
 

I. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 474–483, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

A Reliability Model for Cloud Computing  
for High Performance Computing Applications* 

Thanadech Thanakornworakij1, Raja F. Nassar1, Chokchai Leangsuksun1,  
and Mihaela Păun1,2,** 

1 College of Engineering & Science, Louisiana Tech University, Ruston, LA 71270, USA  
2 National Institute of Research and Development for Biological Sciences,  

Bucharest, 060031, Romania 
mpaun@latech.edu 

Abstract. With virtualization technology, Cloud computing utilizes resources 
more efficiently. A physical server can deploy many virtual machines and  
operating systems. However, with the increase in software and hardware com-
ponents, more failures are likely to occur in the system.  Hence, one should un-
derstand failure behavior in the  Cloud environment in order to better utilize the 
cloud resources. In this work, we propose a reliability model and estimate the 
mean time to failure and failure rate based on a system of k nodes and s virtual 
machines under four scenarios. Results show that if the failure of the hardware 
and/or the software in the system exhibits a degree of dependency, the system 
becomes less reliable, which means that the failure rate of the system increases 
and the mean time to failure decreases. Additionally, an increase in the number 
of nodes decreases the reliability of the system.    
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1 Introduction 

Cloud computing allows businesses to rent computing resources from cloud service 
providers, such as Amazon, Rackspace, etc., instead of investing to acquire compu-
ting facilities. Users can increase or decrease the amount of resources -such as sto-
rage, memory, and central processing unit (CPU) – as they need and pay per usage 
according to the amount of services or resources they need, like in a traditional public 
utility. When companies decide to use a cloud service, they have in mind a Service 
Level Agreement (SLA), which involves the reliability and performance of the Cloud 
within a desired time frame. Reliability of cloud systems directly relates to its perfor-
mance. When a system fails,   applications that are running on the cloud can be inter-
rupted. If the system does not have any fault tolerant mechanisms such as live migra-
tion and checkpoint/restart, failed jobs have to re-run. If the system provides fault 
tolerant mechanisms there is still some performance loss; re-computing time and the 
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time it takes to restart the system to function again. Therefore, it is important to accu-
rately estimate the reliability of a cloud computing system in order to better mitigate 
faults and therefore effectively utilize its performance to achieve the SLA of cloud 
users. The demand for High Performance Computing (HPC) is increasing for solving 
advance scientific researches and some mission critical applications. Many scientific 
and HPC applications are running on Cloud.  

In Cloud environment, service providers must manage numerous computing com-
ponents such as processors, memory modules, storage, network switches, etc. The 
more components, the failures are likely to occur. A failure may interrupt an entire 
application, for instance Message Passing Interface (MPI) applications. MPI has been 
used in most parallel scientific applications. MPI on Cloud is an active research area.  
Raihan [28] analyzed HPC applications and tested MPI performance on Cloud.  If the 
service providers know the failure characteristic of the cloud computing components, 
they can better manage the computing resources to tolerate the failures and sustain 
better performance [7], [8].   

Reliability information is one of the key factors to consider in a cloud computing 
environment.  As such, many studies considered reliability as a main factor in their 
research on performance and usage cost. The work of Artur [5] focused on monetary 
versus reliability balance based on Spot Instances in the Amazon Elastic Computing 
Cloud (EC2). The Spot Instances are idle resources. Users can bid a price for idle 
resources. Whenever the price of resources is equal or less than the bid price, the Spot 
instances are allocated to the users. On the other hand, if the price goes above the bid 
price, the Spot instances are deallocated without warning. This leads to the question 
of how to bid the Spot Instances with given SLA constraints. Prasad [6] presented 
resource allocation method for data processing considering not just CPU speed, mem-
ory usage, data throughput, and network speed, but also reliability. In his work, Pra-
sad presented algorithms for partitioning data in order to gain better performance and 
resource allocation for optimal pricing and for meeting SLA constraints. None of the 
work considers reliability of Cloud for HPC applications. Our work will consider the 
reliability of a cloud computing application that includes both hardware and software.  

In this paper, we propose a reliability model for a cloud computing system that 
considers software, application, Virtual Machine, Hypervisor, and hardware failures 
as well as correlation of failures within the software and hardware.  

