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Abstract. Application programming for GPUs (Graphics Processing
Units) is complex and error-prone, because the popular approaches —
CUDA and OpenCL — are intrinsically low-level and offer no special
support for systems consisting of multiple GPUs. The SkelCL library
offers pre-implemented recurring computation and communication pat-
terns (skeletons) which greatly simplify programming for single- and
multi-GPU systems. In this paper, we focus on applications that work on
two-dimensional data. We extend SkelCL by the matrix data type and
the MapOverlap skeleton which specifies computations that depend on
neighboring elements in a matrix. The abstract data types and a high-
level data (re)distribution mechanism of SkelCL shield the programmer
from the low-level data transfers between the system’s main memory and
multiple GPUs. We demonstrate how the extended SkelCL is used to
implement real-world image processing applications on two-dimensional
data. We show that both from a productivity and a performance point
of view it is beneficial to use the high-level abstractions of SkelCL.

1 Introduction

Application programming for GPUs (Graphics Processing Units) is complex and
error-prone. The popular programming models for systems with GPUs — CUDA
and OpenCL [2[45] — require the programmer to explicitly manage GPU’s mem-
ory, including (de)allocations and data transfers to/from the system’s main
memory. This leads to lengthy, low-level, complex and thus error-prone code.
For emerging systems with multiple GPUs, CUDA and OpenCL additionally
require an explicit implementation of data exchange between GPUs and sepa-
rate management of each GPU. This includes low-level pointer arithmetics and
offset calculations, as well as explicit program execution on each GPU. Neither
CUDA nor OpenCL offer specific support for such systems, which makes their
programming even more complex.

In this paper, we first briefly describe our SkelCL library [9] for high-level
single- and multi-GPU computing. It offer pre-implemented recurring compu-
tation patterns (skeletons) for simplified GPU programming. In addition, the
application developer is freed from memory management, which is done implic-
itly in SkelCL.

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-642-36949-0_41.
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As a specific contribution of the paper, we add a new two-dimensional data
type and an additional skeleton to SkelCL. The matriz data type complements
the one-dimensional vector data type for working with two-dimensional data,
e.g., matrices or images. The new MapQwverlap skeleton executes a given func-
tion on every element of the input data, using also the values of its neighboring
elements. Another novel contribution of this paper is the data distribution mech-
anism for simplifying two-dimensional data processing on systems with multiple
GPUs. Finally, we present an application case study using the matrix data type
and the MapOverlap skeleton — Sobel edge detection for 2D images — and report
experimental results using SkelCL.

The paper is organized as follows. First we briefly introduce the basics of
SkelCL in Section 2 using our previous work [9]. The MapOverlap skeleton is then
introduces in Section 2.2 and the matrix data type in Section 2:3] In Section [3]
we demonstrate how both are used together to implement an application from
the area of image processing: the Sobel edge detection. We report experimental
results and we evaluate performance and usability of our approach. Section [
concludes the paper and compares our approach to related work.

2 SkelCL

We have designed SkelCL as a library for high-level programming of multi-core
CPU, GPU, and other processing units. SkelCL is built on top of OpenCL and
provides a C++ API that shields the programmer from boilerplate code, e. g., for
program initialization or recurring tasks such as explicit data transfers between
CPU and GPU. Programming is simplified using algorithmic skeletons — generic
building blocks that describe commonly used parallel computation and commu-
nication patterns. For flexibility, SkelCL can also be used in combination with
low-level OpenCL code. The SkelCL library is available as open-source software
and can be downloaded from: http://skelcl.uni-muenster.de.

2.1 Algorithmic Skeletons

In standard OpenCL parallelism is specified using, special functions (kernels) to
be executed in a parallel manner on a device. It is programmer’s task to specify
in the host program how many instances of a kernel are launched. In addition,
kernels usually take pointers to device memory as input and contain program
code for reading/writing single data items from/to it. These pointers have to be
used carefully, because no boundary checks are performed by OpenCL.

To shield the programmer from these low-level programming tasks, the SkelCL
library extends OpenCL by means of high-level programming patterns, called al-
gorithmic skeletons. Formally, a skeleton is a higher-order function that executes
one or more user-defined functions in a pre-defined parallel manner, while hiding
the details of parallelism and communication from the user [§].

