
Best practices for HPM-assisted performance
engineering on modern multicore processors

Jan Treibig, Georg Hager, and Gerhard Wellein

Erlangen Regional Computing Center (RRZE)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Martensstr. 1, 91058 Erlangen, Germany
{jan.treibig,georg.hager,gerhard.wellein}@rrze.fau.de

Abstract. Many tools and libraries employ hardware performance monitoring
(HPM) on modern processors, and using this data for performance assessment
and as a starting point for code optimizations is very popular. However, such
data is only useful if it is interpreted with care, and if the right metrics are cho-
sen for the right purpose. We demonstrate the sensible use of hardware perfor-
mance counters in the context of a structured performance engineering approach
for applications in computational science. Typical performance patterns and their
respective metric signatures are defined, and some of them are illustrated using
case studies. Although these generic concepts do not depend on specific tools or
environments, we restrict ourselves to modern x86-based multicore processors
and use the likwid-perfctr tool under the Linux OS.

1 Introduction and related work

Hardware performance monitoring (HPM) is regarded as a state of the art advanced tool
to guide code optimizations. While there are countless publications about HPM-based
optimization efforts, a structured method for using hardware events is often missing.
even from the same vendor. One exception is the use of cache miss events, which are
very popular since memory access is regarded to be a major bottleneck on modern
architectures. In fact, miss events are often seen as the most useful metrics in HPM.
Many optimization efforts solely focus on minimizing cache miss ratios [1]. Another
popular application of HPM is automatic performance tuning via a runtime approach
[2,3]. Recent work attempts to apply statistical methods such as regression analysis to
achieve automatic application characterization based on HPM [4,5].

This paper will present a more holistic view on how to use HPM in a sensible way.
It suggests HPM as one aspect embedded in a structured performance engineering ap-
proach (see Fig. 1). The central idea is the iterative development of a diagnostic perfor-
mance model enforcing a better understanding of the code properties and the hardware
capabilities, leading to a deeper understanding how a code interacts with a given archi-
tecture. HPM is one important source of information to improve this understanding. We
want to stress that HPM is in many cases only meaningful if related to other informa-
tion like, e.g., microbenchmark results or static code analysis. In the following we will
concentrate on what role HPM can play in order to identify performance properties and
problems, and to implement a structured optimization effort.
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Fig. 1: Structured performance engineering process. The HPM results come in via
traces and hardware metrics, but machine parameters and microbenchmarking are of
equal importance. A performance model for each core loop is constructed from this
data and successively refined and adapted during the benchmarking and optimization
process.

While all these ideas are not new, we believe that the emphasis on “patterns” can
help tackle problems that are not so easily recognized using automatic tools that are too
focused on HPM. We concentrate here on the typical patterns and their identification.
The structured performance engineering approach will be published in detail elsewhere.

1.1 Hardware performance metrics

Hardware performance counters are available in every modern microprocessor design.
They allow the measurement of many (sometimes hundreds) of metrics that are related
to the way code is executed on the hardware. Although many of those metrics are unim-
portant for the developer writing numerical simulation code, some of them can be very
useful in assessing resource utilization and general performance properties. A large va-
riety of tools exist, from basic to advanced, that allow easy access to HPM data, and
some of them even give optimization advice derived from the measurements.

Fortunately, although there is considerable variation in the kinds of hardware events
that are available on different processors (even from the same manufacturer), a rather
small subset of them is sufficient to identify the most prevalent performance problems
in serial and parallel code. These are available on all modern processor designs. We call
a specific combination of hardware event counts and possible other sources of infor-



mation a “signature.” Together with information about runtime performance behavior
and code properties, signatures indicate the presence of so-called “performance pat-
terns,” which help to assess the quality of code and, most importantly, identify relevant
bottlenecks to enable a structured approach to performance optimizations.

