
Meta-Learning of Exploration/Exploitation
Strategies: The Multi-Armed Bandit Case

Francis Maes, Louis Wehenkel, and Damien Ernst

University of Liège
Dept. of Electrical Engineering and Computer Science

Institut Montefiore, B28, B-4000, Liège - Belgium
{francis.maes,L.Wehenkel,dernst}@ulg.ac.be

Abstract. The exploration/exploitation (E/E) dilemma arises natu-
rally in many subfields of Science. Multi-armed bandit problems for-
malize this dilemma in its canonical form. Most current research in this
field focuses on generic solutions that can be applied to a wide range
of problems. However, in practice, it is often the case that a form of
prior information is available about the specific class of target problems.
Prior knowledge is rarely used in current solutions due to the lack of a
systematic approach to incorporate it into the E/E strategy.
To address a specific class of E/E problems, we propose to proceed in
three steps: (i) model prior knowledge in the form of a probability distri-
bution over the target class of E/E problems; (ii) choose a large hypoth-
esis space of candidate E/E strategies; and (iii), solve an optimization
problem to find a candidate E/E strategy of maximal average perfor-
mance over a sample of problems drawn from the prior distribution.
We illustrate this meta-learning approach with two different hypothe-
sis spaces: one where E/E strategies are numerically parameterized and
another where E/E strategies are represented as small symbolic formu-
las. We propose appropriate optimization algorithms for both cases. Our
experiments, with two-armed “Bernoulli” bandit problems and various
playing budgets, show that the meta-learnt E/E strategies outperform
generic strategies of the literature (UCB1, UCB1-Tuned, UCB-V, KL-
UCB and εn-Greedy); they also evaluate the robustness of the learnt
E/E strategies, by tests carried out on arms whose rewards follow a
truncated Gaussian distribution.

Keywords: exploration-exploitation dilemma, prior knowledge, multi-
armed bandit problems, reinforcement learning

1 Introduction

Exploration versus exploitation (E/E) dilemmas arise in many sub-fields of Sci-
ence, and in related fields such as artificial intelligence, finance, medicine and
engineering. In its most simple version, the multi-armed bandit problem formal-
izes this dilemma as follows [1]: a gambler has T coins, and at each step he
may choose among one of K slots (or arms) to allocate one of these coins, and

ar
X

iv
:1

20
7.

52
08

v1
 [

cs
.A

I]
 2

2
Ju

l 2
01

2

2 Francis Maes, Louis Wehenkel, Damien Ernst

then earns some money (his reward) depending on the response of the machine
he selected. Each arm response is characterized by an unknown probability dis-
tribution that is constant over time. The goal of the gambler is to collect the
largest cumulated reward once he has exhausted his coins (i.e. after T plays).
A rational (and risk-neutral) gambler knowing the reward distributions of the
K arms would play at every stage an arm with maximal expected reward, so
as to maximize his expected cumulative reward (irrespectively of the number K
of arms, his number T of coins, and the variances of the reward distributions).
When reward distributions are unknown, it is less trivial to decide how to play
optimally since two contradictory goals compete: exploration consists in trying
an arm to acquire knowledge on its expected reward, while exploitation consists
in using the current knowledge to decide which arm to play. How to balance
the effort towards these two goals is the essence of the E/E dilemma, which is
specially difficult when imposing a finite number of playing opportunities T .

Most theoretical works about multi-armed bandit problem have focused on
the design of generic E/E strategies which are provably optimal in asymptotic
conditions (large T), while assuming only very unrestrictive conditions on the
reward distributions (e.g., bounded support). Among these, some strategies work
by computing at every play a quantity called “upper confidence index” for each
arm that depends on the rewards collected so far by this arm, and by selecting
for the next play (or round of plays) the arm with the highest index. Such E/E
strategies are called index-based policies and have been initially introduced by
[2] where the indices were difficult to compute. More easy to compute indices
where proposed later on [3,4,5].

Index-based policies typically involve hyper-parameters whose values impact
their relative performances. Usually, when reporting simulation results, authors
manually tuned these values on problems that share similarities with their test
problems (e.g., the same type of distributions for generating the rewards) by
running trial-and-error simulations [4,6]. By doing so, they actually used prior
information on the problems to select the hyper-parameters.

Starting from these observations, we elaborated an approach for learning
in a reproducible way good policies for playing multi-armed bandit problems
over finite horizons. This approach explicitly models and then exploits the prior
information on the target set of multi-armed bandit problems. We assume that
this prior knowledge is represented as a distribution over multi-armed bandit
problems, from which we can draw any number of training problems. Given this
distribution, meta-learning consists in searching in a chosen set of candidate E/E
strategies one that yields optimal expected performances. This approach allows
to automatically tune hyper-parameters of existing index-based policies. But,
more importantly, it opens the door for searching within much broader classes
of E/E strategies one that is optimal for a given set of problems compliant
with the prior information. We propose two such hypothesis spaces composed of
index-based policies: in the first one, the index function is a linear function of
features and whose meta-learnt parameters are real numbers, while in the second
one it is a function generated by a grammar of symbolic formulas.

Meta-Learning of Exploration/Exploitation Strategies 3

We empirically show, in the case of Bernoulli arms, that when the number K
of arms and the playing horizon T are fully specified a priori, learning enables to
obtain policies that significantly outperform a wide range of previously proposed
generic policies (UCB1, UCB1-Tuned, UCB2, UCB-V, KL-UCB and εn-
Greedy), even after careful tuning. We also evaluate the robustness of the
learned policies with respect to erroneous prior assumptions, by testing the E/E
strategies learnt for Bernoulli arms on bandits with rewards following a truncated
Gaussian distribution.

