k EPR pairs shared between sender and receiver, together with o(n) bits of

communication are sufficient to identify 2Ω(22k) messages. In this respect, it may
be interesting to draw attention to the following:

Proposition 8 (Winter [32]). Given an ID-code of rate C and common ran-
domness of rate R, one can construct an ID-code of rate C+R−o(1) which uses
the signal states of the first code and correlations with the common randomness.

⊓⊔

In other words: Whatever your communication system, its identification ca-
pacity is increased by 1 by each bit of common randomness. This was used
in [32] to derive a lower bound on the ID-capacity of a quantum channel: If N
permits simultaneous transmission of classical bits and qubits at rates C and Q,
respectively, then CID(N ) ≥ C+2Q. Thus the results of [16] become applicable,
where the Q-C capacity region was determined. As we saw above, this bound,
can be strictly larger than the classical capacity C(N ) of the channel, marking
a decisive departure from the behaviour of classical channels.

Beyond these bounds and a few special examples in [32], the ID-capacity
(simultaneous or not) of a general quantum channel remains elusive. However,
in section 4 below we shall present a new lower bound.

2 How to Identify Quantum States?

So far the only quantum element in the discussion pertained to the channel
model. However, there is a natural way in which even the task of identification
can be extended from classical to quantum information. This has been promoted
in [32] and further in the more recent [22]. In the following, P(A) ⊂ S(A) denotes
the set of pure quantum states on a system A.

Definition 9 (Winter [32]). A quantum ID-code for the channel N with error
ǫ, for the Hilbert space K, is a pair of maps E : P(K) −→ S(A) and D :
P(K) −→ L(B) with 0 ≤ Dϕ ≤ 1l for all ϕ = |ϕ〉〈ϕ| ∈ P(K), such that for all
pure states/rank-one projectors ψ, ϕ ∈ P(K),

∣∣Trψϕ− TrN
(
E(ψ)

)
Dϕ

∣∣ ≤ ǫ.

If the encoding E is cptp we speak of a blind code, in general and to contrast it
with the former, we call it visible.

For the case of an iid channel N⊗n, we denote the maximum dimension of
a blind (visible) quantum ID-code by M(n, ǫ) (Mv(n, ǫ)).
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This notion can be motivated as follows: In quantum transmission, the ob-
jective for the receiver is to recover the state ψ by means of a suitable decoding
(cptp) map D̃ : L(B) −→ L(K), with high accuracy. Of course then the receiver
can perform any measurement on the decoded state, effectively simulating an ar-
bitrary measurement on the original input state, in the sense that for any state ρ
and POVMM = (Mi)i onK, there exists another POVMM ′ = (M ′

i)i on B such
that the measurement statistics of ρ under M is approximately that of N (E(ρ))
underM ′. (M ′ can be written down directly via the adjoint D̃† : L(K) −→ L(B)
of the decoding map, which maps measurement POVMs on K to POVMs on B:
M ′

i = D̃†(Mi).) The converse is also true: If the receiver can simulate suffi-
ciently general measurements on the input state by suitable measurements on
the channel output, then he can actually decode the state by a cptp map D̃ [26].

This allows us to relax the task of quantum information transmission to
requiring only that the receiver be able to simulate the statistics of certain re-
stricted measurements. In the case of quantum identification, these are (ϕ, 1l−ϕ)
for arbitrary rank-one projectors ϕ = |ϕ〉〈ϕ| ∈ P(K). They are the measurements
which allow the receiver to ask the (quantum) question: “Is the state equal to
ϕ or orthogonal to it?” Obviously, in quantum theory this question cannot be
answered with certainty, but for each test state it yields a characteristic distri-
bution. The quantum-ID task above is about reproducing this distribution.

Note that we can always concatenate a blind or visible quantum ID-code for
the Hilbert space K with a fingerprinting set of pure states in K, to obtain a
classical ID-code in the sense of Definition 1. This is because in fingerprinting
the encodings are pure states ψi and the tests precisely the POVMs (ψi, 1l−ψi).
Hence, as the cardinality of the fingerprinting set is exponential in the dimension
|K|, M(n, ǫ) and Mv(n, ǫ) can be at most exponential in n.

Definition 10. For a quantum channel N , the blind, respectively visible, quan-
tum ID-capacity is defined as

QID(N ) := inf
ǫ>0

lim inf
n→∞

1

n
logM(n, ǫ),

QID,v(N ) := inf
ǫ>0

lim inf
n→∞

1

n
logMv(n, ǫ).

