

I. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 474–483, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Reliability Model for Cloud Computing
for High Performance Computing Applications*

Thanadech Thanakornworakij1, Raja F. Nassar1, Chokchai Leangsuksun1,
and Mihaela Păun1,2,**

1 College of Engineering & Science, Louisiana Tech University, Ruston, LA 71270, USA
2 National Institute of Research and Development for Biological Sciences,

Bucharest, 060031, Romania
mpaun@latech.edu

Abstract. With virtualization technology, Cloud computing utilizes resources
more efficiently. A physical server can deploy many virtual machines and
operating systems. However, with the increase in software and hardware com-
ponents, more failures are likely to occur in the system. Hence, one should un-
derstand failure behavior in the Cloud environment in order to better utilize the
cloud resources. In this work, we propose a reliability model and estimate the
mean time to failure and failure rate based on a system of k nodes and s virtual
machines under four scenarios. Results show that if the failure of the hardware
and/or the software in the system exhibits a degree of dependency, the system
becomes less reliable, which means that the failure rate of the system increases
and the mean time to failure decreases. Additionally, an increase in the number
of nodes decreases the reliability of the system.

Keywords: Fault tolerance, Reliability, cloud computing, cloud performance.

1 Introduction

Cloud computing allows businesses to rent computing resources from cloud service
providers, such as Amazon, Rackspace, etc., instead of investing to acquire compu-
ting facilities. Users can increase or decrease the amount of resources -such as sto-
rage, memory, and central processing unit (CPU) – as they need and pay per usage
according to the amount of services or resources they need, like in a traditional public
utility. When companies decide to use a cloud service, they have in mind a Service
Level Agreement (SLA), which involves the reliability and performance of the Cloud
within a desired time frame. Reliability of cloud systems directly relates to its perfor-
mance. When a system fails, applications that are running on the cloud can be inter-
rupted. If the system does not have any fault tolerant mechanisms such as live migra-
tion and checkpoint/restart, failed jobs have to re-run. If the system provides fault
tolerant mechanisms there is still some performance loss; re-computing time and the

* This work was supported in part by the CNCS TE 97/2011and NSF CNS-0834483.
** Corresponding author.

 A Reliability Model for Cloud Computing 475

time it takes to restart the system to function again. Therefore, it is important to accu-
rately estimate the reliability of a cloud computing system in order to better mitigate
faults and therefore effectively utilize its performance to achieve the SLA of cloud
users. The demand for High Performance Computing (HPC) is increasing for solving
advance scientific researches and some mission critical applications. Many scientific
and HPC applications are running on Cloud.

In Cloud environment, service providers must manage numerous computing com-
ponents such as processors, memory modules, storage, network switches, etc. The
more components, the failures are likely to occur. A failure may interrupt an entire
application, for instance Message Passing Interface (MPI) applications. MPI has been
used in most parallel scientific applications. MPI on Cloud is an active research area.
Raihan [28] analyzed HPC applications and tested MPI performance on Cloud. If the
service providers know the failure characteristic of the cloud computing components,
they can better manage the computing resources to tolerate the failures and sustain
better performance [7], [8].

Reliability information is one of the key factors to consider in a cloud computing
environment. As such, many studies considered reliability as a main factor in their
research on performance and usage cost. The work of Artur [5] focused on monetary
versus reliability balance based on Spot Instances in the Amazon Elastic Computing
Cloud (EC2). The Spot Instances are idle resources. Users can bid a price for idle
resources. Whenever the price of resources is equal or less than the bid price, the Spot
instances are allocated to the users. On the other hand, if the price goes above the bid
price, the Spot instances are deallocated without warning. This leads to the question
of how to bid the Spot Instances with given SLA constraints. Prasad [6] presented
resource allocation method for data processing considering not just CPU speed, mem-
ory usage, data throughput, and network speed, but also reliability. In his work, Pra-
sad presented algorithms for partitioning data in order to gain better performance and
resource allocation for optimal pricing and for meeting SLA constraints. None of the
work considers reliability of Cloud for HPC applications. Our work will consider the
reliability of a cloud computing application that includes both hardware and software.

In this paper, we propose a reliability model for a cloud computing system that
considers software, application, Virtual Machine, Hypervisor, and hardware failures
as well as correlation of failures within the software and hardware.