The ideas presented in this paper take their roots in two previously pub-
lished papers. The idea of learning multi-armed bandit policies using global
optimization and numerically parameterized index-based policies was first pro-
posed in [7]. Searching good multi-armed bandit policies in a formula space was
first proposed in [8]. Compared to this previous work, we adopt here a unifying
perspective, which is the learning of E/E strategies from prior knowledge. We
also introduce an improved optimization procedure for formula search, based on
equivalence classes identification and on a pure exploration multi-armed problem
formalization.

This paper is structured as follows. We first formally define the multi-armed
bandit problem and introduce index-based policies in Section 2. Section 3 for-
mally states of E/E strategy learning problem. Section 4 and Section 5 present
the numerical and symbolic instantiation of our learning approach, respectively.
Section 6 reports on experimental results. Finally, we conclude and present future
research directions in Section 7.

2 Multi-armed bandit problem and policies

We now formally describe the (discrete) multi-armed bandit problem and the
class of index-based policies.

2.1 The multi-armed bandit problem

We denote by i ∈ {1, 2, . . . ,K} the (K ≥ 2) arms of the bandit problem, by νi the
reward distribution of arm i, and by µi its expected value; bt is the arm played
at round t, and rt ∼ νbt is the obtained reward. Ht = [b1, r1, b2, r2, . . . , bt, rt]
is a vector that gathers the history over the first t plays, and we denote by H
the set of all possible histories of any length t. An E/E strategy (or policy)
π : H → {1, 2, . . . ,K} is an algorithm that processes at play t the vector Ht−1
to select the arm bt ∈ {1, 2, . . . ,K}: bt = π(Ht−1).

The regret of the policy π after T plays is defined by: RπT = Tµ∗ −
∑T
t=1 rt,

where µ∗ = maxk µk refers to the expected reward of the optimal arm. The
expected value of the regret represents the expected loss due to the fact that the
policy does not always play the best machine. It can be written as:

E{RπT } =

K∑
k=1

E{Tk(T)}(µ∗ − µk) , (1)

4 Francis Maes, Louis Wehenkel, Damien Ernst

Algorithm 1 Generic index-based discrete bandit policy

1: Given scoring function index : H× {1, 2, . . . ,K} → R,
2: for t = 1 to K do
3: Play bandit bt = t . Initialization: play each bandit once
4: Observe reward rt
5: end for
6: for t = K to T do
7: Play bandit bt = argmaxk∈{1,2,...,K} index(Hk

t−1, t)
8: Observe reward rt
9: end for

where Tk(T) denotes the number of times the policy has drawn arm k on the
first T rounds.

The multi-armed bandit problem aims at finding a policy π∗ that for a given
K minimizes the expected regret (or, in other words, maximizes the expected
reward), ideally for any T and any {νi}Ki=1.

2.2 Index-based bandit policies

Index-based bandit policies are based on a ranking index that computes for
each arm k a numerical value based on the sub-history of responses Hk

t−1 of that
arm gathered at time t. These policies are sketched in Algorithm 1 and work as
follows. During the first K plays, they play sequentially the machines 1, 2, . . . ,K
to perform initialization. In all subsequent plays, these policies compute for every
machine k the score index(Hk

t−1, t) ∈ R that depends on the observed sub-
history Hk

t−1 of arm k and possibly on t. At each step t, the arm with the largest
score is selected (ties are broken at random).

Here are some examples of popular index functions:

indexUCB1(Hk
t−1, t) = rk +

√
C ln t

tk
(2)

indexUCB1-Tuned(Hk
t−1, t) = rk +

√
ln t

tk
min

(
1/4, σk +

√
2 ln t

tk

)
(3)

indexUCB1-Normal(Hk
t−1, t) = rk +

√
16

tkσ
2
k

tk − 1

ln(t− 1)

tk
(4)

indexUCB-V(Hk
t−1, t) = rk +

√
2σ2

kζ ln t

tk
+ c

3ζ ln t

tk
(5)

where rk and σk are the mean and standard deviation of the rewards so far
obtained from arm k and tk is the number of times it has been played.

Policies UCB1, UCB1-Tuned and UCB1-Normal1 have been proposed
by [4]. UCB1 has one parameter C > 0 whose typical value is 2. Policy UCB-V

1 Note that this index-based policy does not strictly fit inside Algorithm 1 as it uses
an additional condition to play bandits that were not played since a long time.

Meta-Learning of Exploration/Exploitation Strategies 5

has been proposed by [5] and has two parameters ζ > 0 and c > 0. We refer
the reader to [4,5] for detailed explanations of these parameters. Note that these
index function are the sum of an exploitation term to give preference on arms
with high reward mean (rk) and an exploration term that aims at playing arms
to gather more information on their underlying reward distribution (which is
typically an upper confidence term).

3 Learning exploration/exploitation strategies

Instead of relying on a fixed E/E strategy to solve a given class of problems,
we propose a systematic approach to exploit prior knowledge by learning E/E
strategies in a problem-driven way. We now state our learning approach in ab-
stract terms.