Four basic skeletons are provided by SkelCL: Map, Zip, Reduce, and Scan.
We describe these skeletons semi-formally, with vy, Vini, Vinr, and vey: denoting
vectors of size n, with 0 < i < n:



int main (int argc, char const* argv[]) {
SkelCL::init () ; /* initialize SkelCL */
Reduce<float> sum ( /* create skeletons */
"float func(float x,float y) { return z+y; }" );
Zip<float> mult (
"float func(float =, float y) { return z*y; }" );
/* create input vectors */
Vector<float> A(SIZE); fillVector (A);
Vector<float> B(SIZE); fillVector(B);
/* execute skeletons */
Vector<float> C = sum( mult( A, B ) );
cout << "Result: " << C.front(); /* print result */ }

Listing 1.1: SkelCL program computing the dot product of two vectors.

— The Map skeleton applies a unary function f to each element of an input
VECtOT Vi, 1. €. Vout[t] = f(vinli]).

— The Zip skeleton operates on two input vectors v;,; and v;,,, applying a
binary operator @ to all pairs of elements, i.e. Vout[i] = Vini[t] ® Vinr[i)-

— The Reduce skeleton computes a scalar value r from a vector using a binary
operator @, i.e. 7 =v[0] @ v[l] & ... Bv[n —1].

— The Scan skeleton (a.k.a. prefix-sum) yields an output vector with each
element obtained by applying a binary operator @ to the elements of the
input vector up to the current element’s index, i.e. vgyt[i] = @;;g Vin[7]-

Rather than writing low-level kernels, in SkelCL the programmer customizes
skeletons by providing user-defined (usually less complex) functions.

Listing[T.T]shows how a dot product of two vectors is implemented in SkelCL
using two skeletons: the Zip skeleton is customized by usual multiplication, and
the Reduce skeleton is customized by usual addition. This program comprises 8
lines of code (omitting comments and empty lines). For comparison, an OpenCL-
based implementation of a dot product provided in the NVIDIA SDK [I] requires
68 lines of code (kernel function: 9 lines, host program: 59 lines). Besides, ad-
ditional code would be necessary for a multi-device implementation, including
statements for data transfer between multiple devices and for splitting input
data and merging output data on the host.

In SkelCL, skeletons can be executed on single- and multi-device systems. In
case of a multi-device system, the calculation specified by a skeleton is performed
automatically on all devices available to the system. The SkelCL program in
Listing [1.1| can thus be executed on a multi-device system without any change.

2.2 The MapOverlap Skeleton

Many applications dealing with two-dimensional data perform calculations for
every data element taking neighboring data elements into account. For exam-
ple, image processing algorithms, like the gaussian blur, calculate a new value
for every pixel of an input image using the previous value of the pixel and its
surrounding values.



To facilitate the development of such applications, we extend SkelCL by
an additional skeleton in combination with a new matrix data type, which is
presented in Section [2.3] This skeleton can be used with either vector or matrix
data type. We explain the details of the new skeleton for the matrix data type.

— The MapQverlap skeleton takes two parameters: a function f and an integer
value d. It applies f to each element of an input matrix m;, while taking
the neighboring elements within the range [—d, +d] in each dimension into
account, i.e.

min[i —d,j— d] mzn[l - d,j} min[i - d7]+d]
mout[iaj] = f mzn[laj - d] oo mzn[’%]] e mzn[zvj +d]

In the actual source code, the application developer provides the function
f which receives a pointer to the element in the middle, m;y,|i, j]. Listing
shows a simple example of computing the sum of all direct neighboring values
using the MapOverlap skeleton. To access the elements of the input matrix m;,,
function get is used, as provided by SkelCL. All indices are specified relative to
the middle element m;y,[i, j], therefore, for accessing this element the function
call get(m_in, 0, 0) is used.

The application developer must ensure that only elements in the range spec-
ified by the second argument d of the MapOverlap skeleton, are accessed. In
Listing range is specified as d = 1, therefore, only direct neighboring ele-
ments are accessed. To enforce this property, boundary checks are performed at
runtime by the get function. In future work, we plan to avoid boundary checks
at runtime by statically proving that all memory accesses are in bounds, as it is
the case in the shown example.

Special handling is necessary when accessing elements out of the boundaries
of the matrix, e.g., when the item in the top-left corner of the matrix accesses
elements above and left of it. The MapOverlap skeleton can be configured to
handle such out-of-bound memory accesses in two possible ways: 1) a specified
neutral value is returned; 2) the nearest valid value inside the matrix is returned.
In Listing the first option is chosen and 0.0 is provided as neutral value.