This paper is organized as follows. In Sect. 2 we introduce a (non-exhaustive) list of
performance patterns and the typical metric signatures that go with them. Sect. 3 then
presents two case studies from different sectors of computational science, and Sect. 4
gives a summary and outlook to future work.

1.2 likwid-perfctr

Given sufficient experience, simple and lightweight tools are often adequate to accom-
plish the goals described above. Hence, we restrict ourselves to x86 architectures under
the Linux OS and employ the likwid-perfctr tool from the LIKWID toolsuite [6,7]. LIK-
WID1 is a collection of command line programs that facilitate performance-oriented
program development and production in x86 multicore environments under Linux. The
concept of event sets with connected derived metrics, which is implemented in likwid-
perfctr by means of performance groups, fits well to the signature approach presented
in this paper. We will not go into details on how to employ likwid-perfctr, since other
tools and frameworks can do similar things.

2 Performance patterns and event signatures

The following performance patterns have been found to be most useful when analyzing
scientific application codes on multicore-based nodes. Other application domains may
have different issues, but the basic principle could still be applied. The categorization is
to some extent arbitrary, and some patterns are frequently found together.

– Load imbalance
Load balancing issues are an impediment for parallel scalability, and hence perfor-
mance, and they should be resolved first.

– Bandwidth saturation
Whenever the bandwidth of a shared data path is exhausted, there is a natural limit
to scalability. Most frequently this happens on the main memory interface or the
(usually shared) outer-level cache (OLC).

– Strided or erratic data access
Cache-based architectures require contiguous data accesses to make efficient use
of bandwidth due to the cache line concept. Strided access (often caused by inap-
propriate data structures or badly ordered loop nests) is one of the most frequent
causes for low data transfer efficiency (between cache levels and to/from memory).

– Bad instruction mix
Inefficient code execution due to an instruction mix that is inadequate to solve the
problem can be a complex issue. It encompasses diverse effects such as general
purpose instruction overhead created by inefficient compiler code (often occurs

1 “Like I Knew What I’m Doing”



with C++), but also the degree of vectorization or the use of expensive operations
like divide and square root.

– Limited instruction throughput
There is always a limit for the number of instructions that can be executed per
cycle (e.g., 4 or 6), independent of their types. Even if a code does not hit this
limit, it could still suffer from a bottleneck in a specific execution port (such as
load or multiply). Finally, dependencies could cause pipeline bubbles, which further
diminish the throughput. This pattern is closely related to the bad instruction mix
pattern, but tends to require different code optimization strategies.

– Microarchitectural anomalies
This is a very architecture-specific pattern which may have different manifestations
depending on the type of CPU. Typical examples are false store forward aliasing,
unaligned data accesses or instruction code, and shortage of load/store buffers.

– Synchronization overhead
Barriers at the end of parallel loops or locks protecting shared resources may have
a large performance impact if the workload between such synchronization points is
too small. This pattern may also incur secondary effects like load imbalance or bad
instruction mix (see above).

– False cache line sharing
Different threads accessing a cache line (and at least one of them modifying it) lead
to frequent evictions and reloads, impacting performance a lot.

– Bad page placement on ccNUMA
All modern multi-socket servers are of ccNUMA type. Memory-bound codes must
implement proper page placement in order to profit from the bandwidth advan-
tages that ccNUMA provides. The two main problems with bad page placement
are nonlocal data access and bandwidth contention, with load imbalance as a pos-
sible secondary effect.

Each of those patterns can be mapped to one or more “signatures,” which consist of
a combination of performance behavior (scalability, sensitivity to problem size, etc.)
and a particular pattern in raw or derived hardware metrics. While the former is often
independent of the underlying architecture, the latter is very hardware-specific. Ideally
a given tool should provide these event sets and derived metrics in a similar way on all
supported processor architectures. likwid-perfctr tries to support this by “performance
groups.” In Table 1 we give a correspondence of each performance pattern with its sig-
natures in the performance behavior and to the relevant anomalies in hardware metrics
(together with the likwid-perfctr performance group, if available). In some cases the
signature also involves information from other sources such as microbenchmarks or
static code analysis, since some HPM signatures may be easily misinterpreted. We de-
liberately do not give any general optimization hints, since optimization is only possible
trough a thorough code review together with a suitable performance model.



