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Abstract. The goal of this work is to revisit GPU design and introduce
a fast, low-cost and effective approach to optimize resource allocation in
future GPUs. We have achieved this goal by using the Plackett-Burman
methodology to explore the design space efficiently. We further formulate
the design exploration problem as that of a constraint optimization. Our
approach produces the optimum configuration in 84% of the cases, and
in case that it does not, it produces the second optimal case with a
performance penalty of less than 3.5%. Also, our method reduces the
number of explorations one needs to perform by as much as 78%.

1 Introduction

Employing Graphics Processing Units (GPUs) as accelerators for general-purpose
throughput-intensive workloads has become an important part of high perfor-
mance computing. GPUs’ [1] computing power stems from hundreds of pro-
cessing elements referred to as PEs. A group of several PEs comprise a Stream
Multiprocessor (SM). Multiple SMs are grouped in scalable arrays and connected
to memory controllers through an interconnection network. In addition to the
PEs, an SM includes three separate L1 caches referred to as constant cache,
texture cache and data cache. Other components forming an SM are shared
memory, register file and thread pool. Figure 1 shows a typical GPU.

As technology advancements provide designers with a growing chip real-estate,
effective methods of exploiting the available resources becomes essential.

The goal of this work is to revisit GPU design and introduce a fast, low-cost
and effective approach to optimize resource allocation in future GPUs. Our so-
lution utilizes the Plackett-Burman methodology [2] and formulates a constraint
optimization problem to find the optimal GPU design for different available chip
real-estate budgets without resorting to exhaustive design space exploration. Our
results show that for the applications and configurations investigated, our solu-
tion matches the design suggested by an exhaustive search 48 out of 57 times,
and for the cases the proposed solution did not match the one found by the
exhaustive search, the error is less than 3.5%.

The remaining of this paper is organized as follows. In Section 2 we review
the background techniques used. In Section 3 we discuss our methodology. In
Section 4 we present the results and we conclude with Section 6.
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Fig. 1. The structure of a GPU

2 Background

2.1 Plackett-Burman Design Methodology

In design space exploration, one needs to conduct numerous experiments varying
a number of parameters to ensure full exploration. In designs with N param-
eters, each one taking one of L values, LN experiments need to be conducted.
Plackett and Burman [2] introduced a method which can measure the effects
of the N parameters, where multi-parameter interaction is not present, by con-
ducting X experiments, where X is the next multiple of 4 strictly greater than
N . A Plackett-Burman design with fold-over, can quantify the effect of two in-
teracting parameters. It has been claimed [3] that in the case of processor design
exploration with less than 10 parameters, single and two-parameter interactions
have the most significant effect, and since we use only four parameters in this
work, we shall utilize a Plackett-Burman design with fold-over.

Plackett and Burman [2] introduced templates of experiments for different
number of parameters. Table 1 shows an example of such a template (with fold-
over). The rows correspond to the experiments while the columns correspond to
the parameters. A “+ ” (“− ”) sign indicates that for the experiment indicated,
the corresponding parameter is set to its maximum (minimum) value.

For each experiment i, a target performance metric Ti is measured. After
running all experiments, it is possible to calculate the effect of each parameter on
the design. We denote by Sα the effect of parameter α on the target performance
metric. Sα can be calculated by subtracting the target values corresponding to
the low parameters from those when they are high. For example, from Table 1,
the effect SE of parameter E is calculated as:
SE = T1−T2+T3+T4+T5−T6−T7−T8−T9+T10−T11−T12−T13+T14+T15+T16

The magnitude of the effect is used to identify the parameter that is most
important in determining performance.
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Table 1. Placket-Burman design with fold-over; 7 parameters, 16 experiments

experiment parameters Target experiment parameters Target

A B C D E F G performance A B C D E F G performance

1 + + + - + - - T1 9 - - - + - + + T9

2 - + + + - + - T2 10 + - - - + - + T10

3 - - + + + - + T3 11 + + - - - + - T11

4 + - - + + + - T4 12 - + + - - - + T12

5 - + - - + + + T5 13 + - + + - - - T13

6 + - + - - + + T6 14 - + - + + - - T14

7 + + - + - - + T7 15 - - + - + + - T15

8 - - - - - - - T8 16 + + + + + + + T16

SA SB SC SD SE SF SG

2.2 Knapsack Problem

The knapsack problem is a constraint optimization problem [4]. Denoting by vj
( wj) the value (weight) of an item of typej, bj the maximum number of items
of typej and C the capacity of the knapsack, the knapsack problem is stated as:

Select xj (j = 1, . . . , n) items of typej so as to maximize z =
∑n

i=1 vjxj

subject to
∑n

j=1 wjxj ≤ C ; 1 ≤ xj ≤ bj and integer; j ∈ N = 1, . . . , n.
This is a Bounded Knapsack Problem (BKP) [4], a generalization of the 0-1

knapsack problem. We assume that vj , wj , bj and C are positive integers.

