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Abstract. Memory latency and energy efficiency are two key constraints
to high performance computing systems. Data reuse transformations aim
at reducing memory latency by exploiting temporal locality in data ac-
cesses. Simultaneously, modern multicore processors provide the oppor-
tunity of improving performance with reduced energy dissipation through
parallelization. In this paper, we investigate to what extent data reuse
transformations in combination with a parallel programming model in
a multicore processor can meet the challenges of memory latency and
energy efficiency constraints. As a test case, a “full-search motion esti-
mation” kernel is run on the IntelR© CoreTM i7-2600 processor. Energy
Delay Product (EDP) is used as a metric to compare energy efficiencies.
Achieved results show that performance and energy efficiency can be im-
proved by a factor of more than 6 and 15, respectively, by exploiting a
data reuse transformation methodology and parallel programming model
in a multicore system.

Keywords: Performance, energy efficiency, data reuse transformation
methodology, parallel programming.

1 Introduction

The rapid growth of microprocessor performance for the last two decades has
provided us the opportunity to solve increasingly advanced problems that require
very large scale computations. However, memory latency has not been improved
at a comparable rate and has become a major limiting factor for system perfor-
mance. System performance is further impeded by battery capacity for handheld
devices and by heat dissipation constraints for high performance processor de-
signs [1]. Therefore, improvement of energy efficiency and memory latency has
now become a major concern in contemporary computer architectures.

For data-dominated applications such as multimedia algorithms, Data Trans-
fer and Storage Exploration (DTSE) offers a complete methodology for obtaining
and evaluating a set of data reuse transformations in terms of memory energy [2].
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The fundamental idea behind data reuse transformations is to move the data ac-
cesses from background memories to smaller and less energy intensive foreground
memory blocks in a systematic way. This approach eventually results in signifi-
cant energy savings.

In this paper, we present a technique that combines a data reuse transfor-
mation methodology with a parallel programming model to improve energy ef-
ficiency. We evaluate the performance and energy efficiency of our combined
technique on a quad-core processor. We have used a “full-search motion estima-
tion” algorithm as our test application.

This paper is organized as follows: Section 2 describes related work. Sec-
tion 3 presents our methodology to improve energy efficiency and 4 illustrates
our methodology using the motion estimation algorithm. Section 5 presents and
discusses our results. Finally, we conclude the paper in Section 6.

2 Related Work

Research on data reuse transformation methodologies for multimedia applica-
tions has been actively performed for the last few decades and has led to nu-
merous approaches to improve memory latency. Wuytack et al. [2] present a
formalized methodology for data reuse exploration to reduce memory energy
consumption by exploiting temporal locality of memory accesses using an opti-
mized custom memory hierarchy. It is taken further and oriented towards pre-
defined memory organizations in [3]. In [4,5], the authors evaluated the effect
of data reuse decisions on power, performance and area in embedded processing
systems. The effect of data reuse transformations on a general purpose processor
has been explored in [6]. In [7], the authors presented the effect of data reuse
transformations on multimedia applications on application specific processors.
The research described so far emphasizes on single-core systems and relies on
simulation based modeling when energy efficiency is estimated.

In [8], Kalva et al. presented the effect of parallel programming on multi-
media applications but it lacks energy efficiency analysis. In [9], Chen et al.
presented different optimization opportunities of the Fast Fourier Transform
(FFT) to achieve a high performance implementation on IBM Cyclops-64 chip
architecture. In [10], Zhang et al. presented an inter-core data reuse technique
to exploit all the available cores to boost overall application performance. These
earlier studies on parallel architectures emphasize performance rather than en-
ergy efficiency. In contrast, we have performed energy efficiency analysis on a
state-of-the-art multicore processor with four cores and have used Model Specific
Registers of the processor to accurately measure the consumed energy.

The previous work closest to ours is done by Marchal et al. [11]. It presents
an approach for integrated task-scheduling and data-assignment for reducing
SDRAM costs for multi-threaded applications. It does not couple the data reuse
analysis with a parallel programming model the way we do here, however.
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3 Energy Efficient Methodology for Multicore Processor

In this paper, we present an approach that combines the concepts from a data
reuse transformation methodology with a parallel programming model to get
better performance and energy efficiency.

Data Reuse Transformation: The fundamental concept of a data reuse transfor-
mation is to optimize an application and/or introduce a custom memory hierar-
chy to exploit the temporal locality of data accesses [2]. The memory hierarchy
consists of layers of gradually smaller memories. The application code is opti-
mized so that data that is accessed multiple times, i.e., has a high reuse factor,
is copied from larger to smaller memories closer to the data path. Unless the
memory hierarchy is fixed, the size and interconnect of each layer can also be
optimized. For data-intensive applications, this approach gives significant energy
savings since smaller memories consume less energy per access.