Signature
Pattern Performance behavior HPM (and likwid-perfctr group(s))

Load imbalance Saturating speedup
Different count of instructions retired2

or floating point operations among cores
(FLOPS_DP, FLOPS_SP)

OLC bandwidth
saturation

Saturating speedup across
cores in OLC group

OLC bandwidth comparable to peak band-
width of a suitable microbenchmark (L3)

Memory band-
width saturation

Saturating speedup across
cores sharing a memory
interface

Memory bandwidth comparable to peak
bandwidth of a suitable microbenchmark
(MEM)

Strided or erratic
data access

Large discrepancy between
simple bandwidth-based
model and actual perfor-
mance

Low bandwidth utilization despite LD/ST
domination / Low cache hit ratios, frequent
evicts/replacements (CACHE, DATA, MEM)

Bad instruction
mix

Performance insensitive
to problem size fitting into
different cache levels

Large ratio of instructions retired to FP in-
structions if the useful work is FP / Many
cycles per instruction (CPI) if the prob-
lem is large-latency arithmetic / Scalar in-
structions dominating in data-parallel loops
(FLOPS_DP, FLOPS_SP, CPI is always mea-
sured)

Limited instruction
throughput

Large discrepancy between
actual performance and
simple predictions based
on max Flop/s or LD/ST
throughput

Low CPI near theoretical limit if instruction
throughput is the problem / Static code anal-
ysis predicting large pressure on single exe-
cution port / High CPI due to bad pipelining
(FLOPS_DP, FLOPS_SP, DATA, CPI is always
reported)

Microarchitectural
anomalies

Large discrepancy between
actual performance and
performance model

Relevant events are very hardware-specific,
e.g., stalls due to 4k memory aliasing, con-
flict misses, unaligned vs. aligned LD/ST,
requeue events. Code review required, with
architectural features in mind.

Synchronization
overhead

Speedup going down as
more cores are added /
No speedup with small
problem sizes / Cores busy
but low FP performance

Large non-FP instruction count2 (grow-
ing with number of cores used) / Low CPI
(FLOPS_DP, FLOPS_DP, CPI always mea-
sured)

False cache line
sharing

Very low speedup or slow-
down even with small core
counts

Frequent (remote) evicts (CACHE)

Bad ccNUMA
page placement

Bad/no scaling across lo-
cality domains

Unbalanced bandwidth on memory inter-
faces / High remote traffic (MEM)

Table 1: Performance patterns and corresponding signatures for parallel code on multi-
core systems



3 Case studies

3.1 Abstraction penalties in C++ code

The basis for this case study is a recent analysis of Expression Template (ET) frame-
works for basic linear algebra operations [8,9]. While classic ETs show good perfor-
mance for simple BLAS1-type (vector-vector) loop kernels, they have severe problems
with BLAS2- and BLAS3-type operations and sparse arithmetic, since they are based
on accesses to individual elements of data structures and have no notion of standard
optimizations for nested loops. “Smart Expression Templates” (SETs) ameliorate this
problem since they provide a high-level approach to complex loop nests and can sub-
stitute the whole operations by calls to optimized libraries (such as Intel MKL) or well-
written plain C or compiler intrinsics code. (S)ET approaches must also be compared
to standard coding techniques like operator overloading (which is plagued by the gen-
eration of temporary objects) and classic C loop nests.