3 Methodology

Our objective is to find the GPU configuration that achieves maximum per-
formance under a given transistor budget. Such problem can be solved by an
exhaustive designn space exploration, which is computationally expensive.

Our approach formulates the problem as a knapsack problem which can be
solved efficiently [5]. In formulating the knapsack problem, one needs to identify
the value (vj) and weight (wj) parameters. While the weight parameter is easily
identifiable as the transistor count of each unit, the value parameter is not as
directly identifiable. The value parameter simply shows the contribution of each
of the architectural units to the performance of the overall architecture and for a
particular application. This information is not readily available. We postulated
that within the domain of exploration, the contribution of each unit to the
performance is proportional to its cardinality and or size. The proportionality
coefficient (i.e. the value) though is unknown. In this work, we shall show that
the effect Sα of parameter α as per Plackett-Burman, can be used as the value.

3.1 Establishing the Transistor Count

Configuring a GPU involves choosing the number of memory controllers, the size
of the data cache, the size of the register file and the size of the constant cache
among other parameters.
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We estimated the cost (in number of transistors) for the data cache, the
constant cache and the register file following the method cited in [6], while for
the cost of the memory controller, we used the cost of a Xilinx memory controller
core [7]. The cost for each unit are shown in Table 4.

3.2 Benchmarks

We used the following set of GPGPU benchmarks from NVIDIA’s CUDA soft-
ware development kit (SDK) [8] and Rodinia [9] benchmark suits: AES Cryp-
tography (AES); Fast Walsh Transform (FWT); LIBOR Monte Carlo (LIB); 3D
Laplace Solver (LPS); Montcarlo; Neural Network Digit Recognition (NN); Scan;
Srad; Black schole; Hotspot; Ray tracing (Ray); Matrix multiplication (Matrix);
Back propagation (Backprop).

These benchmarks were compiled and run on the GPGPU-Sim [10] simulator
with the system configuration shown in Table 2. The ranges of the sizes or cardi-
nality of the units used in configuring the GPU for our experiments, are shown
in Table 3. The variation in the values of these parameters resulted in a large
number of possible configurations. Totally, we experimented with 553 configu-
rations. The simulations result in performance estimates for each configuration
and for each benchmark, reported as instructions per cycle (IPC).

3.3 Use of Plackett-Burman and Optimization

In order to determine the value parameters, we applied the Plackett-Burman
methodology with fold-over for each benchmark. The number of parameters
used was four (i.e. number of memory controllers, the size of the data cache, the
size of the register file and the size of the constant cache).

The resulting effect values Sα are used as the value parameters for the knap-
sack optimization problem while as the weight parameters we used the transistor
counts for each of the units as discussed in Section 3.1 above.

We postulated earlier that the contribution of each of the units relates linearly
to the performance obtained. Figure 2 shows the performance (as IPC) as a
function of the number of memory controllers and for different sizes of the DL1
cache for the LIB benchmark. The linear dependence of the performance on the
number of controllers is evident for most of the domain of exploration.

We used MATLAB’s1 linprog function to solve the knapsack problems.

4 Evaluation and Results

As we discussed in Section 3.3 we used four parameters: memory controller block,
DL1 cache, constant cache and register file. Table 4 shows the estimated costs of
the parameters in terms of transistor counts while Table 3 shows the ranges of the

1 MATLAB is a registered trademark of The Math Works, Inc. linprog is in the opti-
mizetion toolbox.
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Fig. 2. IPC of LIB benchmark for different sizes of DL1 cache and number of memory
controller blocks

Table 2. GPU configuration

Parameter Value Parameter Value

Number of shaders 30 Warp width 32
Shader clock frequency 1.3 GHZ Scheduling PDOM
Max thread per shader 1024 max CTA/Shader 8
SIMD pipline width 32

configuration parameters. Note that not all benchmarks have constant memory
access instructions. Therefore, we have evaluated our method using three or four
parameters depending on the benchmark under simulation. We have limited the
number of memory controller blocks (MCB) to six, as more than five MCBs do
not affect performance for most benchmarks.

We run the optimization problem for a gradually increasing transistor budget
and for each budget, we obtain the resulting optimum-performance configura-
tion. Figure 3 shows the resulting configurations for the NN benchmark. The
horizontal axis refers to the transistor budget while the vertical axis shows the
number of units corresponding to the optimum configuration. In the figure, one
can distinguish regions of the transistor budget where the configuration does
not change. For the NN benchmark (please refer to Figure 3) we distinguish five
regions marked by numbers 1 to 5 on the figure.

