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Abstract. In this paper, we analyze the potential of using weights for
block-asynchronous relaxation methods on GPUs. For this purpose, we
introduce different weighting techniques similar to those applied in block-
smoothers for multigrid methods. For test matrices taken from the Uni-
versity of Florida Matrix Collection we report the convergence behavior
and the total runtime for the different techniques. Analyzing the results,
we observe that using weights may accelerate the convergence rate of
block-asynchronous iteration considerably. While component-wise relax-
ation methods are seldom directly applied to systems of linear equations,
using them as smoother in a multigrid framework they often provide an
important contribution to finite element solvers. Since the parallelization
potential of the classical smoothers like SOR and Gauss-Seidel is usually
very limited, replacing them by weighted block-asynchronous smoothers
may be beneficial to the overall multigrid performance. Due to the in-
crease of heterogeneity in today’s architecture designs, the significance
and the need for highly parallel asynchronous smoothers is expected to
grow.

Keywords: asynchronous relaxation, weighted block-asynchronous it-
eration methods, multigrid smoother, GPU.

1 Introduction

Using weights in iterative relaxation schemes is a well known and often ap-
plied technique to improve the convergence. While the classical successive over-
relaxation method (SOR, [Saa03]) consists of a weighted Gauss-Seidel, especially
the block smoothers in multigrid methods are often enhanced with weights to
improve their convergence [BFKMY11]. In these the parallelized Block-Jacobi-
or Block-Gauss-Seidel smoothers are weighted according to the block decompo-
sition of the matrix. In [ATG+11] we explored the potential of replacing the
classically applied smoothers in multigrid methods by asynchronous iterations.
While a block parallelized smoother requires synchronization between the itera-
tions, asynchronous methods are very tolerant to component update order and
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latencies concerning the communication of updated component values. This lack
of synchronization barriers makes them suitable candidates for modern hardware
architectures, often accelerated by highly parallel coprocessors. In [ATDH11] we
have shown how to enhance asynchronous iteration schemes to compensate for
the inferior convergence rate of the plain asynchronous iteration. In particular,
this is achieved by adding local iterations on subdomains that fit into the ac-
celerators’ cache, therefore almost come for free, and should not be counted as
global iterations. Furthermore, the higher iteration number per time frame on
the GPUs potentially results in significant performance increase. While Chazan
and Miranker have introduced a weighted asynchronous iteration similar to SOR
[CM69], it becomes of interest whether the block-asynchronous iteration benefits
from weighting methods similar to those applied to block smoothers [BFKMY11].
The motivation is that in the local iterations performed on the subdomains,
the off-block matrix entries are neglected. To account for this issue it may be
beneficial to weight the local iterations. This can be achieved either by using
�1-weights, by a technique similar to ω-weighting in SOR, or by a combination
of both. The purpose of this paper is to introduce the different methods and re-
port experimental results on the convergence rate as well as the time-to-solution
performance.

2 Mathematical Background

2.1 Asynchronous Iteration

The Jacobi method is an iterative algorithm for finding the approximate solution
to a linear system of equationsAx = b that converges ifA is strictly or irreducibly
diagonally dominant [Var10], [Bag95]. One can decompose the system into (L+
D + U)x = b where D denotes the diagonal entries of A while L and U denote
the lower and upper triangular part of A, respectively. Using the form Dx =
b − (L + U)x, the Jacobi method is derived as an iterative scheme where the
matrix B ≡ I − D−1A is often referred to as iteration matrix. It can also be
rewritten in the following component-wise form:

xm+1
i =

1

aii

⎛
⎝bi −

n∑
j=1,j �=i

aijx
m
j

⎞
⎠ =

n∑
i=1

Bijx
m
j + di (1)

where bij = (B)ij with B = I − D−1A and di = bi
aii

for all i, j = 1 . . . n. For
computing the next iteration, one needs the latest values of all components.
This requires a strict order of the component updates, limiting the paralleliza-
tion potential to a stage, where no component can be updated multiple times
before all the other components are updated. If this order is not adhered, i.e.
the individual components are updated independently and without considera-
tion of the current state of the other components, the resulting algorithm is
called chaotic or asynchronous iteration method [FS00]. Back in the 70’s Chazan
and Miranker analyzed some basic properties of these methods, and established
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convergence theory [CM69], [Str97] [AD86], [BE86]. For the last 30 years, these
algorithms came out of focus of high-performance computing due to the superior
performance of synchronized iteration methods. More interest was put on the
convergence properties and deriving models for the computational cost [AD89],
[Bah97], [BSS99], [DB91]. Today, due to the complexity of heterogeneous hard-
ware platforms and the high number of computing units in parallel devices like
GPUs, these schemes may become interesting again for applications like multi-
grid methods, where highly parallel smoothers are required on the distinct grid
levels. While traditional smoothers like the sequential Gauss-Seidel obtain their
efficiency from their fast convergence, it may be true that the asynchronous it-
eration scheme overcompensate the inferior convergence behavior by superior
scalability [ATG+11].