Prior knowledge is represented as a distribution DP over bandit problems
P = (ν1, . . . , νK). From this distribution, we can sample as many training prob-
lems as desired. In order to learn E/E strategies exploiting this knowledge, we
rely on a parametric family of candidate strategies ΠΘ ⊂ {1, 2, . . . ,K}H whose
members are policies πθ that are fully defined given parameters θ ∈ Θ. Given
ΠΘ, the learning problem aims at solving:

θ∗ = argmin
θ∈Θ

EP∼DP {E{RπP,T }} , (6)

where E{RπP,T } is the expected cumulative regret of π on problem P and where T
is the (a-priori given) time playing horizon. Solving this minimization problem is
non trivial since it involves an expectation over an infinite number of problems.
Furthermore, given a problem P , computing E{RπP,T } relies on the expected
values of Tk(T), which we cannot compute exactly in the general case. Therefore,
we propose to approximate the expected cumulative regret by the empirical mean
regret over a finite set of training problems P (1), . . . , P (N) from DP :

θ∗ = argmin
θ∈Θ

∆(πθ) where ∆(π) =
1

N

N∑
i=1

RπP (i),T , (7)

and where Rπθ
P (i),T

values are estimated performing a single trajectory of πθ on

problem P . Note that the number of training problems N will typically be large
in order to make the variance ∆(·) reasonably small.

In order to instantiate this approach, two components have to be provided:
the hypothesis space ΠΘ and the optimization algorithm to solve Eq. 7. The
next two sections describe different instantiations of these components.

4 Numeric parameterization

We now instantiate our meta-learning approach by considering E/E strategies
that have numerical parameters.

6 Francis Maes, Louis Wehenkel, Damien Ernst

4.1 Policy search space

To define the parametric family of candidate policies ΠΘ, we use index functions
expressed as linear combinations of history features. These index functions rely
on an history feature function φ : H × {1, 2, . . . ,K} → R

d, that describes the
history w.r.t. a given arm as a vector of scalar features. Given the function φ(·, ·),
index functions are defined by

indexθ(Ht, k) = 〈θ, φ(Ht, k)〉 ,

where θ ∈ Rd are parameters and 〈·, ·〉 is the classical dot product operator. The
set of candidate policies ΠΘ is composed of all index-based policies obtained
with such index functions given parameters θ ∈ Rd.

History features may describe any aspect of the history, including empirical
reward moments, current time step, arm play counts or combinations of these
variables. The set of such features should not be too large to avoid parameter
estimation difficulties, but it should be large enough to provide the support for
a rich set of E/E strategies. We here propose one possibility for defining the
history feature function, that can be applied to any multi-armed problem and
that is shown to perform well in Section 6.

To compute φ(Ht, k), we first compute the following four variables: v1 =√
ln t, v2 = 1/

√
tk, v3 = rk and v4 = σk, i.e. the square root of the logarithm of

the current time step, the inverse square root of the number of times arm k has
been played, the empirical mean and standard deviation of the rewards obtained
so far by arm k.

Then, these variables are multiplied in different ways to produce features.
The number of these combinations is controlled by a parameter P whose default
value is 1. Given P , there is one feature fi,j,k,l per possible combinations of

values of i, j, k, l ∈ {0, . . . , P}, which is defined as follows: fi,j,k,l = vi1v
j
2v
k
3v
l
4.

In other terms, there is one feature per possible polynomial up to degree P us-
ing variables v1, . . . , v4. In the following, we denote Power-1 (resp., Power-2)
the policy learned using function φ(Ht, k) with parameter P = 1 (resp., P = 2).
The index function that underlies these policies can be written as following:

indexpower−P (Ht, k) =

P∑
i=0

P∑
j=0

P∑
k=0

P∑
l=0

θi,j,k,lv
i
1v
j
2v
k
3v
l
4 (8)

where θi,j,k,l are the learned parameters. The Power-1 policy has 16 such pa-
rameters and the Power-2 has 81 parameters.

4.2 Optimisation algorithm

We now discuss the optimization of Equation 7 in the case of our numerical
parameterization. Note that the objective function we want to optimize, in ad-
dition to being stochastic, has a complex relation with the parameters θ. A
slight change in the parameter vector θ may lead to significantly different bandit

Meta-Learning of Exploration/Exploitation Strategies 7

Algorithm 2 EDA-based learning of a discrete bandit policy

Given the number of iterations imax,
Given the population size np,
Given the number of best elements b,
Given a sample of training bandit problems P (1), . . . , P (N),
Given an history-features function φ(·, ·) ∈ Rd,

1: Set µp = 0, σ2
p = 1 , ∀p ∈ [1, d] . Initialize with normal Gaussians

2: for i ∈ [1, imax] do

3: for j ∈ [1, np] do . Sample and evaluate new population
4: for p ∈ [1, d] do
5: θp ← sample from N (µp, σ

2
p)

6: end for
7: Estimate ∆(πθ) and store result (θ,∆(πθ))
8: end for

9: Select {θ(1), . . . , θ(b)} the b best candidate θ vectors w.r.t. their ∆(·) score

10: µp ← 1
b

∑b
j=1 θ

(j)
p , ∀p ∈ [1, d] . Learn new Gaussians

11: σ2
p ← 1

b

∑b
j=1(θ

(j)
p − µp)2 ,∀p ∈ [1, d]

12: end for
13: return The policy πθ that led to the lowest observed value of ∆(πθ)

episodes and expected regret values. Local optimization approaches may thus
not be appropriate here. Instead, we suggest the use of derivative-free global
optimization algorithms.

In this work, we use a powerful, yet simple, class of global optimization
algorithms known as cross-entropy and also known as Estimation of Distribution
Algorithms (EDA) [9]. EDAs rely on a probabilistic model to describe promising
regions of the search space and to sample good candidate solutions. This is
performed by repeating iterations that first sample a population of np candidates
using the current probabilistic model and then fit a new probabilistic model
given the b < np best candidates.

