
A Methodology for Efficient Use of OpenCL,

ESL and FPGAs in Multi-core Architectures

Alexandros Bartzas and George Economakos

National Technical University of Athens
School of Electrical and Computer Engineering
Microprocessors and Digital Systems Laboratory

Heroon Polytechniou 9, GR-15780 Zografou, Athens, Greece
geconom@microlab.ntua.gr

Abstract. OpenCL has been proposed as an open standard for appli-
cation development in heterogeneous multi-core architectures, utilizing
different CPU, DSP and GPU types and configurations. Recently, the
technological advances in FPGA devices has turned the parallel process-
ing community towards them. However, FPGA programming requires
expertise in a different field as well as the appropriate tools and method-
ologies. A feasible solution introduced recently is the adoption of ESL and
high-level synthesis methodologies, supporting FPGA programming from
C/C++. Based on high-level synthesis, this paper presents a methodol-
ogy to use OpenCL as an FPGA programming environment. Specifically,
the opportunities as well as the obstacles imposed to the application de-
veloper by the FPGA computing platform and the adoption of C/C++
as input language are presented, and a systematic way to explore both
data level and thread level parallelism is given. The resulting methodol-
ogy can be used for the deployment of parallel applications over a wide
range of diverse CPU, DSP, GPU and FPGA multi-core configurations.

1 Introduction

Parallel processing can be considered starting at early 60s, with the D825 from
Burroughs Corporation and Dijkstra’s paper [3], while notions of parallelism
can be found even earlier in the Analytical Engine of Charles Babbage. Since
then, a lot of research and development has flourished the field, offering a va-
riety of architectures, programming models, languages and standards. A latest
development, mainly since the introduction by the computer gaming industry
of ultra-high performance Graphics Processing Units (GPUs), is the integra-
tion of different processing elements (CPUs, DSPs and GPUs) under a common
programming model like CUDA [9] and OpenCL [6].

OpenCL (Open Computing Language) is an open standard for the develop-
ment of parallel applications on a variety of heterogeneous multi-core architec-
tures, based on the C99 version of the C language. The execution model of
OpenCL consists of a host machine connected and controlling a compute device.
The compute device performs calculations with a number of parallel computa-
tional intensive kernels. Each compute device consists of compute units and each

I. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 507–517, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

508 A. Bartzas and G. Economakos

compute unit consists of processing elements, where single kernels are executed
for specific sets of input data. Communication between processing elements is
performed through the memory hierarchy. Each single kernel invocation is also
called work-item. Work-items are organized into work-groups. Work-items have
private memory for fast computations while work-groups have a block of local
memory, common to all work-items. All work-groups have also access to global
memory, which is used for host initiated initialization procedures.

OpenCL, since its introduction, has been reported to support different CPUs,
DSPs and GPUs, in a variety of heterogeneous configurations. Recently, the
technological advances in Field Programmable Gate Array (FPGA) devices, with
hundreds of GFLOPs, maximum power efficiency and low cost, has turned the
parallel processing community towards them, with a number of publications
[11,12,5,8,10] proposing OpenCL as a programming language for FPGAs also.
FPGAs, parallel processing and GPUs co-existed for many years, however they
were considered isolated and disjoint fields, offering optimizations at different
levels in system design. While indeed parallel processing is aiming at a higher
optimization level than FPGAs, the main reason for this isolation has been the
different programming models and languages used in each case. This is starting
to change, as FPGA complexity is requesting higher level programming models
for productive exploitation of their capabilities (millions of logic gates, thousands
of advanced DSP blocks, hundreds of GFLOPS). Such models start from C level
languages and mainly involve High-Level Synthesis (HLS) and Electronic System
Level (ESL) design platforms [2], for the automatic translation of algorithmic
into architectural design descriptions.