2.2 Block-Asynchronous Iteration

One possible motivation for the block-asynchronous iteration comes from the
hardware architecture. The idea is to split the linear system into blocks of rows,
and then to assign the computations for each block to one thread block on a
graphics processing unit (GPU). For these thread blocks, an asynchronous it-
eration method is used, while on each thread block, instead of one, multiple
Jacobi-like iterations are performed. During these local iterations on the matrix
block, the x values used from outside the block are kept constant (equal to their
values at the beginning of the local iterations). After the local iterations, the
updated values are communicated. In other words, using domain-decomposition
terminology, the blocks correspond to subdomains and thus the method iterates
locally on every subdomain. We denote this scheme by async-(local iters), where
the index local iters indicates the number of Jacobi-like updates on each sub-
domain [ATDH11]. As the subdomains are relatively small and the data needed
for the local iterations largely fits into the multiprocessor’s cache, these addi-
tional iterations on the subdomains almost come for free. This approach, inspired
by the well know hybrid relaxation schemes [BFKMY11], [BFG+], arises as a
specific case of an asynchronous two-stage method [BMPS99].

The obtained algorithm can be written as component-wise update of the so-
lution approximation:

x
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where TS and TE denote the starting and the ending indices of the matrix/vector
part in the thread block. In the component updates on the subdomains, for the
local components, the most recent values are used, while for the global part, the
values from the beginning of the iteration are used. The shift function ν(m+1, j)
denotes the iteration shift for the component j which can be positive or negative,
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depending on whether the thread block where the component j is located in
already has conducted more or less iterations. Note that this may give a block
Gauss-Seidel flavor to the updates.

2.3 Weights in Block-Asynchronous Iteration

To examine the topic of weights in the block-asynchronous iteration, we intro-
duce some notation to simplify the analysis [BFKMY11]. Splitting the matrix A
into blocks, we use Akk for the matrix block located in the k-th block row and
the k-th block column. Furthermore, we introduce the index sets Ωk, where

Ω =

p⋃
k=1

Ωk = {1, 2 . . . n},

and Ωi ∩Ωj = ∅ ∀i �= j consistent to the block decomposition of the matrix A.
Using this notation, Ωk contains all indices j with TS(k) ≤ j ≤ TE(k) where
TS(k) (respectively TE(k)) denotes the first (last) row and column index of the
diagonal block Akk. We now define the sets

Ω(i) = {j ∈ Ωk : i ∈ Ωk}, Ω
(i)
0 = {j /∈ Ωk : i ∈ Ωk}.

Hence, for block Akk, Ω
(i) contains the indices with corresponding columns being

part of the diagonal block of row i while Ω
(i)
0 contains the indices of the columns

that have no entries in the block. This way, we can decompose the sum of the
elements of the i-th row:
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Similar to the ω-weighted asynchronous iteration [CM69], it is possible to use ω-
weights for the block structure in the block-asynchronous approach. In this case,
the solution approximation of the local iterations is weighted when updating the
global iteration values. The parallel algorithm for the component updates in one
matrix block is outlined in Algorithm 1.

Beside this general weighting method, we introduce a more sophisticated tech-
nique, that is usually referred to as �1-weighting [BFKMY11].