Convoluted code like the one generated by strongly abstract C++ source when deal-
ing with matrix-type operands typically shows the “bad instruction mix” pattern, since
a lot of instructions are generated that are not actually needed to solve the problem. In
the Expression Template example this shows most prominently in the number of retired
instructions. Table 2 shows events and derived metrics for a 5000×5000 matrix-matrix
multiplication using four different code versions: The “Classic” code uses traditional
overloading of operator*() so that an expression like C=A*B, with A, B, and C being
objects of some matrix class, results in a call to a function that implements a naive ver-
sion of the matrix multiply and returns the result as a temporary copy. “Boost uBLAS”
supports matrix operations directly with a slightly different syntax, and avoids the tem-
porary (which is the main reason for using ETs in the first place). Eigen3 is an SET
framework that is able to recognize arithmetic expressions involving complex data types
and employs an optimized version of the operation. However, it still relies heavily on
the inlining capabilities of the compiler. “MKL dgemm” denotes a direct call to the
vendor-optimized BLAS library for Intel processors.

The results show a striking agreement in the number of generated instructions be-
tween the Classic and uBLAS versions, although the performance of the Classic code
is a factor of eight higher. In both cases the compiler has generated bloated, scalar
machine code; the reason is that the access to individual matrix elements is strongly
abstracted. The “Classic” code, uses an overloaded operator(int,int) for access-
ing the matrix elements in the loop nest, and the uBLAS relies on a similar mechanism.
Both strategies impede the compiler’s view on what the actual operation is and limit
its optimization capabilities. The result is a factor of five to six in retired instructions
compared to Eigen3 and MKL, of which a factor of two can be attributed to scalar (as
opposed to SIMD-parallel) instruction code.

The fact that uBLAS is so much slower than the Classic version results from a very
unfortunate loop ordering, leading to stride-5000 accesses to one of the matrices in the
product (for details see [8]). As a consequence, the code becomes latency-dominated
and makes inefficient use of the memory bandwidth (second column in Table 2). This

2 Load imbalance and frequent synchronization often go together, leading to large non-FP in-
struction counts that are caused by spin-waiting loops.



is the “strided data access” pattern at work. The Classic version, despite its inefficient
machine code, at least implements a loop nest that has stride-one accesses to all rel-
evant data structures. This is also reflected in the CPI metric (fourth column), which
indicates massive pipeline bubbles due to long-latency loads. The Classic version can
still not exhaust the available memory bandwidth for a single thread (see “STREAM”),
although the kernel should be bandwidth-bound. This is again a consequence of the
code spending too much time with in-core execution.

The Eigen3 version, with the help of optimized kernels and massive inlining, achieves
76% of the MKL performance, which is impressive for compiler-generated code. The
memory bandwidth of the MKL code is not so different from the uBLAS version, but
this is purely coincidental: Memory access is not a bottleneck for the highly optimized
dgemm implementation.

Memory
Bandwidth
[MByte/s]

Total Retired
Instructions

[1011]

Cycles Per
Instruction

(CPI)

Performance
[MFlop/s]

STREAM 11814 — — —

Classic 5314 12.5420 0.440861 1249

Boost uBLAS 630 10.1207 4.61834 156

Eigen3 371 2.1014 0.41168 8555

MKL dgemm 531 2.03448 0.321115 11261

Table 2: Hardware counter performance analysis of the single-threaded multiplication
of two large dense matrices (N = 5000). The given STREAM bandwidth is the practical
limit for one thread on the used processor. (Adapted from [8])

3.2 Medical image reconstruction by backprojection

This case study was part of a work aiming at optimized volume reconstruction on mul-
ticore processors [10]. The optimization target is the open benchmark RabbitCt, which
implements volume reconstruction by backprojection, which is the computational bot-
tleneck in many medical imaging applications. From a simple roofline model analysis
[11] the algorithm was identified to be bandwidth-limited on the platforms investigated.
However, it turned out that a complex combination of patterns is involved here: mem-
ory bandwidth saturation, limited instruction throughput, and load imbalance.