If we leave out the qualifier, the quantum ID-capacity is by default the blind
variety.

Note that by definition and the above remark,

QID(N ) ≤ QID,v(N ) ≤ CID(N ). (3)

The first quantum ID-capacity that had been determined was for the ideal
qubit channel:

Theorem 11 (Winter [32]). For the noiseless channel idA on Hilbert space
A, there exists a (blind) quantum ID-code with error ǫ and encoding a space K
of dimension |K| ≥ C(ǫ)|A|2, for some universal function C(ǫ) > 0.
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As a consequence, QID(id2) = QID,v(id2) = 2, twice the quantum transmis-
sion capacity. ⊓⊔

In view of this theorem, we gain at least 2 in capacity for each noiseless qubit
we use additionally to the given channel. This motivates the following definition.

Definition 12 (Hayden/Winter [22]). For a quantum channel N , the amor-
tized (blind/visible) quantum ID-capacity is defined as

Qam
ID (N ) := sup

k
QID(N ⊗ idk)− 2 log k,

Qam
ID,v(N ) := sup

k
QID,v(N ⊗ idk)− 2 log k,

respectively.

The blind quantum ID-capacities are among the best understood, thanks to
recently made conceptual progress, which we review in the next section. We will
then also ask the question how much amortization is required. This is formalized
in the usual way: Namely, for a rate Q ≤ Qam

ID (N ), we say that A is an achievable
amortization rate if there exist kn for all n, such that

lim inf
n→∞

1

n

(
QID(N⊗n ⊗ idkn

)− 2 log kn
)
≥ Q and lim sup

n→∞

1

n
log kn ≤ A,

giving rise to an achievable quantum ID-rate/amortization region, viz. a tradeoff
between Q and A. Similarly of course for the visible variant.

3 Weak Decoupling Duality

The fundamental insight about quantum information transmission, which al-
lowed an understanding of the quantum capacity as we have it today, is the
decoupling principle: for a channel to permit (approximate) error correction it
is necessary and sufficient that it leaks (almost) no information to the environ-

ment in the sense that the complementary channel N̂ is close to constant. To
be precise, idA′ ⊗ N̂ should map an entangled test state ΦA′A to ≈ ΦA′ ⊗ σE ,
where the approximation is with respect to the trace norm on density operators.
In practice, to define capacities it is enough to demand this for the maximally
entangled test state between the code space and a reference system [27].

This condition is compactly expressed as saying that N̂ is ≈ [σE ] in the
so-called diamond norm, the completely bounded version of the naive super-
operator norm. Here, [σE ] denotes the constant channel mapping every input to
σE . Because of this connection to completely bounded norms, we call channels
with the above property completely forgetful or decoupling.

Indeed, it is well-known that this is a much stronger condition than N̂ (ρ) ≈
σE for all input states ρ on A. Cf. [20] for some instances of this effect relevant to
quantum information processing. There, it is shown how to construct channels
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that are only (approximately) forgetful (or weakly decoupling), but far from
completely forgetful.

To state the following conceptual points about blind(!) quantum ID-codes,
it is useful to fix an encoding cptp map E : L(K) −→ L(A) and to combine it
with the noisy channel, N ′ = N ◦ E , for which we choose a Stinespring dilation
V : K →֒ B ⊗ F . The quantum ID-code is now the entire input space K of
this effective new channel, together with the previously given operators Dϕ on
B. The next result states that just as quantum error correctability of N ′ is
equivalent to N̂ ′ being decoupling [27,24], quantum identification is essentially
equivalent to weak decoupling from the environment:

Theorem 13 (Hayden/Winter [22]). If K is a ǫ-quantum ID-code for the
channel N ′ with Stinespring dilation V : K →֒ B ⊗ F , then the complementary
channel N̂ ′ is approximately forgetful:

∀|ϕ〉, |ψ〉 ∈ K
1

2

∥∥∥N̂ ′(ϕ) − N̂ ′(ψ)
∥∥∥
1
≤ δ := 7 4

√
ǫ.

Conversely, if N̂ ′ is approximately forgetful with error δ, then the trace-norm
geometry is approximately preserved by N ′:

∀|ϕ〉, |ψ〉 ∈ S 0 ≤
∥∥ϕ− ψ

∥∥
1
−
∥∥N ′(ϕ) −N ′(ψ)

∥∥
1
≤ ǫ := 4

√
2δ.