2 Related Work

Many researchers have studied cloud computing reliability. Kashi [1] studied charac-
teristic of hardware failure and hardware repair in cloud computing. The result
showed that when a server failed, it has more chance of failing again. Also, successive
failures are fit best to an inverse curve. Moreover, Dai [3] introduced cloud service
reliability. The reliability of a cloud service is considered to be the reliability of re-
quest stage failures multiplied by those of the execution stage. Hacker [4] considered
hardware reliability and assumed a virtual machine per server. The proposed model
was based on the Weibull distribution. However, this work did not incorporate soft-
ware reliability into the model. None of the work considers reliability of Cloud for

476 T. Thanakornworakij et al.

HPC applications. In our work, we will consider the reliability of a cloud computing
application that includes both hardware and software

Many studies have shown that the time to failure (TTF) of a computer system can
be described by a Weibull distribution [4], [9], [11]. Hacker [9] studied the impact of
reliability rates of individual components on the reliability of an HPC system. He also
showed that the time between failures for an HPC system followed a Weibull distribu-
tion. Xu [11] also showed TTF’s of Windows NT servers follow a Weibull distribu-
tion. Gottumukkala et. al, [12] developed the reliability model of a k-node system for
HPC applications when individual TTF follows a Weibull distribution. They consi-
dered the excess life or time since the last failure of an individual node in the reliabili-
ty model to gain more accurate estimation of reliability of the system based on an
assumption that nodes fail independently. However, time to failure of some computer
systems may not be independent [11], [13]. Xu [11] showed that there is failure de-
pendency of Windows NT Servers across the network. Schroeder [13] presented a
study of failures in an HPC system at Los Alamos National Laboratory (LANL) that
nodes were correlated with regard to failure and that two or more nodes may fail at
the same time. In this work, we consider the excess life as well as correlation due to
possible simultaneous failures of nodes in the system.

For software reliability, there are many studies undertaken to understand the cha-
racteristics of a software failure [14], [15]. Alan [10] was interested in understanding
software reliability models and their utilityHe showed that a simple exponential mod-
el performs as well or better than complex models, and the simple model outper-
formed the other models in terms of both stability and predictive ability. Musa [14]
evaluated 7 model groups on 15 sets of data. Based on the evaluation, the exponential
and logarithmic models were recommended for modeling software reliability. Thiru-
murugan [15] studied software reliability modeling in the testing and operational
phase. Failures occurred at a constant rate over time [15], [16]. The majority of soft-
ware reliability models make the assumption that failures occur independently. How-
ever, evidently in [17] the software failures are not always independent. Popstojanova
[18] extended the classic software reliability theory, Markov renewal modeling, in
order to formulate software reliability models that considered dependent failures and
time to failure following the exponential distribution.

2.1 Multivariate Exponential Model

As known from the literature [14], an exponential distribution is appropriate for mod-
eling software reliability (Applications, VM’s and Hypervisor). In this work, we will
refer to Application, VM’s and Hypervisors as software since they all assume an ex-
ponential time till failure distribution. Software failure may be independent or depen-
dent. Independent software failures, for example, can occur in the case of parallel
jobs, such as biological sequence and video encoding. In case of dependent failure,
system configuration and operation environment may cause dependent software fail-
ures. Moreover, applications may fail at the same time, due to certain situation such as
communication outages between processes. For example, blocking communication on
an MPI application may cause simultaneous process failures. Another example is

 A Reliability Model for Cloud Computing 477

simultaneous failures due to the fact that applications may have to wait on data to
become available. To consider correlation between software failures, we use the Mar-
shall-Olkin Multivariate Exponential Distribution (MOMED) [19] based on the fatal
shock model shown, as follows.

1 ... 1

1

12... 1 2

(...) exp{ max(,)

max(, ,) ... max(, , ...,)}

k

k

Y Y k i i ij i j
i i j

ijl i j l k k
i j l

F y y y y y

y y y y y y

γ γ

γ γ
= <

< <

= − −

− − −

 (1)

Equation (1) is the probability that the system components each survive beyond times , … , , respectively.
Suppose that a component fails after receiving a fatal shock. The occurrence of

shocks is based on independent Poisson process (,)i iZ t λ , with i = 1 2… k. In each

Poisson process, t >0 and lambda is the Poisson parameter. The events in the Poisson

process, (,)i iZ t λ are shocks to component i, the events in the process, , (,)i j ijZ t λ

are simultaneous shocks to both components i and j, the events in the process

, , (,)i j l ijlZ t λ are simultaneous shocks to components i, j and l and the events in the

process 1,2,..., 12...(,)k i kZ t λ are simultaneous shocks to all k components. Thus

1... 1(...)
kY Y kF y y is a survival function of k components.