Any kind of probabilistic model may be used inside an EDA. The simplest
form of EDAs uses one marginal distribution per variable to optimize and is
known as the univariate marginal distribution algorithm [10]. We have adopted
this approach by using one Gaussian distribution N (µp, σ

2
p) for each parameter

θp. Although this approach is simple, it proved to be quite effective experimen-
tally to solve Equation 7. The full details of our EDA-based policy learning pro-
cedure are given by Algorithm 2. The initial distributions are standard Gaussian
distributions N (0, 1). The policy that is returned corresponds to the θ parame-
ters that led to the lowest observed value of ∆(πθ).

5 Symbolic parametrization

The index functions from the literature depend on the current time step t and
on three statistics extracted from the sub-history Hk

t−1 : rk, σk and tk. We

8 Francis Maes, Louis Wehenkel, Damien Ernst

now propose a second parameterization of our learning approach, in which we
consider all index functions that can be constructed using small formulas built
upon these four variables.

5.1 Policy search space

We consider index functions that are given in the form of small, closed-form
formulas. Closed-form formulas have several advantages: they can be easily com-
puted, they can formally be analyzed and they are easily interpretable.

Let us first explicit the set of formulas F that we consider in this paper. A
formula F ∈ F is:

– either a binary expression F = B(F ′, F ′′), where B belongs to a set of binary
operators B and F ′ and F ′′ are also formulas from F,

– or a unary expression F = U(F ′) where U belongs to a set of unary operators
U and F ′ ∈ F,

– or an atomic variable F = V , where V belongs to a set of variables V,
– or a constant F = C, where C belongs to a set of constants C.

In the following, we consider a set of operators and constants that provides a
good compromise between high expressiveness and low cardinality of F. The set
of binary operators considered in this paper B includes the four elementary math-
ematic operations and the min and max operators: B = {+,−,×,÷,min,max}.
The set of unary operators U contains the square root, the logarithm, the ab-
solute value, the opposite and the inverse: U =

{√
., ln(.), |.|,−., 1.

}
. The set of

variables V is: V = {rk, σk, tk, t}. The set of constants C has been chosen to
maximize the number of different numbers representable by small formulas. It
is defined as C = {1, 2, 3, 5, 7}.

Figure 1 summarizes our grammar of formulas and gives two examples of
index functions. The length of a formula length(f) is the number of symbols
occurring in the formula. For example, the length of rk + 2/tk is 5 and the
length of rk +

√
2× ln(t)/tk is 9. Let L be a given maximal length. Θ is the

subset of formulas whose length is no more than L: Θ = {f |length(f) ≤ L}
and ΠΘ is the set of index-based policies whose index functions are defined by
formulas f ∈ Θ.

5.2 Optimisation algorithm

We now discuss the optimization of Equation 7 in the case of our symbolic
parameterization. First, notice that several different formulas can lead to the
same policy. For example, any increasing function of rk defines the greedy policy,
which always selects the arm that is believed to be the best. Examples of such
functions in our formula search space include rk, rk × 2, rk × rk or

√
rk.

Since it is useless to evaluate equivalent policies multiple times, we propose
the following two-step approach. First, the set Θ is partitioned into equivalence
classes, two formulas being equivalent if and only if they lead to the same policy.

Meta-Learning of Exploration/Exploitation Strategies 9

F ::= B(F, F) | U(F) | V | C
B ::= + | − | × | ÷ | min | max
U ::= sqrt | ln | abs | opposite | inverse
V ::= rk | σk | tk | t
C ::= 1, 2, 3, 5, 7

Fig. 1. The grammar used for generating candidate index functions and two example
formula parse trees corresponding to rk + 2/tk and rk +

√
2ln(t)/tk.

Then, Equation 7 is solved over the set of equivalence classes (which is typically
one or two orders of magnitude smaller than the initial set Θ).

Partitioning Θ. This task is far from trivial: given a formula, equivalent for-
mulas can be obtained through commutativity, associativity, operator-specific
rules and through any increasing transformation. Performing this step exactly
involves advanced static analysis of the formulas, which we believe to be a very
difficult solution to implement. Instead, we propose a simple approximated so-
lution, which consists in discriminating formulas by comparing how they rank
(in terms of values returned by the formula) a set of d random samples of the
variables rk, σk, tk, t. More formally, the procedure is the following:

1. we first build Θ, the space of all formulas f such that length(f) ≤ L;
2. for i = 1 . . . d, we uniformly draw (within their respective domains) some

random realizations of the variables rk, σk, tk, t that we concatenate into a
vector Θi;

3. we cluster all formulas from Θ according to the following rule: two formulas
F and F ′ belong to the same cluster if and only if they rank all the Θi
points in the same order, i.e.: ∀i, j ∈ {1, . . . , d}, i 6= j, F (Θi) ≥ F (Θj) ⇐⇒
F ′(Θi) ≥ F ′(Θj). Formulas leading to invalid index functions (caused for
instance by division by zero or logarithm of negative values) are discarded;

4. among each cluster, we select one formula of minimal length;
5. we gather all the selected minimal length formulas into an approximated

reduced set of formulas Θ̃.

In the following, we denote by M the cardinality of the approximate set of
formulas Θ̃ = {f1, . . . , fM}.

Optimization algorithm. A naive approach for finding the best formula f∗ ∈ Θ̃
would be to evaluate ∆(f) for each formula f ∈ Θ̃ and simply return the best
one. While extremely simple to implement, such an approach could reveal itself
to be time-inefficient in case of spaces Θ̃ of large cardinality.