As an example, for a transistor budget of no more than 67 million transis-
tors (i.e. within region 2), the optimum configuration comprises four memory
controller blocks (MCBs), 2 units of DL1, one unit of Constant Cache and one
unit of Register file. Some explanation is necessary here as to the definition of
a unit. While the memory controller blocks are self evident, the units of the
other parameters vary with the benchmark. For example for the NN benchmark
(please refer to Table 3), a unit of DL1 Cache is 8KB, a unit of Constant Cache
is 512B while a unit of Register File is 4KB. In this work, we have used as a
unit the minimum size considered for each configuration parameter and for each
benchmark, and then allowed the optimization function to return as a solution a
configuration comprising multiples of the units of each parameter. For the said
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example, the optimum configuration obtained comprises 4 Memory Controller
Blocks, 16 KB of DL1 Cache, 512B of Constant Cache, and a 4KB register file.

Please note that the caches and register files can only be configured in sizes
that are power of two. If the solution of the optimization returned a configuration
that had a parameter that violated the “power of two rule”, then the size of this
parameter was fixed to a power of two that was less than the size suggested
by the optimization, the excess transistor budget was returned to the transistor
budget, and another optimization was run on the remaining parameters.

Fig. 3. Optimum configuration regions for the NN benchmark

To ensure that the configurations suggested by the optimization method are
indeed optimal, we also performed an exhaustive search of all possible configu-
rations adhering to the transistor budgets considered and compared the results.
We shall analyze these results in Section 4.1 below. To conclude the example
of the NN benchmark, Table 6 presents all possible configurations that adhere
to the transistor budget of 67 million. As it can be verified, the configuration
suggested by the optimization solution (Conf12) has indeed the optimum per-
formance. Please note that because of space limitations, this table does not
include configurations in Region 1 (i.e. with transistor budgets of less than 56
million). All configurations in region 1 have a lesser performance as compared
to Conf12.

4.1 Results

Table 5 shows the Placket-Burman results for the benchmarks. Each column
marked with the name of the parameter reports the effect Sα of the said pa-
rameter. The columns marked by “Rank” represent the rank of the effect of the
parameter to its left. Thus, for the NN benchmark, we see that the DL1 Cache
is ranked as first, that is this benchmark’s performance is influenced primarily
by the size of its DL1 Cache. It is interesting to note that for most of the bench-
marks, the number of memory controllers influences the performance the most,
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Table 3. Benchmarks and low and high values of resources

Benchmark MCB DL1 Cache Const Cache Register File

AES 1-3 1KB,2KB 512B-8KB 4KB,8KB
FWT 1-4 4KB-32KB N/A 4KB,8KB
LIB 3-5 32KB-128KB 64KB-256KB 2KB,4KB
LPS 1-3 1KB,2KB N/A 2KB,4KB
Montcarlo 1-5 32KB,64KB 1KB,2KB 8KB,16KB
NN 1-4 8KB-32KB 512B,1KB 4KB,8KB
Scan 1-3 512B-2KB N/A 2KB-8KB
Srad 1-6 2KB-256KB N/A 4KB-16KB
Blackschole 1-4 2K-8K N/A 4K,8K
Hotspot 1,2 1K,2K N/A 8K,16K
Ray 1-3 1K,2k 1K-32K 8K,16k
Matrix 1-5 1K,2k N/A 4K,8K
Backprop 1-3 1K,2k N/A 4K,8K

Table 4. Transistor cost (in millions of transistors) of resource units

Parameter Size/Number Cost Parameter Size/Number Cost

memory controller 1 0.3 Constant cache 32KB 52
DL1 cache 32KB 87 Register file 32KB 170

indicating that the higher memory bandwidth may improve performance signif-
icantly, seconded by the size of the DL1 cache, while the sizes of the Constant
Cache and the Register File have a lesser impact. However, for some benchmarks,
e.g., NN, Ray, LIB and AES, the parameter’s rank follows a different order. For
example, AES is composed of a single kernel which has 257 blocks of 8 warps.
Two blocks can run concurrently on each shader which increases the significance
of the number of memory controllers to provide sufficient bandwidth. As AES
is optimized to store constants in constant memory the performance is sensitive
to the size of constant memory. On the other hand, few local memory accesses
reduce the sensitivity of performance to the DL1 cache. LIB runs two kernels,
each having 64 blocks of 64 threads. Excessive register file usage of each thread
limits the number of concurrent blocks. Similar explanations on the parameter
sensitivity can be obtained for the other benchmarks.

