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Abstract. The use of GPUs has been very beneficial in accelerating dense
linear algebra computational kernels (DLA). Many high performance numerical
libraries like CUBLAS, MAGMA, and CULA provide BLAS and LAPACK im-
plementations on GPUs as well as hybrid computations involving both, CPUs and
GPUs. GPUs usually score better performance than CPUs for compute-bound op-
erations, especially those characterized by a regular data access pattern. This pa-
per highlights a systematic approach for efficiently implementing memory-bound
DLA kernels on GPUs, by taking advantage of the underlying device’s archi-
tecture (e.g., high throughput). This methodology proved to outperform existing
state-of-the-art GPU implementations for the symmetric matrix-vector multipli-
cation (SYMV), characterized by an irregular data access pattern, in a recent
work (Abdelfattah et. al, VECPAR 2012). We propose to extend this methodol-
ogy to the general matrix-vector multiplication (GEMV) kernel. The performance
results show that our GEMV implementation achieves better performance for rel-
atively small to medium matrix sizes, making it very influential in calculating the
Hessenberg and bidiagonal reductions of general matrices (radar applications),
which are the first step toward computing eigenvalues and singular values, re-
spectively. Considering small and medium size matrices (≤4500), our GEMV
kernel achieves an average 60% improvement in single precision (SP) and an av-
erage 25% in double precision (DP) over existing open-source and commercial
software solutions. These results improve reduction algorithms for both small
and large matrices. The improved GEMV performances engender an averge 30%
(SP) and 15% (DP) in Hessenberg reduction and up to 25% (SP) and 14% (DP)
improvement for the bidiagonal reduction over the implementation provided by
CUBLAS 5.0.

Keywords: Matrix-Vector Multiplication, GPU Optimizations, Memory-Bound
Operations, Hessenberg Reduction, Bidiagonal Reduction.

1 Introduction

The high level of parallelism found on modern GPUs has attracted the scientific com-
munity to think about porting their legacy applications on GPUs. Since then, GPUs have
been one of the favorite choices for accelerating many computational kernels, especially
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when it comes to kernels with regular data access patterns. Considering only NVIDIA
GPUs, they are usually equipped with hundreds of lightweight floating point (CUDA)
cores, grouped into streaming multiprocessors (SMs). Starting from Fermi, each SM
has a private parallel L1-cache/shared memory. All SMs share L2-cache and the global
DRAM. Although the peak performance of modern GPUs has already reached the
terascale, developers have to pay attention to several paramount parameters in order
to achieve decent performance. For example, ensuring coalesced memory accesses, re-
ducing shared bank conflicts, avoiding register spilling, and removing synchronization
points are all performance optimizations that have direct impact on the overall GPU
kernel quality. However, kernels that are memory-bound by nature rarely achieve per-
formance close to the theoretical peak. In such kernels, the maximum achievable per-
formance is usually limited by the global memory bandwidth.

This paper highlights a methodology for accessing dense matrices in numerical ker-
nels, applied to the general matrix-vector multiplication (GEMV) kernel as a case study.
This methodology was part of a previous work in accelerating the symmetric matrix-
vector multiplication (SYMV) kernel, where significant improvement was achieved
over state-of-the-art designs. Since both SYMV and GEMV are Level 2 BLAS opera-
tions, hence bounded by the bus memory throughput, we extended the same method-
ology to the GEMV kernel. The proposed way of accessing the matrix assumes that it
is divided into square blocks. Each block is read from global memory using a simple
double buffering technique combined with large occupancy to hide the latency of the
stalled warps due to memory loads. Our experimental results against the latest CUBLAS
5.0 [6], CULA dense library [1] and MAGMA 1.2 [2] show improvements for small to
medium matrix sizes, especially for the non-transposed case. The new design still main-
tains roughly the same performance for large matrix sizes. The GEMV enhancements
obtained for these matrix sizes engender a significant speedup when plugged into the
Hessenberg and bidiagonal reduction drivers, in which the GEMV variants (transpose
and non-transpose) represent the fundamental operations. Both reductions correspond
to the first step toward calculating the eigenvalues and singular values. Noteworthy to
mention that radar detection applications [11,15] require the computation of several
independent small eigenvalue and singular value decomposition problems.

The reminder of the paper is organized as follows: Section 2 presents some related
work in optimizing numerical linear algebra for GPUs. In Section 3, we give some
information about the work that has been done for the SYMV kernel [7]. Its potential
extension to the GEMV kernel as well as the GEMV kernel implementation details are
described in Section 4, while the results are shown in Section 5. We give our conclusion
and provide suggestions for future work in Section 6.