Parallel Programming: Multicore processors can achieve higher performance with
lower energy consumption compared to a uniprocessor system. It is, however, a
challenging job to develop efficient parallel applications that exploit the advan-
tages of hardware parallelism. Different parallel programming models have been
developed that can speed up applications when multiple threads or multiple pro-
cesses are used [12]. At this level, parallel programs can be written using multi
threaded programming and using explicit threading supported by the operating
system or using programming frameworks such as OpenMP [13].

In our approach, initially we have applied different possible data reuse trans-
formations described in [2] to optimize energy efficiency for a given algorithm.
The first step identifies data sets that are reused multiple times within a short
period of time, i.e., copy candidates. For each of the identified data sets, a copy
to a smaller memory can be introduced so that data is accessed using less energy.
Based on a cost trade off with extra copying of data and chip area overhead,
a hierarchical memory organization is generated and an optimized set of copy
candidates are utilized. After data reuse optimization, we develop a parallel al-
gorithm based on the optimized solution.

4 Demonstrator Application: Motion Estimation Kernel

We have used a “full-search motion estimation” algorithm to evaluate the per-
formance and energy efficiency of our combined approach.

4.1 Sequential Unoptimized Motion Estimation Algorithm

Motion Estimation (ME) is a core part of different video compression algorithms.
Block-basedME algorithms involve finding the candidate block within a specified
search area in a reference frame that is most similar to the current block in
the current frame. A “full-search motion estimation” algorithm performs an
exhaustive search over the entire search region to find the optimal solution.
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Algorithm 1. Sequential Unoptimized Motion Estimation Algorithm [14]

1: for g=0; g<H/n; g++ do
2: for h=0; h<W/n; h++ do
3: Δopt[g][h] = +∞
4: for i=-m; i<m; i++ do
5: for j=-m; j<m; j++ do
6: Δ = 0
7: for k=0; k<n; k++ do
8: for l=0; l<n; l++ do
9: Δ+= abs(Cur[g×n+k][h×n+l] - Ref[g×n+i+k][h×n+j+l])
10: end for
11: end for
12: Δopt[g][h] = min(Δ,Δopt[g][h])
13: end for
14: end for
15: end for
16: end for

This process is computationally intensive and costs about 80% of the encoding
time [8]. Therefore, we have chosen it as a test application in our experiment.

Full-search motion estimation is illustrated in Algorithm 1. The implemen-
tation of the ME algorithm consists of a number of nested loops. The basic
operation at the innermost loop consists of an accumulation of pixel differences,
while the basic operation two levels higher in the loop hierarchy consists of the
selection of the new minimum. This algorithm is a sequential implementation
without exploiting any data reuse transformation technique and referred as se-
quential unoptimized solution in this paper. For our experiment, we have used
parameters of the QCIF format (W=176, H=144, m=n=8) [14].

4.2 ME Optimization Using Data Reuse Transformations

We have followed a systematic approach presented in [2] to transform the Basic
ME Algorithm into an optimized solution that maps selected copies of data on a
memory hierarchy to exploit temporal locality. Fig. 1 presents different possible
transformations for the ME algorithm.

Each branch in the copy candidate tree corresponds to a potential memory
hierarchy for different data-reuse transformations. Dashed lines in the figure
indicate levels of the hierarchy. Each rectangle in the hierarchy corresponds to a
copy candidate, i.e., a block of data that can benefit from being accessed multiple
times from the given hierarchy level. Each copy candidate is annotated with its
size. The highlighted path in the figure indicates a 3 layer memory hierarchy for
data reuse transformations on the reference frame. The hierarchy is comprised
of a H×W block for the full frame, a (2m+n-1)×(2m+n-1) block and a (2m+n-
1)×n block for smaller copy candidates. In addition, a 2 layer memory hierarchy
for the current frame with a H×W frame memory and a n×n copy candidate is
also introduced.
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Fig. 1. Copy candidate tree for data reuse decision for Motion Estimation Algorithm.
The process of constructing such copy candidate tree is explained in[2].

To evaluate the performance and energy efficiency of the different data reuse
transformations presented in Fig. 1, the basic ME algorithm has been modified
into different versions to exploit different possible transformations. Achieved per-
formance and energy efficiency of all transformed algorithms are then measured
and compared. The transformation that provides the best energy efficiency is
converted to a parallel program. Algorithm 2 depicts an example of the trans-
formed ME algorithm with two layers. The transformed algorithm introduces a
smaller memory block (Buffer) to which the copy candidate is copied.