Listing [1.3 shows how the same simple calculation can be performed in stan-
dard OpenCL. While the amount of lines of code increases by a factor of 2, the
complexity of each single line also increases, as follows. Besides a pointer to the
output memory, the width of the matrix has to be provided as parameter. The
correct index has to be calculated for every memory access using an offset and
the width of the matrix. Therefore, knowledge about how the two-dimensional
matrix is stored in one-dimensional memory is required. In addition, manual
boundary checks have to be performed to avoid faulty memory accesses.



MapOverlap<float(float)> m("float func(float* m_in){
float sum = 0.0f;
for (int ¢ = -1; 4 < 1; ++1%)
for (int 5 = -1; 7 < 1; ++7%)
sum += get(m_in, <, 7j);
return sum;
+", 1, SCL_NEUTRAL, 0.0f);

Listing 1.2: MapOverlap skeleton computing the sum of all direct neightbors for
every element in a matrix

__kernel void sum_up(__global float* m_in,

__global float* m_out,
int width, int height) {

int i_off = get_global_id(0); int j_off = get_global_id(1);

float sum 0.0f;

for (int i = i_off - 1; i < i_off + 1; ++1i)

for (int j = j_off - 1; j < j_off + 1; ++j) {
// perform boundary checks

if (i <0 |l i > width || j <0 |l j > height )
continue;
sum += m_in[ j * width + i ]; ¥
m_out[ j_off * width + i_off ] = sum; }

Listing 1.3: An OpenCL kernel performing the same calculation as the
MapOverlap skeleton shown in Listing [1.2

SkelCL avoids all these low-level details. Neither additional parameter, nor
index calculations or manual boundary checks are necessary. In SkelCL, the
application developer only provides the source code implementing the steps re-
quired by the algorithm.

2.3 Abstract data types and memory management

The extended SkelCL offers two containers: the vector and the matrix. While
the vector offers support for one-dimensional data, the new matrix data type
handles two-dimensional data.

Vector data type The vector class provides an abstraction for a contiguous mem-
ory area that is accessible by both, the host and the device. The SkelCL vector
replicates the interface of the vector from the Standard Template Library (STL),
i.e., it can be used as a replacement of the standard vector. Upon creation of a
vector on the host system, memory is allocated on the device accordingly.

The vector class shields the user from low-level memory operations like al-
location (on the device) and data transfer between host and device memory, as
follows. Data transfers between the memory areas on the host and device are
performed implicitly: before any data is accessed on the host, SkelCL ensures
that the data on the host is up-to-date. This may lead to implicit data trans-
fers from the device which are performed automatically. All skeletons can accept



vectors as their input and output. Before execution, a skeleton’s implementation
ensures that all input vectors’ data is available on all participating devices. This
may result in implicit (automatic) data transfers from the host memory to device
memory. The data of the output vector is not copied back to the host memory
but rather resides in the device memory. Hence, if an output vector is used as
the input to another skeleton, no further data transfer is performed. This lazy
copying in SkelCL minimizes costly data transfers between the host and device.

Matriz data type In addition to the vector as a one-dimensional abstract data
structure, we introduce in SkelCL a two-dimensional abstract data type, the
matriz. Developing applications on 2D data for modern parallel architectures
is cumbersome, since efficient memory handling is required for achieving good
performance. In case of GPUs, exploiting the memory hierarchy by using the
fast but small on-chip memory is mandatory for high performance. Simple and
obvious solutions taken directly from a textbook will most certainly result in
sub-optimal performance.

The matrix data type in SkelCL automatically manages all data transfers
between the host’s memory and the devices’ memory. Necessary data transfers
are performed implicitly: when a matrix is used by a skeleton, SkelCL copies the
matrix’s data to the devices, and vice versa. That means that when the data
of the matrix is accessed on the host, SkelCL copies the modified data back to
the host. Like the vector type, the matrix shields the user from dealing with
low-level details like data transfers between different memories. The Map, Zip
and MapOverlap skeleton can take matrices as input and output.