If, in addition, the nonzero eigenvalues of the environment’s states N̂ ′(ϕ) lie in
the interval [µ, λ] for all |ϕ〉 ∈ K, then one can construct an η-quantum ID-code
for N ′ (i.e. a set of operators Dϕ for all |ϕ〉 ∈ K as in Definition 9), with

η := 7δ1/8
√
λ/µ. ⊓⊔

Remark 14. While it would be desirable to eliminate the eigenvalue condition
at the end of the theorem, the condition is fairly natural in this context. If the
environment’s states N̂ ′(ϕ) are very close to a single state σF for all |ϕ〉 ∈ K,
then all the V |ϕ〉 are very close to being purifications of σF , meaning that they
differ from one another only by a unitary plus a small perturbation. If σF is the
maximally mixed state or close to it, then the assumption will be satisfied. In
the asymptotic iid setting we are looking at this turns to be the case.

This characterization of quantum ID-codes (albeit “only” blind ones) allows
the determination of capacities by a random coding argument, for which only
the weak decoupling has to be verified. The above duality theorem is not only
the basis for the direct but also for the converse part(s) of the following capacity
theorem.

Theorem 15 (Hayden/Winter [22]). For a quantum channel N , its (blind)
quantum ID-capacity is given by

QID(N ) = lim
n→∞

1

n
Q

(1)
ID (N⊗n), where

Q
(1)
ID (N ) = sup

|φ〉

{
I(A : B)ρ s.t. I(A〉B)ρ > 0

}
,
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where |φ〉 is the purification of an input state to N , ρAB = (id ⊗ N )φ and
I(A : B)ρ = S(ρA)+S(ρB)−S(ρAB) is the mutual information, and I(A〉B)ρ =
S(ρB) − S(ρAB) the coherent information (which already appeared in eq. (2)).
We declare the sup to be 0 if the set above is empty. In particular, QID(N ) = 0
if and only if Q(N ) = 0.

Furthermore, the amortized quantum ID-capacity equals

Qam
ID (N ) = sup

|φ〉
I(A : B)ρ = CE(N ),

the entanglement-assisted classical capacity of N [12]. ⊓⊔

Remark 16. Let us say that a channel N has “sufficiently low noise” if for an
input state |φ〉 maximizing I(A : B)ρ, ρ = (id⊗N )φ, it holds that I(A〉B)ρ > 0.
This is motivated by the fact that in this case the channel has positive quantum
capacity. Also, for any channel, N ⊗ idk has sufficiently low noise if k is chosen
large enough; likewise pN + (1− p)id if p > 0 is small enough.

In that case, the above tells us QID(N ) = Qam
ID (N ) = sup|φ〉 I(A : B)ρ, which

is an additive, single-letter formula.

This theorem also shows that amortized and non-amortized quantum ID-
capacities are different – indeed, any channel N with vanishing quantum ca-
pacity also has QID(N ) = 0, whereas Qam

ID (N ) = 0 only for trivial channels.
In particular this implies that QID is not additive. In [22] it is in fact proven
that certain channels require a positive rate of amortization to attain or even to
approximate Qam

ID . The example analyzed there is the qubit erasure channel

Eq : L(C2) −→ L(C3)

ρ 7−→ (1− q)ρ⊕ q|∗〉〈∗|,

which will serve us again in the following section. To be precise, for 0 ≤ q < 1
2 , the

channel has sufficiently low noise and no amortization is required. For 1
2 ≤ q ≤ 1

instead, an amortized rate of at least 2q−1 qubits per channel use are necessary.

On the other hand, for all symmetric channels, i.e. those with E = B in the
Stinespring representation and N = Ñ , whereas quantum capacity and hence
QID are zero, only a vanishing rate of amortization is necessary to attain Qam

ID .
This is because they have I(A〉B)ρ = 0 for every input state, so arbitrarily little
is required to make the coherent information positive.

This includes qc-channels with rank-one POVM (My)y∈Y , and the noiseless
classical bit channel

id2 : ρ 7−→
∑

b=0,1

|b〉〈b|ρ|b〉〈b|.

The latter implies that also cq-channels N only require a vanishing rate of amor-
tization to attain Qam

ID (N ) = C(N ) = C(1)(N ): This is because we can use n≫ 1
copies ofN , with appropriate encoding and decoding, to simulate

(
C(N )−o(1)

)
n

almost noiseless classical bits. This also shows that the rate C(N ) is attainable
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for all channels N as an amortized quantum ID-rate, with vanishing rate of
amortization.