This paper presents a methodology for the adoption of OpenCL as an FPGA
programming environment, based on the ESL platform CatapultC [4]. CatapultC
accepts C/C++/SystemC behavioral untimed system descriptions that should
follow specific coding guidelines, and through a number of directives (or GUI
commands) applies HLS transformations to produce optimized bit-accurate Reg-
ister Transfer Level (RTL) architectural descriptions. The methodology of this
paper is a systematic application of each HLS transformation, by a meta-engine
placing and tuning CatapultC directives into OpenCL code. The main concern
in this process is that even though CatapultC can produce hardware from C, effi-
cient hardware needs effort and architectural synthesis expertise. This expertise
is coded in the meta-engine, which iterates through different possible and feasi-
ble HLS directive applications to generate optimal hardware implementations of
OpenCL kernels. With this approach, the opportunities as well as the obstacles
imposed to the application developer by the FPGA computing platform and the
adoption of C/C++ as input language are investigated, and a systematic way
to explore instruction-level, data-level and thread-level parallelism is given.

2 Related Research

A number of recent publications are considering using parallel programming
models (OpenCL and CUDA) as a programming language for FPGAs also.

OpenCL, ESL and FPGAs 509

In [12] the authors present a detailed example, the MyBayes bioinformatics
application, of using the CUDA stream-based programming model as an in-
termediate step for hardware design. All design steps are done manually and no
specific methodology is reported. In [8] and [10] two methodologies are given
for mapping OpenCL kernels to reconfigurable hardware. The methodologies in-
volve compiler optimizations that map kernel code into fixed hardware templates,
which are then written in hardware description languages. While both method-
ologies are complete and cover many different issues (computations, memory
hierarchies and interfacing), the resulting hardware cores are template-based
and do not cover in detail lower level design issues. In [5], the authors present
another similar methodology, targeting Application-Specific Processors (ASPs).
They use a custom design environment and map OpenCL kernels into either
common or custom ASP instructions. Another approach, closer to this paper is
reported in [11], where CUDA code is passed though another HLS tool. Direc-
tives and pragmas are used to control the tool but no systematic and iterative
application is reported, as in the proposed methodology. HLS is rather consid-
ered as a single pass procedure. From the industrial point of view, FPGA vendors
have been actively involved in the use of OpenCL for FPGA programming [1],
offering specific frameworks that take advantage of the parallelism expressed in
OpenCL code and generate template-based FPGA implementations.

3 Translation Methodology

The main idea of this paper is the proposal of a semi-automated methodology to
translate OpenCL code into a form suitable for CatapultC, with which hardware
is synthesized using HLS. Since OpenCL is based on C99, which is also recognized
by CatapultC, this translation does not bring major changes to the input code.
The whole process is performed by a custom source-to-source translator, that
either infers (if possible) or accepts by the user (this justifies the term semi-
automated) details to OpenCL code like pointer sizes, loop boundaries, input
parameters and expected return values. The basic steps are the following.

– Each kernel is isolated and HLS synthesizes a hardware components for it.
– Pointers used as formal parameters in functions are converted to arrays with

specific dimensions, for correct memory allocation.
– Return values are inserted as formal pointer parameters in the kernel func-

tion. This coding technique generates output registers for them.
– Barrier OpenCL instructions are converted into CatapultC I/O transactions

with ready/acknowledge interfaces.
– Array sizes are enlarged to reach powers of 2, when feasible. This simplifies

synthesis of memory access related hardware.
– Data types are changed into bit accurate and simulation efficient types sup-

ported by CatapultC.
– Conditional statements are supplemented so that all mutually exclusive

paths are clearly defined. This helps CatapultC schedule them correctly.

510 A. Bartzas and G. Economakos

– OpenCL specific directives are temporary removed. They are taken into ac-
count later, during system integration.

– CatapultC pragmas and directives are inserted. These pragmas and direc-
tives control all HLS transformations.

After translation, an iterative procedure is initiated, which works as a meta-
engine modifying CatapultC pragmas and directives. At each iteration, which is
performed with a predefined scenario (i.e. a loop’s initiation interval is decreased
by one in each meta-engine iteration), a new solution is produced. The meta-
engine finishes when no new solutions can be produced (further modification of
pragmas and directives produces invalid solutions) and the best solution with
respect to performance and resource usage is selected for FPGA implementation.
In the following subsections details about frequently used pragmas and directives
are given.

3.1 Loops

Loops are the main source of optimization in algorithmic synthesis because most
computations are performed within loops. Three are the main loop transforma-
tions in CatapultC, loop pipelining, loop unrolling and loop merging.