In a first attempt it was checked if the memory bandwidth saturation pattern applies
using the MEM performance group of likwid-perfctr. To get a meaningful bandwidth
baseline a benchmark was constructed that mimics the basic data access pattern, which
in this case is an array update kernel (A(:)=s*A(:)). The Intel Westmere processor
used in the analysis can sustain 20.3G̃B/s using all cores of one socket for this opera-
tion. Bandwidth measurements with likwid-perfctr revealed that the application showed
a much lower bandwidth of roughly 10G̃B/s. Hence, memory bandwidth saturation is
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Fig. 2: Performance counter timeline monitoring of floating-point performance (a) and
memory bandwidth (b), comparing blocked/nonblocked variants of the best implemen-
tation on one full Westmere socket (six cores) at 100 ms resolution. The inset in (b)
shows a zoomed-in view with 2 ms resolution. (Adapted from [10])

not a limiting bottleneck for this implementation on Intel Westmere. A static code anal-
ysis (using the Intel IACA tool [12]) showed that the scattered load of necessary pixel
data into SIMD registers requires a large number of instructions on the instruction code
level. This makes the code limited by instruction throughput, which is not evident from
the high-level language implementation. The measured performance was near the pre-
diction of this static loop body runtime analysis, which was based on the instruction
throughput capabilities of the architecture. A final confirmation that the code is indeed
limited by instruction throughput was achieved by comparing with measured CPI val-
ues, which were in accordance with the static L1 cache prediction.

For a more severely bandwidth-starved architecture (Intel Harpertown) a cache-
blocked version of RabbitCt was implemented, showing a significant performance im-
provement. This code version was also run on the Westmere platform for comparison.
The result of a likwid-perfctr timeline measurement of the floating-point performance
and main memory bandwidth is shown in Fig. 2: The blocking effectively lowers the
bandwidth demands, but there is no impact on the overall performance.

One of the other applied optimizations was a work reduction strategy; after cutting
over 30% off the total work the runtime benefit was still negligible. To check a possible



Core Id 0 1 2 3 4 5
FP_COMP_OPS_EXE_SSE_FP_PACKED [1010] 2.74 9.39 9.23 9.30 9.29 3.07

Table 3: Instruction count per core for packed SSE arithmetic floating point instructions
of the RabbitCt benchmark without load balancing

Core Id 0 1 2 3 4 5
FP_COMP_OPS_EXE_SSE_FP_PACKED [1010] 7.16 7.17 7.16 7.17 7.17 7.17

Table 4: Instruction count per core for packed SSE arithmetic floating point instructions
with round robin scheduling

load imbalance the instruction count on the cores was measured using likwid-perfctr
with the FLOPS_SP group. As the innermost loop body is fully vectorized the number
of packed (vectorized) arithmetic instructions is a good indicator for a potential load
imbalance. Table 3 shows the results of a likwid-perfctr measurement of the packed
SSE arithmetic floating point instructions. Evidently the outer threads have only one
third of the workload of the others in terms of packed FP instructions. The runtime
for this case is 61.72 s. A simple way to improve load balancing in in OpenMP was to
change the loop scheduling to a round robin distribution, using static,1. Results are
shown in Table 4: The load imbalance was removed and the runtime was reduced to
43.9 s.

4 Summary and outlook

This paper presented an initial proposal of a structured usage of HPM embedded in
an overall software engineering process. We classify relevant performance patterns and
formulate signatures which indicate that a certain pattern applies. The signatures are
based on HPM data alone or combined with other sources of information such as mi-
crobenchmarking data and static code and algorithmic analysis. We are aware that this
approach nevertheless requires an intimate knowledge of the algorithm, the code and the
hardware. Still we believe that there is no alternative to a performance engineering pro-
cess build on knowledge of the programmer himself. The application of our approach
was illustrated on the example of two case studies. Future work involves further settle-
ment of the performance patterns and corresponding signatures. This will be achieved
by applying the approach to various practical examples.
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