Preliminary experiments have shown us that Θ̃ contains a majority of formu-
las leading to relatively bad performing index-based policies. It turns out that

10 Francis Maes, Louis Wehenkel, Damien Ernst

relatively few samples of Rπ
P (i),T

are sufficient to reject with high confidence

these badly performing formulas. In order to exploit this idea, a natural idea
is to formalize the search for the best formula as another multi-armed bandit
problem. To each formula Fk ∈ Θ̃, we associate an arm. Pulling the arm k con-
sists in selecting a training problem P (i) and in running one episode with the
index-based policy whose index formula is fk. This leads to a reward associated
to arm k whose value is the quantity −Rπ

P (i),T
observed during the episode. The

purpose of multi-armed bandit algorithms is here to process the sequence of ob-
served rewards to select in a smart way the next formula to be tried so that when
the budget of pulls has been exhausted, one (or several) high-quality formula(s)
can be identified.

In the formalization of Equation 7 as a multi-armed bandit problem, only
the quality of the finally suggested arm matters. How to select arms so as to
identify the best one in a finite amount of time is known as the pure exploration
multi-armed bandit problem [11]. It has been shown that index-based policies
based on upper confidence bounds were good policies for solving pure exploration
bandit problems. Our optimization procedure works as follows: we use a bandit
algorithm such as UCB1-Tuned during a given number of steps and then return
the policy that corresponds to the formula fk with highest expected reward rk.
The problem instances are selected depending on the number of times the arm
has been played so far: at each step, we select the training problem P (i) with
i = 1 + (tk mod N).

In our experiments, we estimate that our multi-armed bandit approach is one
hundred to one thousand times faster than the naive Monte Carlo optimization
procedure, which clearly demonstrates the benefits of this approach. Note that
this idea could also be relevant to our numerical case. The main difference is that
the corresponding multi-armed bandit problem relies on a continuous-arm space.
Although some algorithms have already been proposed to solve such multi-armed
bandit problems [12], how to scale these techniques to problems with hundreds
or thousands parameters is still an open research question. Progresses in this
field could directly benefit our numerical learning approach.

6 Numerical experiments

We now illustrate the two instances of our learning approach by comparing
learned policies against a number of generic previously proposed policies in a
setting where prior knowledge is available about the target problems. We show
that in both cases, learning enables to obtain exploration/exploitation strategies
significantly outperforming all tested generic policies.

6.1 Experimental protocol

We compare learned policies against generic policies. We distinguish between
untuned generic policies and tuned generic policies. The former are either policies
that are parameter-free or policies used with default parameters suggested in

Meta-Learning of Exploration/Exploitation Strategies 11

the literature, while the latter are generic policies whose hyper-parameters were
tuned using Algorithm 2.

Training and testing. To illustrate our approach, we consider the scenario
where the number of arms K, the playing horizon T and the kind of distribu-
tions νk are known a priori and where the parameters of these distributions are
missing information. Since we are learning policies, care should be taken with
generalization issues. As usual in supervised machine learning, we use a train-
ing set which is distinct from the testing set. The training set is composed of
N = 100 bandit problems sampled from a given distribution over bandit prob-
lems DP whereas the testing set contains another 10000 problems drawn from
this distribution. To study the robustness of our policies w.r.t. wrong prior infor-
mation, we also report their performance on a set of 10000 problems drawn from
another distribution D′P with different kinds of distributions νk. When comput-
ing ∆(πθ), we estimate the regret for each of these problems by averaging results
overs 100 runs. One calculation of ∆(πθ) thus involves simulating 104 (resp. 106)
bandit episodes during training (resp. testing).

Problem distributions. The distribution DP is composed of two-armed bandit
problems with Bernoulli distributions whose expectations are uniformly drawn
from [0, 1]. Hence, in order to sample a bandit problem from DP , we draw the
expectations p1 and p2 uniformly from [0, 1] and return the bandit problem
with two Bernoulli arms that have expectations p1 and p2, respectively. In the
second distribution D′P , the reward distributions νk are changed by Gaussian
distributions truncated to the interval [0, 1]. In order to sample one problem
from D′P , we select a mean and a standard deviation for each arm uniformly
in range [0, 1]. Rewards are then sampled using a rejection sampling approach:
samples are drawn from the corresponding Gaussian distribution until obtaining
a value that belongs to the interval [0, 1].

Generic policies. We consider the following generic policies: the εn-Greedy
policy as described in [4], the policies introduced by [4]: UCB1, UCB1-Tuned,
UCB1-Normal and UCB2, the policy KL-UCB introduced in [13] and the pol-
icy UCB-V proposed by [5]. Except εn-Greedy, all these policies belong to the
family of index-based policies discussed previously. UCB1-Tuned and UCB1-
Normal are parameter-free policies designed for bandit problems with Bernoulli
distributions and for problems with Gaussian distributions respectively. All the
other policies have hyper-parameters that can be tuned to improve the quality
of the policy. εn-Greedy has two parameters c > 0 and 0 < d < 1, UCB2 has
one parameter 0 < α < 1, KL-UCB has one parameter c ≥ 0 and UCB-V has
two parameters ζ > 0 and c > 0. We refer the reader to [4,5,13] for detailed
explanations of these parameters.