Loop pipelining is controlled by the initiation interval directive. This direc-
tive takes a numeric value argument and denotes that each loop iteration will
wait that number of control steps before it starts. After that time, the first loop
iteration partially overlaps the next and CatapultC generates a pipelined im-
plementation which gets faster as the initiation interval directive gets smaller
(minimum value is 1 control step). Our methodology starts with a value equal
to the loop iteration latency (larger values would insert idle control steps) and
decreases it as long as feasible solutions (valid with respect to the implementa-
tion technology) are found. Loop pipelining is a throughput optimization and
gives better results if applied in the outer loops in nested loop configurations.

Loop unrolling is controlled by the unrolling directive. Each loop iteration,
either unrolled or not, is considered by CatapultC to take at least 1 control step
to finish. With unrolling, we investigate the opportunity to put more operations
within this limit and lower the repetitions and thus, get faster hardware. Our
methodology starts with an unrolling value of 2 and increases it until feasible
solutions are found. Very long values tend to serialize the whole loop, which may
prevent pipelining, so they are avoided. Loop unrolling is a latency optimization
and gives better results if applied in the inner loops of nested loop configurations.

Loop merging can combine loops with identical bounds. Normally, CatapultC
schedules consecutive loops one after the other, with no overlapping. If the loops
however have identical bounds and data dependencies permit it, both loops can
be executed in parallel, by merging their corresponding iterations.

3.2 Memories and Synchronization

CatapultC can map data objects either in register files or in memories. Small
data objects can be mapped in register files, with very fast access times but

OpenCL, ESL and FPGAs 511

more complicated control logic. Register files are implemented in FPGAs with
Look-Up Table (LUT) elements. Large data objects can be mapped in memories
with slower access times but less complicated control logic, like dedicated Block
RAM (BRAM) in FPGAs, or off-chip. To control these options CatapultC uses
a threshold directive. Data objects smaller than threshold are mapped into reg-
isters while objects larger than threshold are mapped into memories. Moreover,
each data object can be forced to be mapped in either type of resource. In our
methodology, data objects are mapped both in register files and memories and
the best solution is chosen.

Memories in CatapultC have two properties that affect performance, the num-
ber of ports (single or dual port memories) and the number of interleaved blocks
(1 or more) used. Both properties, controlled by appropriate directives, increase
the number of memory accesses in a single control step. On the other hand,
complicated memory configurations require complicated control logic. In our
methodology both single and dual port memories are selected and interleaving
is applied iteratively, until the best solution is found.

OpenCL uses barrier commands for synchronization. In our methodology, each
barrier command is converted in a ready/acknowledge signal, which is controlled
by the host. A kernel reaching a barrier command sends a ready signal to the
host and waits acknowledge. Whenever the host receives ready from all kernels,
it responds with the corresponding acknowledge signals.

3.3 System Integration

After all kernels have been synthesized through the proposed meta-engine into
hardware blocks, the whole system can be realized (host and kernels). Two modes
of execution are supported, as shown in figures 1 and 2. In figure 1, the FPGA
device plays the role of a compute device and the host is an external workstation,
connected through a high speed interface like the PCI-Express. Multiple FPGAs
can be seated in separate boards (one board for each compute device), equipped
with a PCI connector. Inside the FPGA, a PCI-Express core is responsible for
the communication between the host and the compute device. Alternatively, in
figure 2, the whole system (host and compute device) can be realized into the
same FPGA, using an embedded processor as host. This solution offers faster
connection between host and kernels (i.e a local bus), but since embedded pro-
cessor ports of OpenCL are not widely available, it can be considered as a future
extension. As an exception, in some simple cases, a small controller (manually
designed from host OpenCL code) can play the role of the embedded processor.

Summarizing, the proposed methodology can explore different levels of paral-
lelism. During hardware synthesis with CatapultC, instruction-level parallelism
is explored by arranging individual instructions for best parallel execution. Data-
level parallelism, either as Single Instruction Multiple Data (SIMD) or Single
Program Multiple Data (SPMD) form, is explored by using the same kernel for
all work-items and using either shared or local memory. Finally, thread-level
parallelism in a Multiple Instructions Multiple Data (MIMD) form is explored
by synthesizing different kernels and deploying them into different work-groups

512 A. Bartzas and G. Economakos

FPGA
FPGA

FPGA
FPGA

Host

PCI-E PHY

Compute Devices

Processing Elements &
Interface Logic

Fig. 1. FPGAs as compute devices

FPGA

...
...