2.4 Data distribution on multiple devices

The key feature of SkelCL for multi-device systems is that SkelCL’s data types
abstract from memory ranges on multiple devices, i.e. the data is accessible by
each device. However, each device may access different parts of a container (vec-
tor or matrix) or may even not access it at all. For example, when implementing
work-sharing on multiple devices, the devices will usually access disjoint parts
of input data, such that copying only a part of the container to a device would
be more efficient than copying the whole data to each device.

To simplify the specification of partitionings of containers in programs for
multi-device systems, SkelCL implements the distribution mechanism that de-
scribes how a container is distributed among the available devices. It allows
the programmer to abstract from managing memory ranges which are shared
or spread across multiple devices: the programmer can think of a distributed
container as of a self-contained entity.

Four kinds of distribution are currently implemented in SkelCL and offered
to the programmer: block, copy, single and overlap (see Figure [1)). With block
distribution (Figure , each device stores a contiguous, disjoint part of the
container. The copy distribution (Figure copies container’s entire data to
each available device. In case of single distribution (Figure7 container’s whole
data is stored on a single device (the first device by default).
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Fig. 1: Distributions of a matrix in SkelCL.

Together with the matrix data type, we introduce a new distribution called
overlap (Figure . The overlap distribution splits the matrix into one chunk
for each device, similarly to the block distribution. In addition to the block
distribution, the following holds for an overlap-distributed matrix: each chunk
consists of a number of continuous rows, and, a parameter — the overlap size —
specifies the number of rows at the edges of a chunk which are copied to the
two neighboring devices. Figure [Id] illustrates the overlap distribution: Device
0 receives the top chunk ranging from the top row to the middle, while device
1 receives the second chunk ranging from the middle row to the bottom. The
marked regions are the overlap regions which are available on both devices.

The overlap distribution is automatically selected as distribution by the
MapOverlap skeleton, to ensure that every device has access to the neighboring
elements as needed by the MapOverlap skeleton.

A programmer can set the distribution of containers explicitly, or every skele-
ton selects a default distribution for its input and output containers otherwise.
Container’s distribution can be changed at runtime. A change of distribution
implies data exchanges between multiple devices and the host, which are per-
formed by SkelCL implicitly and lazily, as described above. Implementing such
data transfers in the standard OpenCL is a cumbersome task: data has to be
downloaded to the host before it can be uploaded to other devices, including
the corresponding length and offset calculations; this results in a lot of low-level
code which is completely hidden when using SkelCL.

3 Application study: Sobel edge detection

To evaluate the usability and performance of the MapOverlap skeleton and the
matrix data type, we implemented an algorithm commonly used in image pro-
cessing: The Sobel edge detection is applied to an input image and produces
an output image, in which the detected edges in the input image are marked
in white and plain areas are shown in black. Figure [2] shows the famous Lena
image [7] and the output of Sobel edge detection applied to it.

Listing shows the algorithm of the Sobel edge detection in pseudo-code.
To keep this version simple, necessary boundary checks are omitted. In this



(a) Original image (b) Image after Sobel
edge detection

Fig. 2: The famous Lena image often used as an example in image processing.

for (i = 0; i < width; ++1i)
for (j = 0; j < height; ++j)
h = -1*ximg[i-11[j-1]1 +1*img[i+1]1[j-1]
-2*%img[i-11[j 1 +2*ximg[i+1]1[j ]
-1*ximg[i-1] [j+1] +1ximg[i+1]1[j+1];

out_img[i][j] = sqrt(h*xh + vxv);

Listing 1.4: Sequential implementation of the Sobel edge detection.

sequential version, for computing one output value out_img[i] [j] the input
value img[i] [j] and the direct neighboring elements are needed. Therefore, the
MapOverlap skeleton is a perfect fit for implementing the Sobel edge detection.

Listing [T.5]shows the SkelCL implementation using the MapOverlap skeleton
and the matrix type. The implementation is straightforward and very similar to
the sequential version in Listing The only notable difference is that for ac-
cessing elements the get function is used instead of the square bracket notation.

Listing [T.6] shows a part of the standard OpenCL implementation for Sobel
edge detection. The actual computation is performed inside the computeSobel
function, which is omitted in the listing, since it is quite similar to the sequential
version describing the actual Sobel edge detection algorithm. The listing shows
that extra low-level code is necessary to deal with technical details, like boundary

// skeleton customized with Sobel edge detection algorithm
MapOverlap<char (char)> m( "“char func(const char* img) {
short h = -1*get(img,-1,-1) +1*get (img,+1,-1)
-2*%get (img,-1, 0) +2*get(img,+1, 0)
-1*get (img,-1,+1) +1*get(img,+1,+1);

short v = ...;
return sqrt (h*h + wv*v); }", 1, SCL_NEUTRAL, O0);
Matrix<char> out_img = m(img); // execution of the skeleton

Listing 1.5: SkelCL implementation of the Sobel edge detection.