2 Related Work     

Many researchers have studied cloud computing reliability. Kashi [1] studied charac-
teristic of hardware failure and hardware repair in cloud computing. The result 
showed that when a server failed, it has more chance of failing again. Also, successive 
failures are fit best to an inverse curve. Moreover, Dai [3] introduced cloud service 
reliability. The reliability of a cloud service is considered to be the reliability of re-
quest stage failures multiplied by those of the execution stage. Hacker [4] considered 
hardware reliability and assumed a virtual machine per server. The proposed model 
was based on the Weibull distribution. However, this work did not incorporate soft-
ware reliability into the model. None of the work considers reliability of Cloud for 
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HPC applications. In our work, we will consider the reliability of a cloud computing 
application that includes both hardware and software 

Many studies have shown that the time to failure (TTF) of a computer system can 
be described by a Weibull distribution [4], [9], [11]. Hacker [9] studied the impact of 
reliability rates of individual components on the reliability of an HPC system. He also 
showed that the time between failures for an HPC system followed a Weibull distribu-
tion. Xu [11] also showed TTF’s of Windows NT servers follow a Weibull distribu-
tion.  Gottumukkala et. al, [12] developed the reliability model of a k-node system for 
HPC applications when individual TTF follows a Weibull distribution. They consi-
dered the excess life or time since the last failure of an individual node in the reliabili-
ty model to gain more accurate estimation of reliability of the system based on an 
assumption that nodes fail independently. However, time to failure of some computer 
systems may not be independent [11], [13]. Xu [11] showed that there is failure de-
pendency of Windows NT Servers across the network.  Schroeder [13] presented a 
study of failures in an HPC system at Los Alamos National Laboratory (LANL) that 
nodes were correlated with regard to failure and that two or more nodes may fail at 
the same time. In this work, we consider the excess life as well as correlation due to 
possible simultaneous failures of nodes in the system.      

For software reliability, there are many studies undertaken to understand the cha-
racteristics of a software failure [14], [15]. Alan [10] was interested in understanding 
software reliability models and their utilityHe showed that a simple exponential mod-
el performs as well or better than complex models, and the simple model outper-
formed the other models in terms of both stability and predictive ability.  Musa [14] 
evaluated 7 model groups on 15 sets of data. Based on the evaluation, the exponential 
and logarithmic models were recommended for modeling software reliability. Thiru-
murugan [15] studied software reliability modeling in the testing and operational 
phase. Failures occurred at a constant rate over time [15], [16]. The majority of soft-
ware reliability models make the assumption that failures occur independently. How-
ever, evidently in [17] the software failures are not always independent. Popstojanova 
[18] extended the classic software reliability theory, Markov renewal modeling, in 
order to formulate software reliability models that considered dependent failures and 
time to failure following the exponential distribution.  

2.1 Multivariate Exponential Model 

As known from the literature [14], an exponential distribution is appropriate for mod-
eling software reliability (Applications, VM’s and Hypervisor). In this work, we will 
refer to Application, VM’s and Hypervisors as software since they all assume an ex-
ponential time till failure distribution. Software failure may be independent or depen-
dent. Independent software failures, for example, can occur in the case of parallel 
jobs, such as biological sequence and video encoding. In case of dependent failure, 
system configuration and operation environment may cause dependent software fail-
ures. Moreover, applications may fail at the same time, due to certain situation such as 
communication outages between processes. For example, blocking communication on 
an MPI application may cause simultaneous process failures. Another example is 
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simultaneous failures due to the fact that applications may have to wait on data to 
become available. To consider correlation between software failures, we use the Mar-
shall-Olkin Multivariate Exponential Distribution (MOMED) [19] based on the fatal 
shock model shown, as follows.  
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Equation (1) is the probability that the system components each survive beyond times , … ,  , respectively.   
Suppose that a component fails after receiving a fatal shock. The occurrence of 

shocks is based on independent Poisson process ( , )i iZ t λ , with i = 1 2… k. In each 

Poisson process, t >0 and lambda is the Poisson parameter. The events in the Poisson 

process, ( , )i iZ t λ   are shocks to component i, the events in the process, , ( , )i j ijZ t λ  

are simultaneous shocks to both components i and j, the events in the process 

, , ( , )i j l ijlZ t λ   are simultaneous shocks to components i, j and l and the events in the 

process 1,2,..., 12...( , )k i kZ t λ are simultaneous shocks to all k components. Thus 

1... 1( ... )
kY Y kF y y   is a survival function of k components. 