...
...

Embedded
Processor

Compute Device
Compute Unit

Processing
Element

Host

Local Bus

Fig. 2. FPGA as host and compute device

and/or work-items. This wide optimization space leaves many opportunities for
system designers to achieve remarkable performance.

4 Experimental Results

The above presented methodology has been tested with a number of OpenCL
kernels found in the NVIDIA OpenCL SDK version 4.1. Three kernels have
been selected, parallel matrix multiplication, parallel discrete cosine transform
(DCT) and parallel inverse discrete cosine transform (IDCT). Parallel matrix
multiplication calculates 1 out of an 128x128 result while parallel DCT and
parallel IDCT calculate 1 stage out of an 8x8 2 dimensional transformation.
Part of the original DCT OpenCL code and the translated CatapultC code are
given in the following two listings (omitting C x DCT coefficient and constant
declarations), where the great number of similarities as well as the coding guide-
lines of the previous section can be seen. Specifically, in the CatapultC listing
(where all tool specific commands and directives are shown in boldface lines),
the bit accurate ac int and ac fixed data types are used, the size of the D

parameter of the DCT8 function is inserted and the hls design (meaning that
each call corresponds to the same dedicated hardware component and not to an
inlined routine), hls pipeline init interval and hls unroll directives are
inserted with pragma declarations. In the outer DCT8x8 hardware module, the

OpenCL, ESL and FPGAs 513

hls pipeline init interval is equal to 27, which is the minimum value found
to generate a feasible solution.

Listing 1.1. OpenCL code
inline void DCT8(float *D){

float X07P=D[0]+D[7]; float X16P=D[1]+D[6]; float X25P=D[2]+D[5];
float X34P=D[3]+D[4]; float X07M=D[0]-D[7]; float X61M=D[6]-D[1];
float X25M=D[2]-D[5]; float X43M=D[4]-D[3];
float X07P34PP = X07P + X34P; float X07P34PM = X07P - X34P;
float X16P25PP = X16P + X25P; float X16P25PM = X16P - X25P;
D[0] = C_norm*(X07P34PP+X16P25PP); D[2] = C_norm*(C_b*X07P34PM+C_e*X16P25PM);
D[4] = C_norm*(X07P34PP-X16P25PP); D[6] = C_norm*(C_e*X07P34PM-C_b*X16P25PM);
D[1] = C_norm*(C_a * X07M - C_c * X61M + C_d * X25M - C_f * X43M);
D[3] = C_norm*(C_c * X07M + C_f * X61M - C_a * X25M + C_d * X43M);
D[5] = C_norm*(C_d * X07M + C_a * X61M + C_f * X25M - C_c * X43M);
D[7] = C_norm*(C_f * X07M + C_d * X61M + C_c * X25M + C_a * X43M); }

// 8x8 DCT kernels
__kernel __attribute__((reqd_work_group_size(BLOCK_X,BLOCK_Y/BLOCK_SIZE,1)))
void DCT8x8(__global float *d_Dst,__global float *d_Src,

uint stride,uint imageH,uint imageW) {
__local float l_Transpose[BLOCK_Y][BLOCK_X + 1];
const uint localX=get_local_id(0); const uint localY=BLOCK_SIZE*get_local_id(1);
const uint modLocalX = localX & (BLOCK_SIZE - 1);
const uint globalX=get_group_id(0)*BLOCK_X+localX;
const uint globalY=get_group_id(1)*BLOCK_Y+localY;
if((globalX-modLocalX+BLOCK_SIZE-1>=imageW)||(globalY+BLOCK_SIZE-1>=imageH))
return; //Process only full blocks

__local float *l_V = &l_Transpose[localY + 0][localX + 0];
__local float *l_H = &l_Transpose[localY + modLocalX][localX - modLocalX];
d_Src += globalY * stride + globalX; d_Dst += globalY * stride + globalX;
float D[8];
for(uint i = 0; i < BLOCK_SIZE; i++) l_V[i * (BLOCK_X + 1)] = d_Src[i * stride];
for(uint i = 0; i < BLOCK_SIZE; i++) D[i] = l_H[i];
DCT8(D);
for(uint i = 0; i < BLOCK_SIZE; i++) l_H[i] = D[i];
for(uint i = 0; i < BLOCK_SIZE; i++) D[i] = l_V[i * (BLOCK_X + 1)];
DCT8(D);
for(uint i = 0; i < BLOCK_SIZE; i++) d_Dst[i * stride] = D[i]; }