4.3 Parallel Optimized Motion Estimation Algorithm

The Motion Estimation algorithm also exhibits important properties of data par-
allelism. In QCIF format, a video frame is comprised of a fixed number of macro
blocks (8×8 non-overlapping blocks). Prediction for a given block is determined
by finding a block in a given search range of the reference frame that is closest
to the current block. For each macro block (MB), this estimation can be done in
parallel. Algorithm 2 represents our parallel ME algorithm. We have made our
2 layer ME algorithm parallel by adding the #pragma omp parallel for direc-
tive of the OpenMP programming model [13] at the outermost for loop. This
directive will instruct the compiler to distribute the work done in the for-loop
immediately following the directive among all processors (cores) of the system.
Variables Ref, Cur and Δopt are shared among the threads whereas (h, Buffer)
are private to each thread. Note that threads should be properly synchronized
while computing the minimum Δopt. Therefore a #pragma omp critical directive
is used to ensure that Δopt is accessed by a single thread at a time. We have also
set the GOMP CPU AFFINITY environment variable to bind each thread, i.e.,
each instance of the for-loop, to a specific core.

4.4 System Architecture and Energy Measurement

System Architecture: In our experiment, we have used the Intel R© CoreTM i7-2600
processor which consists of four physical cores. It supports Hyper-Threading
allowing it to simultaneously process up to 8 threads, i.e., 2 threads per core.
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Algorithm 2. Parallel Optimized Motion Estimation Algorithm

1: #pragma omp parallel for shared(Ref, Cur, Δopt) private(h, Buffer)
2: for g=0; g<H/n; g++ do
3: for h=0; h<W/n; h++ do
4: for k=0; k<2m+n-1; k++ do
5: for l=0; l<2m+n-1; l++ do
6: Buffer[k][l]=Ref[g×n-m+k][h×n-m+l]
7: end for
8: end for
9: Δopt[g][h] = +∞
10: for i=0; i<2m-1; i++ do
11: for j=0; j<2m-1; j++ do
12: Δ = 0
13: for k=0; k<n; k++ do
14: for l=0; l<n; l++ do
15: Δ += abs(Cur[g×n+k][h×n+l]- Buffer[i+k][j+l])
16: end for
17: end for
18: #pragma omp critical
19: Δopt[g][h] = min(Δ,Δopt[g][h])
20: end for
21: end for
22: end for
23: end for

The memory hierarchy consists of a 32 KB Level-1 cache, a 256 KB Level-2
cache and an 8192 KB Level-3 cache. Level-1 and Level-2 caches are private to
each core while the Level-3 cache is shared among the cores. Note that this is a
memory hierarchy with a fixed number of levels and sizes, typical for a standard
processor. This is different from the assumption in [2], where an application
specific memory hierarchy is assumed. The base clock speed of the processor is
3.4 GHz, but it can go as high as 3.8 GHz when Turbo Boost is enabled [15].

Energy Measurement Policy: We read the non-architectural Model Specific
Registers of the processor to estimate on-chip energy consumption [15]. The
MSR PP0 ENERGY STATUS register gives us aggregate energy consumed by
the cores as well as caches. We read this register at a fixed core frequency (3.4
GHz) and process the raw data to compute energy efficiency.

Energy Efficiency Metric: We report energy efficiency in terms of the Energy-
Delay-Product (EDP) metric [16]. Measured units for Energy and Delay are
Joule(J) and second(s) respectively. Therefore, the unit of the EDP metric is Js.
Generally, the lower the EDP, the better the energy efficiency is.

OS and Compiler Parameters: We execute our experiment on OpenSuse 11.4
(x86 64) running Linux kernel 2.6.37.6. The parallel application is compiled
using the gcc compiler with -fopenmp flag and optimized with -O3 flag.
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5 Results and Discussion

Energy Efficiency Evaluation of Sequential ME Algorithm: Different
data reuse transformations of the sequential ME algorithm and their correspond-
ing energy efficiencies are presented in Fig. 2.
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Fig. 2. Data reuse transformations and their energy efficiencies measured in EDP

Fig. 2a shows that energy efficiency is improved significantly due to data reuse
transformation techniques despite of the fact that such transformations intro-
duce both area and computational overheads. For instance, the sequential 2 layer
transformation introduces a (2m+n-1)×(2m+n-1) block buffer for the reference
frame and a (n×n) block buffer for the current frame and these additional buffers
cost 2372 Bytes of area overhead. The computational and energy overhead to
copy the copy candidates into the buffer are 0.31 microsecond and 6.67 milli-
joule, respectively. Therefore, in terms of EDP, the overhead is approximately
0.207×10−8 Js for each new frame. Despite these overheads, we have observed
that achieved EDP for the complete handling of one new frame is 229.7×10−8 Js
for the sequential unoptimized ME Algorithm whereas the EDP of the sequen-
tial 2 layer transformation is 41.7×10−8 Js. This improvement is attributed to
the use of smaller buffers since a block of (2m+n-1)×(2m+n-1) integer-numbers
corresponds to 2116 (23×23×4) bytes which is less than the Level-1 cache size
in our system. As a result, the buffer can be brought into the Level-1 cache dur-
ing the computation which significantly reduces the cost of expensive memory
accesses and improves performance as well as energy efficiency.