2.2 Multivariate Weibull 

For node failure, we have evidence that nodes may fail simultaneously [13]. Many 
studies also showed that the time to failure of an individual node follows a Weibull 
distribution. To model nodes failing at the same time, we use the Multivariate Weibull 
distribution. One can derive a Multivariate Weibull model from the multivariate ex-
ponential model by a variable transformation technique used in [20]. In the survival 

function of the multivariate exponential Eq. (1), consider the transformation c

i iY X= , 

c>0,  1, ..., .i k=  Using the transformation of variable technique, one can obtain the 
survival function of the general multivariate Weibull (MVW) ,which is given by 
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In what follows we extend the model in Eq. (2) to include an excess or conditional 
Weibull in order to determine, in conjunction with Eq. (1), the reliability of a cloud 
system for different scenarios that may occur in practice.  
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3 TTF of a Cloud System  

In this section, we consider reliability of an application that has ℓ processes (App1-
App ℓ) in a cloud system composed of s virtual machines deployed in k nodes as 
shown in Figure 1, where each node can have a different number of virtual machines. 
We make an assumption that it is an MPI application. A system fails when any one of 
the k nodes fails or any software component fails. In the hardware case, when any 
node fails, it is replaced with a new node and the system is re-started. In the software 
case, the VM is re-started and the system operates again.  

 

Fig. 1. Cloud Computing Architecture 

Our interest is in determining the probability density function for the time to the 
first failure of the system after the jth node replacement or a VM re-start due to a fail-
ure. This time is referred to as the time to failure (TTF). Therefore, we make the fol-
lowing assumptions concerning the failure properties of individual nodes in an HPC 
system, based on our discussion in the previous section. 

1. TTF of an individual node follows a Weibull distribution 
2. TTF of an application that is running on a particular VM has an exponential distri-

bution. 
3. The first failure interrupts the entire application. 
4. After a failure, the node is replaced with a new node at the next time instant, and 

hence the system returns to operation.  

We consider a k-node cloud system with n (n = ℓ+s+k, see Figure 1) software compo-
nents (App, VM and Hypervisor), each with an exponential time to failure), where 
any failure in any one of the n components interrupts the entire system. If any of the 
software components fails the component (and hence the system) will be re-started. 
On the other hand, if a node fails, the node is replaced and the system is restarted. In 
case of node failures, the distribution of the time to failure is Weibull for the node that 
is replaced and excess Weibull for the other nodes.  Note that because of simultaneous 
failures; more than one node may be replaced at the same time. The excess life is 
defined as the probability that a node will fail at time x given that the node has sur-
vived until time t.  The excess life PDF for a Weibull distribution can be expressed as  
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where i is the node that fails and j is the  system re-start. 

4 Cloud System Reliability 

In general, there could be many possible combinations of failure dependencies among 
components. However, we practically focus on four major scenarios described as 
follows. We consider four possible scenarios.  
Software failures occur independently. Also, hardware failures occur independently.  

From Eqs. (1) and (2) one can show that the reliability model of n software com-
ponents running on k physical nodes can be expressed as follows: 
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where ′      is replaced at the  re-start. 
       =      is not replaced at the  re-start. 
Similarly, for , , … , . Note that for independence, only λi ‘s and γi ‘s  are not 

equal to zero. 

Eq. (5) can be readily derived from Eq. (1) by using the transformation ,c
i iY X=  

c > 0 for the nodes that have a Weibull time to failure (failed and were replaced to 
restart the system),   for nodes that have an excess Weibull dis-
tribution (did not fail when the system was re-started) and Y = X for the n software 
components that have an exponential time to failure. 