Listing 1.2. CatapultC code
#define INDEX ac int <32,false>
#define DATA ac fixed <32,16,true,AC TRN,AC WRAP>
#pragma hls design
#pragma hls pipeline init interval 1
void DCT8(DATA D[BLOCK_SIZE]) {

DATA X07P=D[0]+D[7]; DATA X16P=D[1]+D[6]; DATA X25P=D[2]+D[5];
DATA X34P=D[3]+D[4]; DATA X07M=D[0]-D[7]; DATA X61M=D[6]-D[1];
DATA X25M=D[2]-D[5]; DATA X43M=D[4]-D[3];
DATA X07P34PP = X07P + X34P; DATA X07P34PM = X07P - X34P;
DATA X16P25PP = X16P + X25P; DATA X16P25PM = X16P - X25P;
D[0] = C_norm*(X07P34PP+X16P25PP); D[2] = C_norm*(C_b*X07P34PM+C_e*X16P25PM);
D[4] = C_norm*(X07P34PP-X16P25PP); D[6] = C_norm*(C_e*X07P34PM-C_b*X16P25PM);
D[1] = C_norm*(C_a * X07M - C_c * X61M + C_d * X25M - C_f * X43M);
D[3] = C_norm*(C_c * X07M + C_f * X61M - C_a * X25M + C_d * X43M);
D[5] = C_norm*(C_d * X07M + C_a * X61M + C_f * X25M - C_c * X43M);
D[7] = C_norm*(C_f * X07M + C_d * X61M + C_c * X25M + C_a * X43M); }

// 8x8 DCT kernels
#pragma hls design top
#pragma hls pipeline init interval 27
void ParallelDCT(INDEX stride, INDEX imageH, INDEX imageW, INDEX globalX,

INDEX globalY, INDEX localX, INDEX localY, DATA *d_Src, DATA *d_Dst) {
static DATA l_Transpose[BLOCK_Y][BLOCK_X + 1];
localY = BLOCK_SIZE * localY; INDEX modLocalX = localX & (BLOCK_SIZE - 1);
globalX = globalX * BLOCK_X + localX; globalY = globalY * BLOCK_Y + localY;
if((globalX-modLocalX+BLOCK_SIZE-1>=imageW)||(globalY+BLOCK_SIZE-1>=imageH))

514 A. Bartzas and G. Economakos

return; //Process only full blocks
else {
DATA *l_V = &l_Transpose[localY + 0][localX + 0];
DATA *l_H = &l_Transpose[localY + modLocalX][localX - modLocalX];
d_Src=d_Src+globalY*stride+globalX; d_Dst=d_Dst+globalY*stride+globalX;
static DATA D[BLOCK_SIZE];
#pragma hls unroll yes
for(INDEX i = 0; i < BLOCK_SIZE; i++) l_V[i*(BLOCK_X + 1)] = d_Src[i*stride];
#pragma hls unroll yes
for(INDEX i = 0; i < BLOCK_SIZE; i++) D[i] = l_H[i];
DCT8(D);
#pragma hls unroll yes
for(INDEX i = 0; i < BLOCK_SIZE; i++) l_H[i] = D[i];
#pragma hls unroll yes
for(INDEX i = 0; i < BLOCK_SIZE; i++) D[i] = l_V[i * (BLOCK_X + 1)];
DCT8(D);
#pragma hls unroll yes
for(INDEX i = 0; i < BLOCK_SIZE; i++) d_Dst[i * stride] = D[i]; } }

Regarding kernel implementation, tables 1, 2 and 3 show the maximum perfor-
mance achieved for each kernel (as throughput period in ns, the time required
before a new input set can be processed by the resulting pipeline architecture)
and the required hardware in terms of FPGA resources (Look-Up Table (LUT)
function generators, D-type Flip-Flops (DFF), Block RAM (BRAM) and special
purpose DSP blocks), both absolute numbers as well as percentages of the maxi-
mum available. For all implementations, the largest FPGA of the Xilinx Virtex-6
family was used, the 6VLX760 (with 758784 LUTs, 948480 DFFs, 720x36KB
BRAM and 864 DSPs) at 200MHz.