2 Related Work

There is a lot of work done for accelerating dense linear algebra kernels on GPUs using
CUDA. This is very critical as many applications rely on these basic block kernels to
extract their actual performance. The latest CUBLAS 5.0 [6] is often the reference
implementation for NVIDIA GPU BLAS. MAGMA [2] provides a very optimized
subset of BLAS functions (MAGMABLAS) for GPUs and a hybrid implementation
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(using both, the host and the device) of the major LAPACK routines. Indeed, it offers
some improved implementations over CUBLAS, such as the SYMV [12] kernel and
the GEMM kernel [13]. CUBLAS and MAGMA are freely available for public down-
loads. CULA Dense [1] is a commercial package and represents a set of dense linear
algebra libraries developed for GPUs. It is also written in CUDA, and further improves
CUBLAS implementations [8]. In this paper, we compare our results against the three
aforementioned libraries i.e., CUBLAS, MAGMA, and CULA.

On the other hand, the evolving architecture of modern GPUs pushed the need for
exposing tunable parameters or hooks in the kernel implementations so that productiv-
ity is maintained. Volkov and Demmel [14] proposed an early benchmarking scheme to
tune DLA routines, such as matrix-matrix multiplication. Kurzak et. al [9] developed an
autotuning framework called ASTRA, originally designed over Fermi GPUs for tuning
also GEMM kernels and its variants. Autotuning using ASTRA has been recently ex-
tended to Kepler [10], the newest NVIDIA GPU architecture to date. Such frameworks
can be applied to our SYMV and GEMV kernels, in order to benchmark our kernel
design on future architectures, without starting from scratch.

3 SYMV Background

Our methodology of processing matrix blocks has been first introduced in [7], where a
new SYMV kernel was proposed. The new SYMV kernel is 2.5x faster than CUBLAS
4.0 and 1.3x better than MAGMABLAS. The kernel design was described following
two strategies: the block-level strategy, governing movements of thread blocks within
the matrix, and the thread-level strategy, governing thread mapping within a single ma-
trix block. The idea here is to apply both strategies to the GEMV kernel. However, the
block-level strategy of the SYMV kernel necessitates an adjustment, since only half of
the matrix needs to be processed for the symmetric case. In GEMV, the whole non-
symmetric matrix requires to be scanned. Both block-level and thread-level strategies
for GEMV are explained in Section 4. Our results [7] showed a direct impact on tridi-
agonalisation and symmetric eigenvalue computations.

In general, how a better strategy and optimizations can be found? The answer is
to have insight through a profiling or tracing tool. From our experience in developing
the SYMV kernel [7], the NVIDIA visual profiler [4] along with PAPI [5] gave us
rich information about register usage, L1-cache, shared memory, and the DRAM. For
example, during development, we detected register spilling through the number of local
memory accesses along with the number of 32-bit registers used per thread. Shared
memory bank conflicts can help the developer changing the strategy of accessing shared
memory. In memory bounds kernels similar to SYMV and GEMV, the matrix should
be loaded only once due to the absence of data reuse of matrix elements. The number
of global memory loads help judge if coalesced access is satisfied. Generally, profiling
CUDA kernels helps the programmer focus on specific parts of the kernel, identified as
potential bottlenecks, in order to enhance its behavior.

We show an updated performance chart of our SYMV kernel, for single and double
precisions in Figure 3. There are no changes in the design of our original kernel except
a slight adjustment to better handle irregular matrix dimensions (dimensions that are
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(a) Single precision performance (b) Double precision performance

Fig. 1. Performance of SYMV kernel using five different implementations

not multiple of the internal blocking size i.e., 64). However, what is new about the Fig-
ure 3 is that it includes performance curves for two other kernel implementations. The
first one is the CUBLAS 5.0 kernel, which comes with the newly released CUDA 5.0.
We noticed a significant improvement over the old SYMV from CUDA 4.0. However,
the improved kernel can be only used by enabling the atomics mode [3]. The second
implementation with which we compare ours is the SYMV kernel from CULA [8],
a commercial dense linear algebra library for NVIDIA GPUs. Results show that our
proposed kernel is still better than all existing implementations.

4 Extending Methodology to GEMV

In this Section, we present the details of the kernel design in the same manner as we
did in [7]. First, we begin by the block-level strategy, then we illustrate the thread-level
strategy, which we recommend for similar memory-bound kernels.

4.1 Block-Level Strategy

The block-level strategy is simple and straightforward. The input matrix is divided
into square blocks. The dimension of the block is a design parameter called
gemv block size and is currently set to 64. This value proved to give the best per-
formance for SYMV [7]. Let us assume for now, that the matrix can be completely
divided into 64×64 square blocks. We will show how to manage arbitrary dimensions
later on. The kernel is configured to run with n thread blocks (TBs), where:

n = number of rows/gemv block size for the non-transposed case, or

n = number of columns/gemv block size for the transposed case.