2.2 Multivariate Weibull

For node failure, we have evidence that nodes may fail simultaneously [13]. Many
studies also showed that the time to failure of an individual node follows a Weibull
distribution. To model nodes failing at the same time, we use the Multivariate Weibull
distribution. One can derive a Multivariate Weibull model from the multivariate ex-
ponential model by a variable transformation technique used in [20]. In the survival

function of the multivariate exponential Eq. (1), consider the transformation c

i iY X= ,

c>0, 1, ..., .i k= Using the transformation of variable technique, one can obtain the
survival function of the general multivariate Weibull (MVW) ,which is given by

1 ... 1
1

12...

(...) exp{ max(,)

 max(, ,) ... max(, ...,)}.

k

k
c c c

X X k i i ij i j
i i j

c c c c c

ijl i j l k i k
i j l

F x x x x x

x x x x x

λ λ

λ λ
= <

< <

= − −

− − −

 (2)

In what follows we extend the model in Eq. (2) to include an excess or conditional
Weibull in order to determine, in conjunction with Eq. (1), the reliability of a cloud
system for different scenarios that may occur in practice.

478 T. Thanakornworakij et al.

3 TTF of a Cloud System

In this section, we consider reliability of an application that has ℓ processes (App1-
App ℓ) in a cloud system composed of s virtual machines deployed in k nodes as
shown in Figure 1, where each node can have a different number of virtual machines.
We make an assumption that it is an MPI application. A system fails when any one of
the k nodes fails or any software component fails. In the hardware case, when any
node fails, it is replaced with a new node and the system is re-started. In the software
case, the VM is re-started and the system operates again.

Fig. 1. Cloud Computing Architecture

Our interest is in determining the probability density function for the time to the
first failure of the system after the jth node replacement or a VM re-start due to a fail-
ure. This time is referred to as the time to failure (TTF). Therefore, we make the fol-
lowing assumptions concerning the failure properties of individual nodes in an HPC
system, based on our discussion in the previous section.

1. TTF of an individual node follows a Weibull distribution
2. TTF of an application that is running on a particular VM has an exponential distri-

bution.
3. The first failure interrupts the entire application.
4. After a failure, the node is replaced with a new node at the next time instant, and

hence the system returns to operation.

We consider a k-node cloud system with n (n = ℓ+s+k, see Figure 1) software compo-
nents (App, VM and Hypervisor), each with an exponential time to failure), where
any failure in any one of the n components interrupts the entire system. If any of the
software components fails the component (and hence the system) will be re-started.
On the other hand, if a node fails, the node is replaced and the system is restarted. In
case of node failures, the distribution of the time to failure is Weibull for the node that
is replaced and excess Weibull for the other nodes. Note that because of simultaneous
failures; more than one node may be replaced at the same time. The excess life is
defined as the probability that a node will fail at time x given that the node has sur-
vived until time t. The excess life PDF for a Weibull distribution can be expressed as

 A Reliability Model for Cloud Computing 479

(())1(|) () ,
c c

ij ijt t xc

ij ij ijf t x t c t x e
λλ − − + +−+ = + (3)

where i is the node that fails and j is the system re-start.

4 Cloud System Reliability

In general, there could be many possible combinations of failure dependencies among
components. However, we practically focus on four major scenarios described as
follows. We consider four possible scenarios.
Software failures occur independently. Also, hardware failures occur independently.

From Eqs. (1) and (2) one can show that the reliability model of n software com-
ponents running on k physical nodes can be expressed as follows:

'

1 2
1 1

 () () (, ...) exp{ },
k n

j k n i i v
i v

R x F x P X x X x X x x xλ γ+
= =

= = > > > = − − (4)

where ′ is replaced at the re-start.
 = is not replaced at the re-start.
Similarly, for , , … , . Note that for independence, only λi ‘s and γi ‘s are not

equal to zero.

Eq. (5) can be readily derived from Eq. (1) by using the transformation ,c
i iY X=

c > 0 for the nodes that have a Weibull time to failure (failed and were replaced to
restart the system), for nodes that have an excess Weibull dis-
tribution (did not fail when the system was re-started) and Y = X for the n software
components that have an exponential time to failure.

In case of correlated software failures, and independent hardware failure, the re-
liability model can be expressed as in Eq. (6), which is a product of Eq. (1) and Eq.
(2). Note that for independent hardware failure only λi’s are not equal to zero.

'

12...
1 1 , 1 , , 1

() exp{ ... }
k n n n

j i i v vw vwz n
i v v w v w z

v w v w z

R x x x x x xλ γ γ γ γ
= = = =

< < <

= − − − − − − (5)

In a similar manner, we derive Eq. (7) and Eq. (8) for the scenarios described below
in case 3 and case 4.