Table 1. Parallel matrix multiplication

Sol. Perf. (ns) LUTs DFFs BRAMs DSPs

S1 1295 85 (0.02%) 102 (0.01%) 0 (0.00%) 4 (0.46%)

S2 640 84 (0.02%) 102 (0.01%) 0 (0.00%) 4 (0.46%)

S3 320 113 (0.02%) 118 (0.01%) 0 (0.00%) 8 (0.93%)

S4 160 213 (0.04%) 191 (0.02%) 0 (0.00%) 16 (1.85%)

S5 80 335 (0.07%) 292 (0.03%) 0 (0.00%) 32 (3.70%)

In table 1, the first solution S1 corresponds to no optimizations selected. So-
lution S2 corresponds to initiation interval set to 1, while solutions S3, S4 and
S5 keep this value and add an unrolling factor of 2, 4 and 8 respectively. In
tables 2 and 3, solutions S1, S2 and S3 work directly with global memory and
utilize fast BRAMs (nonzero in BRAM column), which is a common block for all
kernels. This offers advantages at the circuit level (smaller memory controllers,
less DFFs) but performance is low because of the large number of global mem-
ory accesses (barrier commands blocks every kernel before writing its result).
Furthermore, in the same tables, solution S1 corresponds to no optimizations
selected, solution S2 corresponds to initiation interval set to 4 (the minimum
achieved), solution S3 corresponds to minimum initiation interval and full loop
unrolling, solutions S4 and S5 are like S2 and S3 with double width local mem-
ories (64 bit I/O ports with 32 bit operands) and solution S6 is like S5 with
subfunctions implemented as hardware components and not as inlined code.

OpenCL, ESL and FPGAs 515

In all tables, solution S1 or S2 is the worst implementation. All other solutions
are sorted so that each one is better than the previous with respect to perfor-
mance. Looking at resources, in many solutions less than 1% of the available
hardware is used, so there is room to implement large number of kernels. The
only resources that limit the number of kernels are the DSP blocks, which in-
crease up to a significant percentage as more parallelization is attempted.

Table 2. Parallel discrete cosine transform

Sol. Perf. (ns) LUTs DFFs BRAMs DSPs

S1 455 4158 (0.88%) 1702 (0.18%) 1 (0.14%) 37 (4.28%)

S2 640 4194 (0.88%) 2084 (0.22%) 1 (0.14%) 48 (5.56%)

S3 110 3563 (0.75%) 2354 (0.25%) 1 (0.14%) 23 (2.66%)

S4 30 3649 (0.77%) 2261 (0.24%) 0 (0.00%) 46 (5.32%)

S5 15 5273 (1.11%) 4339 (0.46%) 0 (0.00%) 62 (7.18%)

S6 10 5453 (1.15%) 6292 (0.66%) 0 (0.00%) 64 (7.41%)

Table 3. Parallel inverse discrete cosine transform

Sol. Perf. (ns) LUTs DFFs BRAMs DSPs

S1 450 3002 (0.63%) 1688 (0.18%) 1 (0.14%) 38 (4.40%)

S2 800 4703 (0.99%) 2001 (0.21%) 1 (0.14%) 52 (6.02%)

S3 70 3331 (0.70%) 1859 (0.20%) 1 (0.14%) 34 (3.94%)

S4 35 2489 (0.52%) 1519 (0.16%) 0 (0.00%) 54 (6.25%)

S5 15 5329 (1.12%) 4259 (0.45%) 0 (0.00%) 56 (6.48%)

S6 10 5498 (1.16%) 5491 (0.58%) 0 (0.00%) 56 (6.48%)

From the above tables it is shown that a systematic directive application to
each kernel code through the proposed meta-engine can produce good quality
results in an automated way. In order to get an indication of the overall system
performance improvement, we implemented a system based on the architecture
of figure 2, with a simple controller to move data from global to local memories,
using the slowest solution (S1 in table 2) and the fastest solution (S6 in table
2) of the DCT algorithm. Also, since these solutions differ in resource usage, for
S1 16 parallel kernels where mapped onto the FPGA while for S6 8. Image sizes
of 256x256, 512x512, 1024x1024 and 2048x2048 were selected and performance
(as reported in CatapultC) at a 600MHz clock speed was compared with the

Table 4. Performance comparison between FPGA and GPU

Platform Execution time (ns)
256x256 512x512 1024x1024 2048x2048

Virtex-6(S1) 662102 1216167 2324299 4540563

Virtex-6(S6) 399822 772103 1510840 2988349

Radeon 755398 1225752 2958031 10160484

516 A. Bartzas and G. Economakos

OpenCL solution found in [7], based on the Radeon HD 6970 GPU at 850MHz.
Execution times in ns are shown in table 4.