As shown in Figure 2, thread blocks originate at the left most blocks in the non-
transposed case (Figure 2(a)) and move horizontally from left to right. In the transposed
version (Figure 2(b)), they originate at the top blocks and move downwards. The kernel
terminates when all TBs finish their horizontal/vertical pass over the matrix.
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(a) Non-transposed case (b) Transposed case

Fig. 2. Movements of thread blocks through the matrix

4.2 Thread-Level Strategy

The thread-level strategy is our main concern. To ease the presentation, we summarize
the following design parameters:

– thread x is the x-dimension of each thread block. thread x is always set to
gemv block size.

– thread y is the y-dimension of each thread block.
– elements per thread is the number of matrix elements a single thread prefetches

at one time. elements per thread is not really a design parameter, and is equal
to gemv block size/(2×thread y). However, it puts a restriction of the choice
of thread y since it has to be an integer.

Now, let us consider Figure 3(a) as an example. A 32×32 matrix block is processed us-
ing 128 threads. Originally, thread blocks are configured as 32×4 threads, meaning that
thread x=32, thread y=4, and elements per thread=4. However, during actual
processing, the whole matrix block is subdivided into two chunks, and all threads co-
operate in processing each chunk. The reason behind this concept is to introduce more
latency hiding for the stalled warps by applying a double buffering scheme. Thread
blocks reorganize themselves as 16×8 threads while loading and processing each chunk
from memory. Each thread is responsible for processing a number of elements equal to
(2×elements per threads). For the example shown in Figure 3(a), each thread loads
four elements from the first chunk. Before processing the first chunk, double buffering
comes into play to prefetch the second chunk. Since SMs interleave execution of thread
warps to hide the latency of stalled threads, increasing parallelism would lead to more
latency hiding. However, we are always constrained by the SM resources of threads and
registers (since all loaded elements are prefetched into registers). Similarly, before pro-
cessing the second chunk, the first chunk of the next matrix block is prefetched. For the
non-transposed case, each thread is responsible for the result of two elements in the final
resulting vector. In the transposed case, the matrix block is processed in the same man-
ner, but each thread is responsible for the result of elements per thread elements.
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(a) Thread-level strategy for one matrix block (b) Processing arbitrary matrices of irregular
dimensions

Fig. 3. Optimization Techniques

The drawback of this methodology is its intensive register usage, which may lead to
low occupancy. Therefore, the tunable parameters introduced above should be carefully
chosen depending on the underlying architecture. In particular, on Fermi C2070, thread
blocks are configured as 64×8 threads.

One final comment on the proposed methodology is that the final result of an el-
ement in the final vector is not owned by one threads. For the non-transposed case,
threads having the same threadIdx.x share partial results of the same element. For
the transposed version, it is threadIdx.y instead. In both cases, threads use shared
memory to compute the final result through a simple reduction operation.

4.3 Handling Arbitrary Dimension

Consider an arbitrary matrix where rows and columns are not necessarily multiple of
gemv block size. Moreover, the matrix can be rectangular, i.e. rows are not equal to
columns. In the presence of clean-up regions, the design is not so simple as in the trivial
case shown in Figure 2.

We will consider a non-transposed case shown in Figure 3(b). The other case can be
easily understood in a similar way. For the block-level strategy, we separate the process-
ing of the bottom row-of-blocks in an another kernel that is always invoked with one
thread block (TB0’ in Figure 3(b)). This is because the TB0’ will have some branches
that are not necessary for TB0 through TB3. And as we recommended in [7], separating
different computation strategy may lead to better occupancy. So, we preferred to sepa-
rate TB0’ as it surely consumes more SM resources due to the additional conditionals.
To avoid executing the two kernels successively, we benefit from CUDA streams [3] so
that the two kernels are concurrently executed. TB0 through TB3 march on from left
to right processing blocks without any special treatment until they hit rightmost block,
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where some threads positioned after the matrix columns will be inactive. For TB0’, it
marches on similarly, but takes into account that threads with global row index more
than the matrix rows do nothing. When it hits the rightmost block, it encounters the same
situation of TB0 through TB3. Inactive threads in an irregular block are programmed
to load zero instead of a matrix element. We can say that the matrix is virtually padded
with zeros inside registers. The computation takes place similar to a regular block. The
engendered extra flops are negligible compared to the overall algorithm complexity.