Figure 4 shows the performance (as IPC) of the best (grey bars) and ILP-
suggested (black bars) configurations for all regions of each benchmark. As it
can be seen, the optimization algorithm suggested solutions match the optimum
performance ones as found through exhaustive search of all possible configura-
tions, except for nine cases. Namely the solutions suggested by the optimization
procedure for Regions 1 and 4 of the AES and Regions 4 and 5 of the Srad
and Regions 2, 3, 4, 6 and 8 of the Ray benchmarks, have performance that is
slightly lower than the optimal solution found through exhaustive search. For
these cases, the performance of the configuration obtained by the optimization
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Table 5. Resulting parameter effects after Plackett-Burman for all benchmarks

Bench. MCB Rank DL1 cache Rank const cache Rank RF Rank

AES 57100 1 17742 4 35500 2 18922 3

FWT 127799 1 73903 2 — - 459 3
LIB 1482938 3 2284182 2 1051960 4 6037368 1
LPS 340704 1 136082 2 — - 16736 3
Montcarlo 445073 1 293537 2 46469 3 26229 4
NN 1054553 2 1508787 1 5307 3 535 4
Scan 12372 1 9708 2 — - 1748 3
Srad 139159 1 2125 2 — - 117 3
Blackschole 3110257 1 142613 2 — - 29369 3
Hotspot 433926 1 133392 2 — - 4584 3
Ray 34441615 2 38417897 1 1405 4 5684461 3
Matrix 13693 1 7931 2 — - 1775 3
Backprop 14864 1 12020 2 — - 476 3

method is very close to the optimum (less than 3.5% difference in performance).
Also, in all these cases, the ILP-based solution had the second best performance.

5 Related Work

Wilson et al. [11] proposed a technique to deal with divergent branches by form-
ing new warps dynamically using threads that take different execution paths at
the divergence, increasing the system throughput.

Jia et al. [12] proposed an automated GPU performance exploration frame-
work, named Stargazer, based on stepwise regression modelling. Stargazer sim-
ulates design points which have been sampled randomly from a full GPU design

(a) (b) (c)

(d) (e)

Fig. 4. IPC Comparison between the ILP-suggested and the best performing configu-
rations for different benchmarks
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Table 6. All configurations for region 2 of the NN benchmark

parameter Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

memory controller 1 1 1 1 2 2

constant cache 512B 512B 1KB 1KB 512B 512B
DL1 cache 8KB 16KB 8KB 16KB 8KB 16KB
register file 8KB 4KB 8KB 4KB 8KB 4KB
IPC 39.32 52.71 39.74 52.59 48.78 59.28
cost 65.36 65.86 66.17 66.67 65.66 66.16

parameter Conf7 Conf8 Conf9 Conf10 Conf11 Conf12

memory controller 2 3 3 3 4 4

constant cache 1KB 512B 512B 1KB 512B 512B
DL1 cache 8KB 8KB 16KB 8KB 8KB 16KB
register file 8KB 8KB 4KB 8KB 8KB 4KB
IPC 48.90 52.83 61.55 52.49 54.98 62.38
cost 66.47 65.96 66.46 66.77 66.26 66.76

space and uses these sample simulation to build a performance estimator. The
results showed that using 0.03% of full design space, Stargazer predicts the per-
formance of any design point with less than 1.1% error.

Palermo et al. [13] proposed a DSE methodology for application-specific multi-
processor system-on-chip. The proposed methodology uses design of experiment
techniques, e.g. random and full factorial, to find a set of good candidate architec-
ture configurations to minimize the number of simulations. Then using response
surface modeling and the simulation results, an analytical representation of the
system’s objective function is generated.

Couvreur et al. [14] applied MMKP to design a MP-SoC runtime manager.
Whenever the environment is changing, the runtime manager considers the spec-
ification of available application mappings, information provided by the design
time exploration, the platform information, and the user requirements to select
operating points that minimize total energy consumption.

Lilja et al. [3] applied Plackett and Burman design to identify key processor
parameters and analyzed their effect on processor enhancement.

6 Conclusions

In this work, we presented a method that establishes a GPU configuration that
adheres to a transistor budget limit and obtains the optimum or near optimum
performance. Among all parameters in GPU design space, we used four param-
eters, i.e. register file size, shared memory and data cache sizes and number of
memory controller, that we could estimate the costs in term of transistor count.
We did not include the remaining of the parameters, because of the difficulty in
calculating the costs.

Our method delivered the optimum performing configuration in 48 out of 57
cases, and for the nine cases where the configuration did not achieve optimum
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performance, its performance lagged the optimum one by less than 3.5%. Our
method is very efficient in that it requires far fewer simulations to achieve its
results. For example, for the case of the Srad benchmark, an exhaustive design
exploration would have required the simulation of 144 configurations, while our
method arrives at the optimum configuration by simulating just 16.

Further, we plan to investigate the applicability of the method discussed in
this work to designs where the constraint is power rather than transistor count.
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