Learning numerical policies. We learn policies using the two parameteriza-
tions Power-1 and Power-2 described in Section 4.1. Note that tuning generic
policies is a particular case of learning with numerical parameters and that both
learned policies and tuned generic policies make use of the same prior knowledge.
To make our comparison between these two kinds of policies fair, we always use
the same training procedure, which is Algorithm 2 with imax = 100 iterations,

12 Francis Maes, Louis Wehenkel, Damien Ernst

np = max(8d, 40) candidate policies per iteration and b = np/4 best elements,
where d is the number of parameters to optimize. Having a linear dependency
between np and d is a classical choice when using EDAs [14]. Note that, in most
cases the optimization is solved in a few or a few tens iterations. Our simulations
have shown that imax = 100 is a careful choice for ensuring that the optimiza-
tion has enough time to properly converge. For the baseline policies where some
default values are advocated, we use these values as initial expectation of the
EDA Gaussians. Otherwise, the initial Gaussians are centered on zero. Nothing
is done to enforce the EDA to respect the constraints on the parameters (e.g.,
c > 0 and 0 < d < 1 for εn-Greedy). In practice, the EDA automatically
identifies interesting regions of the search space that respect these constraints.

Learning symbolic policies. We apply our symbolic learning approach with a
maximal formula length of L = 7, which leads to a set of |Θ| ≈ 33, 5 millions
of formulas. We have applied the approximate partitioning approach described
in Section 5.2 on these formulas using d = 1024 samples to discriminate among
strategies. This has resulted in ≈ 9, 5 million invalid formulas and M = 99020
distinct candidate E/E strategies (i.e. distinct formula equivalence classes). To
identify the best of those distinct strategies, we apply the UCB1-Tuned algo-
rithm for 107 steps. In our experiments, we report the two best found policies,
which we denote Formula-1 and Formula-2.

6.2 Performance comparison

Table 1 reports the results we obtain for untuned generic policies, tuned generic
policies and learned policies on distributions DP and D′P with horizons T ∈
{10, 100, 1000}. For both tuned and learned policies, we consider three different
training horizons {10, 100, 1000} to see the effect of a mismatch between the
training and the testing horizon.

Generic policies. As already pointed out in [4], it can be seen that UCB1-
Tuned is particularly well fitted to bandit problems with Bernoulli distributions.
It also proves effective on bandit problems with Gaussian distributions, making
it nearly always outperform the other untuned policies. By tuning UCB1, we
outperform the UCB1-Tuned policy (e.g. 4.91 instead of 5.43 on Bernoulli
problems with T = 1000). This also sometimes happens with UCB-V. However,
though we used a careful tuning procedure, UCB2 and εn-Greedy do never
outperform UCB1-Tuned.

Learned policies. We observe that when the training horizon is the same as
the testing horizon T , the learned policies (Power-1, Power-2, Formula-1
and Formula-2) systematically outperform all generic policies. The overall best
results are obtained with Power-2 policies. Note that, due to their numerical
nature and due to the large number of parameters, these policies are extremely
hard to interpret and to understand. The results related to symbolic policies
show that there exist very simple policies that perform nearly as well as these
black-box policies. This clearly shows the benefits of our two hypothesis spaces:
numerical policies enable to reach very high performances while symbolic policies
provide interpretable strategies whose behavior can be more easily analyzed. This

Meta-Learning of Exploration/Exploitation Strategies 13

Policy Training Parameters Bernoulli Gaussian
Horizon T=10 T=100 T=1000 T=10 T=100 T=1000

Untuned generic policies

UCB1 - C = 2 1.07 5.57 20.1 1.37 10.6 66.7
UCB1-Tuned - 0.75 2.28 5.43 1.09 6.62 37.0

UCB1-Normal - 1.71 13.1 31.7 1.65 13.4 58.8
UCB2 - α = 10−3 0.97 3.13 7.26 1.28 7.90 40.1
UCB-V - c = 1, ζ = 1 1.45 8.59 25.5 1.55 12.3 63.4
KL-UCB - c = 0 0.76 2.47 6.61 1.14 7.66 43.8
KL-UCB - c = 3 0.82 3.29 9.81 1.21 8.90 53.0
εn-Greedy - c = 1, d = 1 1.07 3.21 11.5 1.20 6.24 41.4

Tuned generic policies

T=10 C = 0.170 0.74 2.05 4.85 1.05 6.05 32.1
UCB1 T=100 C = 0.173 0.74 2.05 4.84 1.05 6.06 32.3

T=1000 C = 0.187 0.74 2.08 4.91 1.05 6.17 33.0

T=10 α = 0.0316 0.97 3.15 7.39 1.28 7.91 40.5
UCB2 T=100 α = 0.000749 0.97 3.12 7.26 1.33 8.14 40.4

T=1000 α = 0.00398 0.97 3.13 7.25 1.28 7.89 40.0

T=10 c = 1.542, ζ = 0.0631 0.75 2.36 5.15 1.01 5.75 26.8
UCB-V T=100 c = 1.681, ζ = 0.0347 0.75 2.28 7.07 1.01 5.30 27.4

T=1000 c = 1.304, ζ = 0.0852 0.77 2.43 5.14 1.13 5.99 27.5

T=10 c = −1.21 0.73 2.14 5.28 1.12 7.00 38.9
KL-UCB T=100 c = −1.82 0.73 2.10 5.12 1.09 6.48 36.1

T=1000 c = −1.84 0.73 2.10 5.12 1.08 6.34 35.4

T=10 c = 0.0499, d = 1.505 0.79 3.86 32.5 1.01 7.31 67.6
εn-Greedy T=100 c = 1.096, d = 1.349 0.95 3.19 14.8 1.12 6.38 46.6