In case of correlated software failures, and independent hardware failure, the re-
liability model can be expressed as in Eq. (6), which is a product of Eq. (1) and Eq. 
(2). Note that for independent hardware failure only λi’s are not equal to zero. 
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In a similar manner, we derive Eq. (7) and Eq. (8) for the scenarios described below 
in case 3 and case 4. 

For a system where software failures occur independently, but hardware failures 
are correlated, the reliability model is given by 
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In the case of both software and hardware correlated failures, the reliability model of 
the cloud system is given by 

' ' ' ' ' '

1 , 1 , , 1

' ' '
12... 1 2 12...

1 , 1 , , 1

( ) exp{ { , } { , , } ...              

                   { , ... } ...

k k k

j i i is i s isl i s l
i i s i s l

i s i s l

n n n

k k v vw vwz
v v w v w z

v w v w z

R x x max x x max x x x

max x x x x x x

λ λ λ

λ γ γ γ γ

= = =
< < <

= = =
< < <

= − − − −

− − − − − −

  

   }n x

 

(7)                 

In all four scenarios, we assume that hardware and software fail independently from 
each other. From Eq. (5), the pdf of an application on Cloud can be derived as  
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where       is replaced at the  re-start. 
     =     the   is not replaced at the  re-start. 
From Eq. (6), the pdf for this case is  
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After we have the reliability and pdf of an application, we will use this information to 
compute failure rate and mean time to failure of an application on Cloud.  

5 Cloud System Reliability, Mean Time to Failure (MTTF), and 
Failure Rate 

In this section, we show by examples, for k = 3 and n=12, the effect of survival time 
(T) and parameter values for joint node failures ( …) on system reliability for the 
four cases, Eqs. (5), (6), (7) and (8), and on the failure rate Eqs. (13), (14), (15) and 
(16) and MTTF, Eq. (17).  For simplicity, we choose the example where there is only 
one joint parameter …  ). We use an example where job run length (x) equals 100 
hours and the node parameters  , , 0.00005, the 2-node joint parameters 

, , 0.00005, the 3-node joint parameter 0.00003, C=1.5, the 2 
software-component joint parameters  , … , 0.00003,  the 3 softwarecomponent joint parameter 0.0007, and the hypervisor and VM parameters 

=0.00001 .  It is obvious from the reliability equations (5), (6), (7) and (6) that when 
the system has failures that are correlated it becomes less reliable. Moreover, when 
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the joint failure rates ( …) increase, the reliability of the system decreases. This im-
plies that a system with independent nodes ( …, …= 0) is more reliable than one 
where the nodes are correlated in failure. Figure 2 shows the reliability for the four 
scenarios. Is it seen, as expected, that scenario 1 is most reliable and scenario 4 is 
least reliable.  For all scenario, as survival time (T) increases, the reliability decreases. 

It is worth mentioning that as the number of nodes or VMs increases, the reliability 
of the system decreases, as seen from Eqs. (5-8). 

Figure 3 shows the Cloud system MTTF. When the number of nodes increases,, 
mean time to failure decreases. Also, when adding more components with correlated 
failure, the system becomes less reliable.  

 

  

Fig. 2. Cloud System Reliability, with k=3 and n=12, for the four scenarios in Eqs. (5) – (8) 

 
Fig. 3. Cloud System MTTF as function of the number of nodes (k) 

6 Conclusions  

Reliability information is important for improving Cloud computing system utiliza-
tion. In order to mitigate the interruption of an application because of a failure, it is of 
importance to know how the reliability, failure rate, and mean time to failure of a 
Cloud computing system are affected by joint node failures. Many studies have shown 
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the existence of failure correlations among nodes in computer systems [11] and [12]. 
In this paper, we proposed reliability models that consider software and hardware 
components, which account for joint failures among nodes as well as VMs. We also 
developed the reliability, failure rate, and mean time to failure of a system based on k 
nodes and s VMs. We consider four major scenarios that are combinations of software 
and hardware failure correlation. We also discussed the reliability model for the case 
where VMs and Hypervisors exhibit an aging effect. Results showed that if failures in 
the system possess a degree of dependency, the system becomes less reliable.  Future 
work will focus on extending the present models to include component redundancies.  
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