For a system where software failures occur independently, but hardware failures
are correlated, the reliability model is given by

' ' ' ' ' '

1 , 1 , , 1

' ' '
12... 1 2

1

() exp{ { , } { , , } ...

 { , ... } }

k k k

j i i is i s isl i s l
i i s i s l

i s i s l

n

k k v
v

R x x max x x max x x x

max x x x x

λ λ λ

λ γ

= = =
< < <

=

= − − − −

− −

 (6)

480 T. Thanakornworakij et al.

In the case of both software and hardware correlated failures, the reliability model of
the cloud system is given by

' ' ' ' ' '

1 , 1 , , 1

' ' '
12... 1 2 12...

1 , 1 , , 1

() exp{ { , } { , , } ...

 { , ... } ...

k k k

j i i is i s isl i s l
i i s i s l

i s i s l

n n n

k k v vw vwz
v v w v w z

v w v w z

R x x max x x max x x x

max x x x x x x

λ λ λ

λ γ γ γ γ

= = =
< < <

= = =
< < <

= − − − −

− − − − − −

 }n x

(7)

In all four scenarios, we assume that hardware and software fail independently from
each other. From Eq. (5), the pdf of an application on Cloud can be derived as

"

1 1 1 1

() []*exp{ ' },
k n k n

i v i v
i v i v

f x c x x xλ γ λ γ
= = = =

= + − − (8)

where is replaced at the re-start.
 = the is not replaced at the re-start.
From Eq. (6), the pdf for this case is

"
12...

1 1 , 1 , , 1

12...
1 1 , 1 , , 1

() [...]

 *exp{ ' ... },

k n n n

i v vw vwz n
i v v w v w z

v w v w z

k n n n

i v vw vwz n
i v v w v w z

v w v w z

f x c x

x x x x x

λ λ λ λ λ

λ λ λ λ λ

= = = =
< < <

= = = =
< < <

= + + + + +

− − − − − −

 (9)

After we have the reliability and pdf of an application, we will use this information to
compute failure rate and mean time to failure of an application on Cloud.

5 Cloud System Reliability, Mean Time to Failure (MTTF), and
Failure Rate

In this section, we show by examples, for k = 3 and n=12, the effect of survival time
(T) and parameter values for joint node failures (…) on system reliability for the
four cases, Eqs. (5), (6), (7) and (8), and on the failure rate Eqs. (13), (14), (15) and
(16) and MTTF, Eq. (17). For simplicity, we choose the example where there is only
one joint parameter …). We use an example where job run length (x) equals 100
hours and the node parameters , , 0.00005, the 2-node joint parameters

, , 0.00005, the 3-node joint parameter 0.00003, C=1.5, the 2
software-component joint parameters , … , 0.00003, the 3 softwarecomponent joint parameter 0.0007, and the hypervisor and VM parameters

=0.00001 . It is obvious from the reliability equations (5), (6), (7) and (6) that when
the system has failures that are correlated it becomes less reliable. Moreover, when

 A Reliability Model for Cloud Computing 481

the joint failure rates (…) increase, the reliability of the system decreases. This im-
plies that a system with independent nodes (…, …= 0) is more reliable than one
where the nodes are correlated in failure. Figure 2 shows the reliability for the four
scenarios. Is it seen, as expected, that scenario 1 is most reliable and scenario 4 is
least reliable. For all scenario, as survival time (T) increases, the reliability decreases.

It is worth mentioning that as the number of nodes or VMs increases, the reliability
of the system decreases, as seen from Eqs. (5-8).

Figure 3 shows the Cloud system MTTF. When the number of nodes increases,,
mean time to failure decreases. Also, when adding more components with correlated
failure, the system becomes less reliable.

Fig. 2. Cloud System Reliability, with k=3 and n=12, for the four scenarios in Eqs. (5) – (8)

Fig. 3. Cloud System MTTF as function of the number of nodes (k)

6 Conclusions

Reliability information is important for improving Cloud computing system utiliza-
tion. In order to mitigate the interruption of an application because of a failure, it is of
importance to know how the reliability, failure rate, and mean time to failure of a
Cloud computing system are affected by joint node failures. Many studies have shown

482 T. Thanakornworakij et al.

the existence of failure correlations among nodes in computer systems [11] and [12].
In this paper, we proposed reliability models that consider software and hardware
components, which account for joint failures among nodes as well as VMs. We also
developed the reliability, failure rate, and mean time to failure of a system based on k
nodes and s VMs. We consider four major scenarios that are combinations of software
and hardware failure correlation. We also discussed the reliability model for the case
where VMs and Hypervisors exhibit an aging effect. Results showed that if failures in
the system possess a degree of dependency, the system becomes less reliable. Future
work will focus on extending the present models to include component redundancies.