In fact, inspection of the proof of the direct part of Theorem 15 (Thm. 12
in [22]) reveals that for the noiseless classical channel id2, a constant amount of
amortization is enough, hence the same for all cq-channels, and also for certain
rank-one POVM qc-channels, namely those for which the outputs N (τ) and

Ñ (τ) for the maximally mixed input state τA are themselves maximally mixed.
Because then the typicality arguments in the proof, which deal with eigenvalue
fluctuations around the inverse exponential of the entropy, are unnecessary.

Remark 17. The previous observations show that the amortized quantum ID-
capacity of a cq-channel N (which equals its classical capacity) can be achieved
by visible, non-amortized codes:

QID,v(N ) = Qam
ID (N ) = C(N ) = C(1)(N ).

Indeed, choose a sequence of amortized quantum ID-codes for n uses of the
channel, with amortized noiseless communication of a system of dimension t =
o(log n). Then, whatever the code produces as the input state ω = E(ψ) to the
channel N⊗n ⊗ idt, the effect is the same if we first dephase the input to N⊗n

as the channel is cq, so w.l.o.g.

ω =
∑

xn

pxn |xn〉〈xn| ⊗ ωxn ,

with states ωxn ∈ S(Ct). The latter can be described classically to good approx-
imation using o(n) bits [21,32], which can be communicated by o(n) uses of the
channel (if we exclude the trivial case of zero capacity).

This then is the visible scheme: the encoding of state ψ is to sample from
the distribution pxn and sending |xn〉〈xn| through N⊗n, and to send a classical
description of ωxn via N⊗o(n). The receiver creates then ωxn in addition to
the other channel output, and otherwise uses the measurement Dϕ from the
amortized ID-code.

That the capacity cannot be larger than C(N ) follows from eq. (3) and
Theorem 4.

On the other hand, QID(N ) = 0 by Theorem 15, so we obtain a separation
between blind and visible quantum ID-capacity, a question left open in [32]. ⊓⊔

We close this section by pointing out that Qam
ID is one of only two fully

understood identification capacities so far: it has a single letter formula which
can be evaluated efficiently and it is additive. The other one is the classical ID-
capacity of a quantum channel with “coherent feedback” (meaning that in each
use of the channel, the environment of the Stinespring isometry ends up with the
sender), which we did not discuss here; the interested reader is referred to [33].
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4 From QID to CID

As pointed out in section 2, concatenating a quantum ID-code (blind or visible)
with the fingerprinting construction (Example 6), yields a classical ID-code of
asymptotically the same rate. Hence,

CID(N ) ≥ QID,v(N ) ≥
{
QID(N ),

C(N ),

Cam
ID (N ) ≥ Qam

ID (N ) = CE(N ),

where the amortized classical ID-capacity is defined analogously to the quantum
variant.

Perhaps we do not find the amortized classical ID-capacity that interesting,
but at least we get lots of channels for which CID(N ) ≥ CE(N ), namely all
sufficiently low noise channels and of course all cq-channels. This bound improves
on the earlier best bound

CID(N ) ≥ max{C + 2Q : (Q,C) jointly achievable},

the right hand side of which is always ≤ CE(N ). For example for the erasure
channel Eq, the quantum-classical-capacity region is known [16] to be

conv
{
(0, 0), (0, 1− q),

(
(1− 2q)+, 0

)}
,

so the above maximization yields

CID(Eq) ≥
{
2− 4q for 0 ≤ q ≤ 1

3 ,

1− q for 1
3 ≤ q ≤ 1.

Our new bound instead is

CID(Eq) ≥
{
2− 2q for 0 ≤ q < 1

2 ,

1− q for 1
2 ≤ q ≤ 1,

which is strictly better in the interval [0, 12 ).

5 Conclusion and Open Questions

As it should have become clear from the above exposition, identification theory
in the quantum setting is an enormously fruitful area, much more so even than
the classical version, if only because we have at least five natural capacities.
And we did not yet even touch upon a general theory of information transfer
in quantum information, or rather how quantum information would fit into this
far-reaching vision [2,3], these aspects still awaiting development.