T=1000 c = 0.845, d = 0.738 1.23 3.48 9.93 1.32 6.28 37.7

Learned numerical policies

T=10 . . . 0.72 2.29 14.0 0.97 5.94 49.7
Power-1 T=100 (16 parameters) 0.77 1.84 5.64 1.04 5.13 27.7

T=1000 . . . 0.88 2.09 4.04 1.17 5.95 28.2

T=10 . . . 0.72 2.37 15.7 0.97 6.16 55.5
Power-2 T=100 (81 parameters) 0.76 1.82 5.81 1.05 5.03 29.6

T=1000 . . . 0.83 2.07 3.95 1.12 5.61 27.3

Learned symbolic policies

T=10
√
tk(rk − 1/2) 0.72 2.37 14.7 0.96 5.14 30.4

Formula-1 T=100 rk + 1/(tk + 1/2) 0.76 1.85 8.46 1.12 5.07 29.8
T=1000 rk + 3/(tk + 2) 0.80 2.31 4.16 1.23 6.49 26.4

T=10 |rk − 1/(tk + t)| 0.72 2.88 22.8 1.02 7.15 66.2
Formula-2 T=100 rk +min(1/tk, log(2)) 0.78 1.92 6.83 1.17 5.22 29.1

T=1000 1/tk − 1/(rk − 2) 1.10 2.62 4.29 1.38 6.29 26.1

Table 1. Mean expected regret of untuned, tuned and learned policies on Bernoulli
and Gaussian bandit problems. Best scores in each of these categories are shown in
bold. Scores corresponding to policies that are tested on the same horizon T than the
horizon used for training/tuning are shown in italics.

14 Francis Maes, Louis Wehenkel, Damien Ernst

Policy T = 10 T = 100 T = 1000 Policy T = 10 T = 100 T = 1000

Generic policies Learned policies

UCB1 48.1 % 78.1 % 83.1 % Power-1 54.6 % 82.3 % 91.3 %
UCB2 12.7 % 6.8 % 6.8 % Power-2 54.2 % 84.6 % 90.3 %
UCB-V 38.3 % 57.2 % 49.6 % Formula-1 61.7 % 76.8 % 88.1 %
KL-UCB 50.5 % 65.0 % 67.0 % Formula-2 61.0 % 80.0 % 73.1 %
εn-Greedy 37.5 % 14.1 % 10.7 %

Table 2. Percentage of wins against UCB1-Tuned of generic and learned policies.
Best scores are shown in bold.

interpretability/performance tradeoff is common in machine learning and has
been identified several decades ago in the field of supervised learning. It is worth
mentioning that, among the 99020 formula equivalence classes, a surprisingly
large number of strategies outperforming generic policies were found: when T =
100 (resp. T = 1000), we obtain about 50 (resp. 80) different symbolic policies
outperforming the generic policies.

Robustness w.r.t. the horizon T . As expected, the learned policies give their
best performance when the training and the testing horizons are equal. Policies
learned with large training horizon prove to work well also on smaller horizons.
However, when the testing horizon is larger than the training horizon, the quality
of the policy may quickly degrade (e.g. when evaluating Power-1 trained with
T = 10 on an horizon T = 1000).

Robustness w.r.t. the kind of distribution. Although truncated Gaussian dis-
tributions are significantly different from Bernoulli distributions, the learned
policies most of the time generalize well to this new setting and still outperform
all the other generic policies.

A word on the learned symbolic policies. It is worth noticing that the best
index-based policies (Formula-1) found for the two largest horizons (T = 100
and T = 1000) work in a similar way as the UCB-type policies reported earlier in
the literature. Indeed, they also associate to an arm k an index which is the sum
of rk and of a positive (optimistic) term that decreases with tk. However, for the
shortest time horizon (T = 10), the policy found (

√
tk(rk− 1

2)) is totally different
from UCB-type policies. With such a policy, only the arms whose empirical
reward mean is higher than a given threshold (0.5) have positive index scores
and are candidate for selection, i.e. making the scores negative has the effect
to kill bad arms. If the rk of an arm is above the threshold, then the index
associated with this arm will increase with the number of times it is played and
not decrease as it is the case for UCB policies. If all empirical means rk are below
the threshold, then for equal reward means, arms that have been less played are
preferred. This finding is amazing since it suggests that this optimistic paradigm
for multi-armed bandits upon which UCB policies are based may in fact not be
adapted at all to a context where the horizon is small.

Percentage of wins against UCB1-Tuned. Table 2 gives for each policy, its
percentage of wins against UCB1-Tuned, when trained with the same horizon
as the test horizon. To compute this percentage of wins, we evaluate the expected
regret on each of the 10000 testing problems and count the number of problems
for which the tested policy outperforms UCB1-Tuned. We observe that by

Meta-Learning of Exploration/Exploitation Strategies 15

minimizing the expected regret, our learned policies also reach high values of
percentage of wins: 84.6 % for T = 100 and 91.3 % for T = 1000. Note that, in
our approach, it is easy to change the objective function. So if the real applicative
aim was to maximize the percentage of wins against UCB1-Tuned, this criterion
could have been used directly in the policy optimization stage to reach even
better scores.