__kernel void sobel_kernel( __global const char* img,
__global char* out_img,
int w, int h ) {
size_t i = get_global_id(0); size_t j = get_global_id(1);

if(i < w && j < h) {
// perform boundary checks
char ul = (j-1 > 0 && i-1 > 0) ? img[((j-D)*w)+(i-1)] : 0;

char um = (j-1 > 0 ) 7 img[((j-1)*w)+(i+0)] : 0;
char ur = (j-1 > 0 && i+1 < w) 7 img[((j-1)*w)+(i+1)] : O;
// ... 5 more

char 1r = (j+1 < h && i+1 < w) 7 img[((j+1)*w)+(i+1)] : O;

out_img[j * w + i] = computeSobel(ul, um, ur, ..., 1lr); } }

Listing 1.6: Additional boundary checks and index calculations, necessary in the
standard OpenCL implementation.
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£ 006 = 20
z g
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0 0
OpenCL SkelCL OpenCL SkelCL
Programming model Programming model
(a) Example image: Lena (b) Example image: World

Fig. 3: Performance results (runtimes)

checks and index calculations. These extra lines are arguably complex and error-
prone because they handle low-level details, rather than the application logic.

We performed runtime experiments using a NVIDIA Tesla T10 GPU with
480 processing elements and 4 GByte memory. Figure [3] shows the runtime of
the OpenCL version in Listing |1.6] vs. the SkelCL version with the MapOverlap
skeleton in Listing Only the kernel runtimes are shown, as the data transfer
times are equal for both versions. Measurements were taken using the OpenCL
profiling API. Besides the Lena image [7] with a size of 512 x 512 pixel, we
also used a bigger image by NASA showing the world [6] with a resolution of
15296 x 7648 pixel. The mean values of 6 runs are shown in Figure [3] The Lena
image is shown on the left, the NASA world image on the right.

The SkelCL version clearly outperforms the OpenCL implementation. This is
due to the fact, that the MapOverlap skeleton uses the fast local memory inside
its implementation which is hidden from the application developer.

In addition to the performance advantage, the SkelCL program is also sig-
nificantly simpler than the cumbersome OpenCL implementation. The OpenCL
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implementation requires 19 lines in total while the SkelCL program only com-
prises 4. No index calculations or boundary checks are necessary in the SkelCL
version whereas they are crucial for a correct implementation in OpenCL.

The OpenCL program in Listing[T.6]is not an optimized, but rather a straight-
forward version most programmers who are not OpenCL experts would write.
Since SkelCL targets such programmers rather than GPU experts, we take this
version for comparison with the SkelCL version. An optimized OpenCL version,
e.g., using local memory would probably perform better but would definitely
require additional low-level code.

4 Conclusion and Related Work

In this paper we showed how the SkelCL library can be extended for developing
applications on two-dimensional data. We used an image processing application
as a case study. Using SkelCL, such applications can easily benefit from the
performance of GPUs. Application developers do not have to be GPU computing
experts to achieve good performance, since SkelCL’s skeletons exploit the GPU
memory hierarchy transparently for the user. The two-dimensional data type
significantly simplifies memory management. The SkelCL library is available as
open-source software at http://skelcl.uni-muenster.de.

Similar approaches have been proposed recently to simplify GPU program-
ming. SkePU [3] is a high-level framework for multi-core CPUs and multi-GPU
systems offering skeletons similar to SkelCL. A macros-based mechanism al-
lows for using either OpenMP, CUDA or OpenCL as back-end to execute the
skeletons, but also restricts the programmer to the back-ends’ smallest common
set of functions.A skeleton similar to our new proposed MapOverlap skeleton
is available in SkePU, but restricted to one-dimensional data. Recently a two-
dimensional data type has been added to SkePU, but it is not yet fully integrated
in its current version.

In future work we will extend the set of skeletons offered by SkelCL and we
will specifically target heterogeneous systems with multiple GPUs.
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