5 Experimental Results

The results shown in this section were obtained on a single Fermi C2070 GPU card,
featuring 448 cores and 6 GB of DRAM. The host machine has a dual-socket quad-
core Intel Xeon processor, running at 2.67 GHz, and is equipped with 24 GB of main
memory. All kernel implementations were compiled using CUDA 5.0 compiler, except
CULA Dense R14, which only supports CUDA driver/runtime version 4.1. The results,
for both single precision (SP) and double precision (DP), will be shown in two parts.
The first parts presents results for the Level 2 BLAS routine GEMV. Both transposed
and non-transposed cases are covered. The second part shows the results of two LA-
PACK routines: The bidiagonal reduction (BRD) and the Hessenberg reduction (HRD).
Because it is called at each column/row reduction of the matrix, the GEMV operation
represent the main bottleneck. The presented graphs shows the impact of improving
GEMV on these routines.

5.1 GEMV Performance

Figures 4 and 5 show the performance in Gflop/s for SGEMV and DGEMV, respec-
tively. The improvement achieved in our design comes for relatively small to medium
matrix sizes in the non-transposed case, especially for SP. For the non-transposed SP
case, the kernels from CUDA 5.0 and CULA Dense R14 are almost identical. Our ker-
nel has an average 80% improvement for matrix sizes below 1700. From 1700 and up
to 4300, it drops to 30%. Between 6000 and 12000, our design drops to about 94%

(a) Non-transposed case (b) Transposed case

Fig. 4. Performance of GEMV (SP)
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of the other designs. A sharp degradation in the performance of the other implementa-
tions, starting from 12500, give our kernel an average 10% improvement (from 12500
to 15200).

Doing a similar analysis for double precision, we notice an average 47% improve-
ment up to dimension 1700, then an average 10% improvement between 1700 and 3500.
Afterwards, our design has nearly the same performance as the other kernels. As will be
shown in Section 5.2, the improvement in the performance for relatively small matrices
improves the LAPACK routines for both small and large matrices (again in a relative
sense). Our intuition is that the thread-level strategy is able to increase the amount of
parallel work even for small matrices. For example, a quick look at the MAGMABLAS
GEMV source code informed us that each thread block uses either one 64 or 128 thread
vector, compared to 4×64 thread vectors in our case. For large matrices, we probably
lose little bit of performance because of the parallel reduction through shared memory.

(a) Non-transposed case (b) Transposed case

Fig. 5. Performance of GEMV (DP)

5.2 BRD and HRD Performance

In this part, we show the performance for BRD and HRD algorithms, when using the
GEMV kernels from CUBLAS 5.0, MAGMABLAS 1.2, and our proposed kernel. The
reduction drivers for BRD and HRD are taken from MAGMA. Although CULA has
implemented such algorithms, they are not available in the CULA-DENSE free edition.

We see in Figures 6 and 7 that the reduction algorithms perform better when using
our GEMV kernel. It beats all other implementations, thanks to our improvements in
performance for small matrices. For BRD (SP), the reduction performs 25% better (on
average) for dimensions ≤ 8000, then drops to about 7% improvement. In DP, the aver-
age improvement is about 20% for dimensions≤ 8000, then drops to 12%. Switching to
the HRD algorithm, we achieve an average 35% improvement in SP for dimensions ≤
8000, that drops to 7% afterwards. In DP, the improvement is 17% till 6000 then drops
to 2%. As we can see, although our GEMV kernel is not competitive for every matrix
size, it could lead to a high-level LAPACK driver that is better for every matrix size. The
obvious reason is that reduction operations do successive matrix-vector multiplications
of decreasing sizes. The conceptual lesson that we learned is this: slight improvements
to low-level kernels can not be ignored. There are plenty of higher-level routines where
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(a) Single precision performance (b) Double precision performance

Fig. 6. Performance of bidiagonal reduction using three different GEMV kernels

(a) Single precision performance (b) Double precision performance

Fig. 7. Performance of Hessenberg reduction using three different GEMV kernels

these kernels lie at their hearts. Such routines can move to another level of performance
by slightly enhancing its core kernel.

6 Conclusions and Future Work

This paper introduced an improved implementation of the GEMV kernel on NVIDIA
GPU accelerators. The design idea was utilized before in improving the SYMV kernel,
which supports our claim that the computation strategy can be regarded as a general
approach for processing memory-bound kernels. Although the results shows improve-
ments only for relatively small to medium matrix sizes, the impact on higher-level LA-
PACK reduction algorithms was significant, even on large matrix sizes.

Possible future plans for this work is to treat the periodic dips in the performance
of our GEMV kernel. These dips refer to worst case mapping of TBs on SMs. Since
the work load is balanced among all thread blocks, a dip occurs when (number of TBs

mod number of SMs) is relatively small (worst case will be 1). The apparent solution is
to involve more workload distribution to maximize the number of active SMs. However,
dividing the work of one TB among several SMs requires either reduction operations
on the DRAM level. Such trade-off between workload distribution and DRAM access
penalty requires further investigation.
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