An important observation from Fig. 2b is that the efficiency is at a peak with a
2 layer memory hierarchy and it degrades with the introduction of any additional
layers of smaller memory blocks. Two factors that contribute to this result are:
(i) Additional memory layers also introduce additional area and computational
overheads (ii) Smaller data blocks are copied into relatively larger cache-blocks
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due to the fixed-sized caches, which ultimately negate the advantage of using
additional memory layers.

Energy Efficiency Evaluation of Parallel ME Algorithm: To maximize
the energy efficiency, we have converted the optimized ME algorithm that uses a
2 layer memory hierarchy into a parallel one by using the OpenMP programming
model and executed it on our system with a varying number of threads. Fig. 3
presents the obtained result.
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Fig. 3. Improved energy efficiency using optimized parallel ME algorithm

Fig. 3 implies that parallel programming improves energy efficiency of both
optimized (that exploits data reuse transformation methodology) and unopti-
mized solutions (not using data reuse transformations). We can see that EDP
values drop rapidly with increasing number of threads and reach their minimum
when 4 threads are used. Since the Intel R© CoreTM i7-2600 processor consists
of 4 physical cores which are shared among the threads in Hyper-Threading
mode, cache pollution causes the parallel unoptimized solution to increase the
EDP values with the increasing number of threads. In contrast to the unopti-
mized solution, the optimized solution exhibits better cache behavior due to the
use of smaller memory blocks. Hence, EDP remains almost constant during the
Hyper-Threading mode.

Table 1 presents a summary of our results which reveal that data reuse trans-
formations significantly improve energy efficiency and that the parallel optimized
solution is the most energy efficient transformation for ME algorithm. Normal-
ized EDP values (with respect to optimized parallel solution) in the Table indi-
cate that, sequential optimized and sequential unoptimized solutions are energy
in-efficient by a factor of 2.7 and 15.1, respectively. The execution time for per-
forming ME on one complete new frame is improved with a factor of 6.5 going
from sequential unoptimized to parallel optimized.
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Table 1. Results of different data reuse transformations

Version Execution Time Energy Energy Efficiency Normalized
Second×10−6 Joule×10−3 (EDP) Js×10−8 EDP

Sequential Unoptimized 10.9 210.7 229.7 15.1
Sequential 2 Layer 4.3 97.0 41.7 2.7
Sequential 3 Layer 4.6 104.1 47.8 3.1
Parallel Unoptimized 3.2 161.4 51.6 3.4
Parallel Optimized 1.7 89.7 15.2 1.0

In contrast to our results, in which we have obtained the best energy effi-
ciency by using a 2 layer memory hierarchy, Wuytack et al. in [2] have shown
that a 3 layer memory hierarchy is the most energy efficient scheme for the ME
algorithm. However, our experiments differ from their as follows: First, we have
experimented on a processor with a memory hierarchy of fixed sized cache-blocks.
The copy candidates are hence mapped to a portion of these fixed-size system
caches, and consequently our measurements consider the energy consumed by
both used and idle cache lines. Wuytack et al. did their experiment in a sim-
ulation environment that created a hierarchy of memory blocks that perfectly
fit the data blocks. Therefore, extra energy consumption due to unused cache
area is avoided. To avoid extra energy consumption in our experiment, we would
need to have an execution platform using a concept like drowsy cache [17] that
powers down unused parts of the cache. This would give more comparable re-
sults between the two methods. It is not available in the CoreTM i7 processor,
however. Second, we have measured energy efficiency of the complete program
rather than a part of the program that deals with data transfer. Third, we have
measured on-chip memory and core energy consumption rather than consider-
ing only memory energy consumption. Fourth, their simulation environment as-
sumes that data can be directly copied from a low-level hierarchy to a high-level
hierarchy bypassing any intermediate layer. This is not possible in our system.

6 Conclusion

In this paper, we have investigated performance and energy efficiency effects of
applying data-reuse transformations on a multicore processor running a motion
estimation algorithm. We have shown that for a sequential Motion Estimation
kernel, energy efficiency can be improved up to 5.5 times by using appropriate
data-reuse transformation techniques, which can be further extended to 15.1
times by incorporating the OpenMP parallel programing model. We have also
shown that Hyper-Threading degrades both performance and energy efficiency
of the unoptimized solution. This gives clear indications that a data reuse trans-
formation methodology in combination with a parallel programming model can
significantly save energy as well as improve performance of this type of applica-
tions running on multicore processors.
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