While the results of table 4 are not 100% objective (not many implementa-
tion details are given in [7]), they show a system level speedup ranging from
1.8x (256x256) to 3.4x (2048x2048). Also, S6 (fewer but optimized kernels)
is faster than S1 (more but not optimized kernels), which is a justification of
our approach. Better results are expected with the Virtex-7 FPGA family (of-
fers twice the resources of Virtex-6), as soon as CatapultC libraries become
available.

5 Conclusions

This paper presents a methodology for the adoption of OpenCL as an FPGA
programming environment, based on the systematic application of HLS transfor-
mations by a meta-engine. The main concern in this process is that even though
HLS tools can produce hardware from C, efficient hardware needs effort and some
architectural synthesis expertise. This expertise, as shown with experimental re-
sults, is captured in the meta-engine, which iterates through different possible
and feasible directive applications, and generates optimal hardware implementa-
tions. As future extensions, the use of both CUDA and OpenCL under the same
environment is considered as well as the use of heuristics in the meta-engine
iterations, to speed up the process and produce better results.

References

1. Altera Corporation, http://www.altera.com/opencl/
2. Coussy, P., Morawiec, A.: High-level Synthesis: From Algorithm to Digital Circuit.

Springer (2008)
3. Dijkstra, E.W.: Solution of a Problem in Concurrent Programming Control. Com-

munications of the ACM 8(9), 569 (1965)
4. Fingeroff, M.: High-level Synthesis Blue Book. Xlibris Corporation (2010)
5. Jaaskelainen, P.O., de La Lama, C.S., Huerta, P., Takala, J.H.: OpenCL-based De-

sign Methodology for Application-Specific Processors. In: 10th International Con-
ference on Embedded Computer Systems: Architectures, Modeling and Simulation,
pp. 223–230. IEEE (2010)

6. Khronos Group, http://www.khronos.org/opencl/
7. Kim, C.G., Choi, Y.S.: A High Performance Parallel DCT with OpenCL on Het-

erogeneous Computing Environment. Multimedia Tools and Applications (2012)
8. Mingjie, L., Lebedev, I., Wawrzynek, J.: OpenRCL: Low-Power High-Performance

Computing with Reconfigurable Devices. In: 20th International Conference on
Field Programmable Logic and Applications, pp. 458–463. IEEE (2010)

9. NVIDIA Corporation,
http://www.nvidia.com/object/cuda_home_new.html

http://www.altera.com/opencl/
http://www.khronos.org/opencl/
http://www.nvidia.com/object/cuda_home_new.html

OpenCL, ESL and FPGAs 517

10. Owaida, M., Bellas, N., Antonopoulos, C.D., Daloukas, K., Antoniadis, C.: Mas-
sively Parallel Programming Models Used as Hardware Description Languages:
The OpenCL Case. In: International Conference on Computer-Aided Design, pp.
326–333. IEEE/ACM (2011)

11. Papakonstantinou, A., Gururaj, K., Stratton, J.A., Chen, D., Cong, J., Hwu,
W.M.W.: FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs.
In: 7th Symposium on Application Specific Processors, pp. 35–42. IEEE (2009)

12. Pratas, F., Sousa, L.: Applying the Stream-Based Computing Model to Design
Hardware Accelerators: A Case Study. In: 9th International Conference on Em-
bedded Computer Systems: Architectures, Modeling and Simulation, pp. 237–246.
IEEE (2009)

	A Methodology for Efficient Use of OpenCL, ESL and FPGAs in Multi-core Architectures
	Introduction
	Related Research
	Translation Methodology
	Loops
	Memories and Synchronization
	System Integration

	Experimental Results
	Conclusions
	References