Classically applied to Block-Jacobi and Gauss-Seidel relaxation methods, �1
weighting modifies the iteration matrix by replacing B = I −D−1A with B�1 =
I − (D +D�1)−1A, where D�1 is the diagonal matrix with entries

d�1ii := sign(aii)
∑

j∈Ω
(i)
0

|aij |. (3)
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1: Update component i:
2: s := di +

∑
j∈Ω

(i)
0

bijxj {off-diagonal part}
3: xlocal = x
4: for all k = 0; k < local iters; k ++ do
5: xlocal

i := s+
∑

j∈Ω(i) bijx
local
j {using the local updates in the block}

6: end for
7: xi = ωxlocal

i + (1− ω)xi

Algorithm 1. Basic principle of using ω weights in block-asynchronous iteration fea-
turing local iters local iterations

Table 1. Dimension and characteristics of the SPD test matrices and the corresponding
iteration matrices

Matrix name #n #nnz con(A) con(D−1A) ρ(M)

Chem97ZtZ 2,541 7,361 1.3e+03 7.2e+03 0.7889
fv1 9,604 85,264 9.3e+04 12.76 0.8541
fv3 9,801 87,025 3.6e+07 4.4e+03 0.9993
Trefethen 2000 2,000 41,906 5.1e+04 6.1579 0.8601

The advantage over the across-the-board ω-weighting technique is that it ap-
plies different weights in the distinct rows, which accounts for the respective
off-diagonal entries.

3 Numerical Experiments

In our experiments, we search for the approximate solutions of linear system
of equations, where the respective matrices are taken from the University of
Florida Matrix Collection (UFMC; see http://www.cise.ufl.edu/research/

sparse/matrices/). Due to the convergence properties of the iterative methods
we analyze, the experiment matrices have to be chosen properly, fulfilling the
sufficient convergence condition [Str97]. The matrix properties and sparsity plots
can be found in Table 1 and Figure 1. We furthermore take set the right-hand
side in Ax = b to b ≡ 1 for all linear systems.

(a) Chem97ZtZ (b) fv1, fv3 (c) Trefethen 2000

Fig. 1. Sparsity plots of test matrices

The experiments were conducted on a heterogeneous GPU-accelerated mul-
ticore system located at the University of Tennessee, Knoxville. The system’s

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/


150 H. Anzt et al.

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 50 100 150 200 250 300

re
si

du
al

# iters

w=0.9
w=1.0
w=1.1

Gauss-Seidel

(a) Chem97ZtZ

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 20 40 60 80 100 120 140
# iters

w=1.0
w=1.1
w=1.2

Gauss-Seidel

(b) fv1

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0 5000 10000 15000 20000

re
si

du
al

# iters

w=1.0
w=1.1
w=1.2

Gauss-Seidel

(c) fv3

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 10 20 30 40 50 60
# iters

w=1.0
w=1.1
w=1.2
w=1.3
w=1.4

Gauss-Seidel

(d) Trefethen 2000

Fig. 2. Convergence rate of ω-weighted block-asynchronous iteration compared to
Gauss-Seidel convergence. The (relative) residuals are always in L2 norm.

CPU is one socket Intel Core Quad Q9300 @ 2.50GHz and the GPU is a Fermi
C2050 (14 Multiprocessors x 32 CUDA cores @1.15GHz, 3 GB memory). The
GPU is connected to the CPU host through a PCI-e×16. On the CPU, the
synchronous Gauss-Seidel and SOR implementations run on 4 cores. The Intel
compiler 11.1.069 [int] is used with optimization flag “-O3”. In the GPU im-
plementation, based on CUDA [NVI09] with the respective libraries taken from
CUDA 4.0.17 [NVI11], the component updates use a thread blocks of size 512.
(Except for the �1 weighted method, where the thread block size is chosen con-
sistent to the matrix block size.) The thread block size, the number of streams,
along with other parameters, were determined through empirically based tuning.

In a first experiment, we analyze the influence of ω-weighting on the conver-
gence rate with respect to global iteration numbers. For this purpose we plot
the relative residual depending on the iteration number. Note that all values
are average due to the non-deterministic properties of block-asynchronous iter-
ation. To have a reference, we additionally provide in Figure 2 the convergence
behavior of the sequential Gauss-Seidel algorithm. The results reveal that the
convergence rate of the block-asynchronous iteration is very dependent on the
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matrix characteristics. For matrices with most relevant matrix entries gathered
on or near the diagonal, the local iterations provide sufficient improvement to
compensate for the inferior convergence rate of the asynchronous iteration con-
ducted globally. In these cases, e.g. fv1 and fv3, we achieve a higher convergence
rate than the sequential Gauss-Seidel algorithm. Similar to the SOR algorithm,
choosing ω > 1 may even improve the convergence for specific problems (Figure
2b and 2c). For systems with considerable off-diagonal entries, the convergence of
the block-asynchronous iteration decreases considerably compared to the Gauss-
Seidel scheme (Figure 2a, 2d). The reason is, that the off-diagonal entries are
ignored in the local iterations.