References

1. Vishwanath, K.V., Nagappan, N.: Characterizing Cloud Computing Hardware Reliability.
In: International Conference on Management of Data, pp. 193–204 (2010)

2. Yi, S., Kondo, D., Andrzejak, A.: Reducing Costs of Spot Instances via Checkpointing in
the Amazon Elastic Compute Cloud. In: IEEE Cloud Computing, CLOUD, pp. 236–243
(2010)

3. Dai, Y.S., Yang, B., Dongarra, J., Zhang, G.: Cloud Service Reliability: Modeling and
Analysis. In: The 15th IEEE Pacific Rim International Symposium on Dependable Com-
puting (2009)

4. Hacker, T.J.: Cloud Computing and Software Services: Theory and Techniques, pp. 139–
152. CRC Press (2011)

5. Andrzejak, A., Kondo, D., Yi, S.: Decision Model for Cloud Computing under SLA Con-
straints. In: International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (2010)

6. Prasad, K.H., Faruquie, T.A., Subramaniam, L.V., Mohania, M., Venkatachaliah, G.: Re-
source Allocation and SLA Determination for Large Data Processing Services over Cloud.
In: Services Computing, SCC, pp. 522–529 (2010)

7. Bonvin, N., Papaioannou, T., Aberer, K.: Cost-efficient and Differentiated Data Availabili-
ty Guarantees in Data Clouds. In: International Conference on Data Engineering, pp. 980–
983 (2010)

8. Gueyoung, J., Joshi, K.R., Hiltunen, M.A.: Performance and Availability Aware Regenera-
tion for Cloud Based Multitier Application. In: Dependable Systems and Networks, DSN,
pp. 497–506 (2010)

9. Hacker, T.J., Meglicki, Z.: Using queue structures to improve job reliability. In: Proceed-
ings of the 16th International Symposium on Hig-Performance Distributed Computing,
HPDC-16 2007, Monterey, CA, pp. 43–54 (2007)

10. Wood, A.: Software Reliability Growth Models: Assumptions vs. Reality. In: The Pro-
ceedings of the Eighth International Symposium on Software Reliability Engineering,
ISSRE 1997, pp. 136–141 (1997)

11. Xu, J., Kalbarczyk, Z., Iyer, R.K.: Networked Windows NT system field failure data anal-
ysis. In: Proceedings of the 1999 Pacific Rim International Symposium on Dependable
Computing, pp. 178–185 (1999)

12. Gottumukkala, N.R., Nassar, R., Paun, M., Leangsuksun, C.B., Scott, S.L.: Reliability of a
System of k Nodes for High Performance Computing Applications. IEEE Transactions on
Reliability 59(1), 162–169 (2010)

 A Reliability Model for Cloud Computing 483

13. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance compu-
ting systems. In: Proceedings of International Symposium on Dependable Systems and
Networks, DSN, pp. 249–258. IEEE Computer Society (2006)

14. Musa, J.D.: Software Reliability Engineering. Osborne/McGraw-Hill (1998)
15. Thirumurugan, S., Prince Williams, D.R.: Analysis of Testing and Operational Software

Reliability in SRGM based on NHPP. International Journal of Computer and Information
Engineering 1(1), 284–289 (2007)

16. Yang, B., Xie, M.: A study of operational and testing reliability in software reliability
analysis. Reliability Engineering & System Safety Journal 70(3), 323–329 (2000)

17. Hamlet, D.: Are we testing for true reliability? IEEE Software 9(4), 21–27 (1992)
18. Goseva-Popstojanova, K., Trivedi, K.S.: Failure Correlation in Software Reliability Mod-

els. IEEE Transactions on Reliability 49(1), 37–48 (2000)
19. Marshall, A.W., Olkin, I.: A multivariate exponential distribution. Journal of the American

Statistical Association 62, 30–44 (1967)
20. Hanagal, D.D.: A multivariate Weibull distribution. Economic Quality Control 11, 193–

200 (1996)

	A Reliability Model for Cloud Computing for High Performance Computing Applications
	Introduction
	Related Work
	Multivariate Exponential Model
	Multivariate Weibull

	TTF of a Cloud System
	Cloud System Reliability
	Cloud System Reliability, Mean Time to Failure (MTTF), andFailure Rate
	Conclusions
	References