At the same time the subject of identification via quantum channels is wide
open, with most of the questions implied in the original papers [25,10,32] remain-
ing unsolved, despite significant progress over the last decade. In particular, it
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turned out that the quantum identification task lent itself much more easily to
the currently available techniques, and that the recent progress satisfyingly shed
a fresh light on the older, and seemingly more elementary classical identification
task. The following seven broad open problems are recommended to the reader’s
attention.

1. Surely the biggest open problem is to determine the classical ID-capacity
CID(N ) of a general quantum channel, and to study its properties, such as
additivity etc. Even obtaining non-trivial upper bounds would be a worthy
goal. Note that practically all transmission capacities of a channel are up-
per bounded by its entanglement-assisted capacity, by way of the Quantum
Reverse Shannon Theorem [12,13,14] through simulation of the channel by
noiseless communication and unlimited shared entanglement. This argument
is not available here since entanglement or even common randomness have
an impact on the ID-capacities.
In fact, the few cases for which CID is known are consistent with the idea
that it is always equal to the entanglement-assisted classical capacity of the
channel [32]. One might speculate that CID(N ) ≥ QID,v(N ) ≥ CE(N ) be
true for all channels, seeing that for sufficiently low noise we can prove it, and
that it is true for the amortized classical ID-capacity. The erasure channel
Eq discussed in section 4 is already an excellent test case for this idea.

2. Is there a deeper, operational, reason why the amortized quantum ID-capacity
equals the entanglement-assisted classical(!) capacity of a channel? In the
derivation of [22] this comes out naturally as a result of the analysis, but
almost as an accident, and it seems difficult to connect it to [12]...

3. Is the simultaneous ID-capacity Csim
ID (N ) equal to the non-simultaneous ver-

sion CID(N )? I suspect that they are different, possibly even for the noiseless
qubit channel (see Theorem 7 and subsequent remarks). In such a case we
face another problem to determine Csim

ID (N ). When studying simultaneous
ID-codes, Löber’s technical condition in Theorem 4 deserves special atten-
tion, as it precludes using the entire input state space of the iid channels.2

A very interesting case to study will be (rank-one POVM) qc-channels as
there any identification code is per se simultaneous. For these channels we
know the amortized quantum ID-capacity (it is the entanglement-assisted
classical capacity, which evaluates to log |A|), and that amortization rate 0
is sufficient to achieve it, in some cases even a constant amount. In fact,
it would be interesting to know whether the visible quantum ID-capacity
for these channels is the same – cf. the case of cq-channels discussed in Re-
mark 17 –; this would evidently prove Csim

ID (N ) = CID(N ) ≥ log |A| for all
these channels N , whereas it is known that the classical capacity C(N ) for
many of them is much smaller.

4. The role of amortization is extremely interesting: For the quantum ID-
capacity it makes for a quasi-superactivation effect, since a vanishing rate

2 Cf. footnote 1 for the recent proof that indeed C
sim

ID 6= CID [34]. The arguments in
[34,35] allow the determination of the simultaneous ID-capacity for some channels,
but leave the general case wide open.
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of it (i.e. an arbitrary small rate of noiseless communication) can turn a
capacity 0 channel into one of positive capacity. It is possible that vanishing
rate of amortization likewise has an impact on classical ID-capacities – see
the example of qc-channels discussed in the previous point.
Finally, in [22] only the non-triviality of amortization (and only for the
erasure channels) was proved. How to characterize the quantum ID-rate
vs. amortization rate tradeoff?

5. We have seen that the visible quantum ID-capacity can be larger than the
blind variant, indeed the former can be positive while the latter is 0 for cq-
channels. Let us note that the distinction visible/blind can also be made in
the quantum transmission game, and there it is far from clear whether there
will be a difference in capacities, see [32].

6. We did not comment much on the role of shared correlations in the identifi-
cation game, indeed referring the reader to [32,33], where also the impact of
feedback is discussed. However, in Proposition 8 we saw that not only is the
classical ID-capacity of common randomness (in the presence of negligible
communication) equal to 1 per bit, but it increases the rate of any given
ID-code by 1 per bit. We also know that the classical ID-capacity of shared
entanglement is 2 per ebit, but it is open whether we can augment a given
ID-code with entanglement to increase its rate by 2 per ebit.

7. Finally: All the known upper bounds on classical ID-capacities are in fact
strong converses. Does the strong converse also hold for (visible, blind, amor-
tized, etc) quantum ID-capacities? This question seems to require new tech-
niques to be answered.
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