While the ω-technique applies a general weighting to account for the off-
diagonal entries, the more sophisticated �1-weighting technique applies different
weights in different rows. To analyze the impact of �1-weighting we focus on the
matrix Trefethen 2000 where the ratio between the entries in the diagonal
block and the off-diagonal parts differs significantly for the distinct rows.
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Fig. 3. Convergence improvement using �1-weights applied to Trefethen 2000 for
different block sizes. Solid lines, all lying on top of each other, are block-asynchronous
iteration, dashed lines are block-asynchronous iteration using �1-weights. The (relative)
residuals are always in L2 norm.

We can observe in Figure 3 that, independently of the block size, using �1
weights improves the convergence rate. We also note that the influence of the
block-size on the convergence rate for the unweighted algorithm is negligible.
Furthermore, using �1 weights is especially beneficial when targeting large block
sizes, where the �1 weights for the distinct rows in one block differ considerably.
For this case (e.g. block size 512), the convergence of the block-asynchronous
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Fig. 4. Time-to-solution comparison between SOR and ω-weighted block-asynchronous
iteration (async-(5)). In (4a) and (4d) we additionally provide the data for the combi-
nation of ω- and �1-weighting (L1-async-(5)).

iteration is improved by a factor of almost 2 compared to the unweighted algo-
rithm.

While the convergence rate, with respect to iteration number, is interesting
from the theoretical point of view, the more relevant factor is the time-to-solution
performance. This depends not only on the convergence rate, but also on the effi-
ciency of the respective algorithm on the available hardware resources (hardware-
dependent iteration rate). Whereas the Gauss-Seidel algorithm and the derived
SOR algorithms require strict update order and hence only allow sequential im-
plementations, block-asynchronous iteration is very tolerant to update order and
synchronization latencies, and therefore adequate for GPU implementations. In
the next experiment, we analyze the time to solution for the ω-weighted block-
asynchronous iteration and compare it with the SOR algorithm. We want to
stress that despite the similar notation, ω-weighting has, due to the algorithm
design, a very different meaning in the SOR and the block-asynchronous itera-
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tion, respectively. While ω weights in SOR the individual iterations, in async-(5)
it is used to weight the local iterations with respect to the global ones.

For the matrices with considerable off-diagonal entries (large dii in (3)), we
provide additional data for different ω-weights applied to the block-asynchronous
algorithm enhanced by the �1-weighting technique. The results show that for
matrices where most entries are clustered on or near the main diagonal, the ω-
weighted block asynchronous iteration outperforms the SOR method by more
than an order of magnitude, see Figure 4b and 4c. But at the same time, ω-
weights for the block-asynchronous algorithm have to be applied more carefully:
already choosing ω ≥ 1.4 leads to divergence of all test cases. For matrices with
considerable off-diagonal parts, using the block-asynchronous iteration may not
pay off when comparing with SOR. Considering the runtime analysis for the ma-
trix Chem97ZtZ (Figure 4a) we have to realize that although the unweighted
block-asynchronous iteration generates the solution faster than SOR, using ω-
weights is not beneficial. The algorithm also does not benefit from enhancing it
by �1-weights, which may stem from the very unique matrix properties. We notice
however that, despite the poor performance, �1-weights have positive impact on
the algorithm’s stability: for ω = 1.1, the convergence of the block-asynchronous
iteration is maintained. For the test matrix Trefethen 2000, the performance
of SOR and block-asynchronous iteration is comparable for ω near 1. But en-
hancing the latter one with �1 weights causes significant performance increase
for async-(5). We then outperform the SOR algorithm by a factor of nearly 5
(see Figure 4d). This not only reveals that using �1-weights is beneficial to the
method’s performance, but also the potential of applying a combination of both
weighting techniques.

4 Conclusion

We introduced two weighting techniques for block-asynchronous iteration meth-
ods that improve the convergence properties. In numerical experiments with
linear systems of equations taken from the University of Florida Matrix col-
lection we were able to show how the different techniques improve not only
the convergence rate but also the time-to-solution performance. The further re-
search in this field will focus on how these improvements by using weights in
block-asynchronous methods transfer to multigrid methods. Especially algebraic
multigrid, where considerable off-diagonal entries are expected on the differ-
ent grid levels, may benefit from using weighted block-asynchronous iteration
smoothers.
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