6.3 Computational time

We used a C++ based implementation to perform our experiments. In the nu-
merical case with 10 cores at 1.9Ghz, performing the whole learning of Power-1
took one hour for T = 100 and ten hours for T = 1000. In the symbolic case
using a single core at 1.9Ghz, performing the whole learning took 22 minutes
for T = 100 and a bit less than three hours for T = 1000. Note that the fact
that symbolic learning is much faster can be explained by two reasons. First, we
tuned the EDA algorithm in a very careful way to be sure to find a high quality
solution; what we observe is that by using only 10% of this learning time, we al-
ready obtain close-to-optimal strategies. The second factor is that our symbolic
learning algorithm saves a lot of CPU time by being able to rapidly reject bad
strategies thanks to the multi-armed bandit formulation upon which it relies.

7 Conclusions

The approach proposed in this paper for exploiting prior knowledge for learning
exploration/exploitation policies has been tested for two-armed bandit prob-
lems with Bernoulli reward distributions and when knowing the time horizon.
The learned policies were found to significantly outperform other policies pre-
viously published in the literature such as UCB1, UCB2, UCB-V, KL-UCB
and εn-Greedy. The robustness of the learned policies with respect to wrong
information was also highlighted, by evaluating them on two-armed bandits with
truncated Gaussian reward distribution.

There are in our opinion several research directions that could be investigated
for still improving the algorithm for learning policies proposed in this paper. For
example, we found out that problems similar to the problem of overfitting met
in supervised learning could occur when considering a too large set of candidate
polices. This naturally calls for studying whether our learning approach could
be combined with regularization techniques. Along this idea, more sophisticated
optimizers could also be thought of for identifying in the set of candidate policies,
the one which is predicted to behave at best.

The UCB1, UCB2, UCB-V, KL-UCB and εn-Greedy policies used for
comparison were shown (under certain conditions) to have interesting bounds
on their expected regret in asymptotic conditions (very large T) while we did
not aim at providing such bounds for our learned policies. It would certainly be
relevant to investigate whether similar bounds could be derived for our learned
policies or, alternatively, to see how the approach could be adapted so as to

16 Francis Maes, Louis Wehenkel, Damien Ernst

target policies offering such theoretical performance guarantees in asymptotic
conditions. For example, better bounds on the expected regret could perhaps
be obtained by identifying in a set of candidate policies the one that gives the
smallest maximal value of the expected regret over this set rather than the one
that gives the best average performances.

Finally, while our paper has provided simulation results in the context of
the most simple multi-armed bandit setting, our exploration/exploitation policy
meta-learning scheme can also in principle be applied to any other exploration-
exploitation problem. In this line of research, the extension of this investigation
to (finite) Markov Decision Processes studied in [15], suggests already that our
approach to meta-learning E/E strategies can be successful on much more com-
plex settings.

References

1. Robbins, H.: Some aspects of the sequential design of experiments. Bulletin of
The American Mathematical Society 58 (1952) 527–536

2. Lai, T., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics 6 (1985) 4–22

3. Agrawal, R.: Sample mean based index policies with o(log n) regret for the multi-
armed bandit problem. Advances in Applied Mathematics 27 (1995) 1054–1078

4. Auer, P., Fischer, P., Cesa-Bianchi, N.: Finite-time analysis of the multi-armed
bandit problem. Machine Learning 47 (2002) 235–256

5. Audibert, J., Munos, R., Szepesvari, C.: Tuning bandit algorithms in stochastic
environments. Algorithmic Learning Theory (ALT) (2007) 150–165

6. Audibert, J., Munos, R., Szepesvari, C.: Exploration-exploitation trade-off using
variance estimates in multi-armed bandits. Theoretical Computer Science (2008)

7. Maes, F., Wehenkel, L., Ernst, D.: Learning to play K-armed bandit problems.
In: Proc. of the 4th International Conference on Agents and Artificial Intelligence.
(2012)

8. Maes, F., Wehenkel, L., Ernst, D.: Automatic discovery of ranking formulas for
playing with multi-armed bandits. In: Proc. of the 9th European Workshop on
Reinforcement Learning. (2011)

9. Gonzalez, C., Lozano, J., Larrañaga, P. In: Estimation of Distribution Algorithms.
A New Tool for Evolutionary Computation. Kluwer Academic Publishers (2002)

10. Pelikan, M., Mühlenbein, H.: Marginal distributions in evolutionary algorithms.
In: Proceedings of the 4th International Conference on Genetic Algorithms. (1998)

11. Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in multi-armed bandits prob-
lems. In: Algorithmic Learning Theory. (2009) 23–37

12. Bubeck, S., Munos, R., Stoltz, G., Szepesvári, C.: X-armed bandits. Journal of
Machine Learning Research 12 (2011) 1655–1695

13. Garivier, A., Cappé, O.: The KL-UCB algorithm for bounded stochastic bandits
and beyond. CoRR abs/1102.2490 (2011)

14. Rubenstein, R., Kroese, D.: The cross-entropy method : a unified approach to com-
binatorial optimization, Monte-Carlo simluation, and machine learning. Springer,
New York (2004)

15. Castronovo, M., Maes, F., Fonteneau, R., Ernst, D.: Learning explo-
ration/exploitation strategies for single trajectory reinforcement learning. In: Proc.
of 10th European Workshop on Reinforcement Learning. (2012)

	-
	1 Introduction
	2 Multi-armed bandit problem and policies
	2.1 The multi-armed bandit problem
	2.2 Index-based bandit policies

	3 Learning exploration/exploitation strategies
	4 Numeric parameterization
	4.1 Policy search space
	4.2 Optimisation algorithm

	5 Symbolic parametrization
	5.1 Policy search space
	5.2 Optimisation algorithm

	6 Numerical experiments
	6.1 Experimental protocol
	6.2 Performance comparison
	6.3 Computational time

	7 Conclusions

