
Throughput Optimization for Pipeline Workflow
Scheduling with Setup Times

Anne Benoit1, Mathias Coqblin2, Jean-Marc Nicod2, Laurent Philippe2,
and Veronika Rehn-Sonigo2

1 LIP, ENS Lyon and Institut Universitaire de France
2 FEMTO-ST Institute, CNRS/UFC/ENSMM/UTBM, Besançon

Abstract. We tackle pipeline workflow applications that are executed
on a distributed platform with setup times. Several computation stages
are interconnected as a linear application graph, and each stage holds a
buffer of limited size where intermediate results are stored and a proces-
sor setup time occurs when passing from one stage to another. In this pa-
per, we focus on interval mappings (consecutive stages mapped on a same
processor), and the objective is the throughput optimization. Even when
neglecting setup times, the problem is NP-hard on heterogeneous plat-
forms and we therefore restrict to homogeneous resources. We provide
an optimal algorithm for constellations with identical buffer capacities.
When buffer sizes are not fixed, we deal with the problem of allocating
the buffers in shared memory and present a b/(b+ 1)-approximation al-
gorithm.

1 Introduction

In this paper, we consider pipeline workflow applications mapped on a dis-
tributed platform such as a grid. This kind of applications is used to process
large data sets or data that are continuously produced by some source and pro-
duce some final results. The first stage of the pipeline is applied to an initial
data to produce an intermediate result that is then sent to the next stage of the
pipeline and so on until the final result is computed. Examples of such appli-
cations include image set processing where the different stages may be filters,
encoders, image comparison or merging and video capture processing and dis-
tribution where codecs must be applied on the video flow before being delivered
to some device. In this context, a first scheduling problem is to map the pipeline
stages on the processors. Subhlock and Vondran [13,14] show that there exists
an optimal interval mapping for a given pipeline and a given platform when
communications and processors are homogeneous. An interval mapping is de-
fined as a mapping where only consecutive pipeline stages are mapped on the
same processor. However, the cost of switching between stages of the application
on one processor is not taken into account. When a new data set arrives on
the processor, the first local stage starts to process it as soon as the previous
data set is output. Then this data set moves from stage to stage until the last
local stage, and it is sent to the processor in charge of the following stage. So,

I. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 57–67, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



58 A. Benoit et al.

at each step of the execution, we switch from one stage to the next one. As a
result, if the cost of switching cannot be neglected, several setup times must be
added to the processing cost. Benoit and Robert [4] prove that the basic interval
mapping problem is NP-hard as soon as communications or computations are
heterogeneous, even without setup times. For this reason, we restrict this work
to homogeneous platforms.

The problem of reconfiguration that requires a setup time has been widely
studied, and covers a lot of domains (see survey [1]). For instance, Zhang et
al. [15] address the problem of wafer-handling robot calibration in semiconductor
factories. They propose a low-cost solution to reduce the robot end effector
tolerance requirements and thus the calibration times. A solution based on ant
colony optimization is proposed in [9,10] to reduce the setup costs in batch
processing of different recipes of semiconductors. In the scope of micro-factories,
due to the cost of design and production of micro-assembly cells, micro-assembly
cells are being designed with a modular architecture that can perform various
tasks, at the cost of a reconfiguration time between them [8]. In the domain of
pure computing, setup times may appear when there is a need to swap resources,
or to load a different program in memory, e.g., to change the compiler in use [2].
Some authors have also shown interest in using buffers to stock temporary results
after each stage of the pipeline, in order to reduce the amount of performed
setups. Bryan and Norman [7] consider a flowshop wherein a job consists of m
stages mapped on m processors, and a processor must be reconfigured after each
job to process the next one (in their example, the clean-out of a reactor in a
chemical processing facility). They acknowledge that the problem of sequence-
dependent setup times in which a setup time depends on the previous stage
and the next one is NP-hard and they propose several heuristics. Luh et al. [11]
study scheduling problems in the manufacturing of gas insulated switchgears.
The problems involve significant setup times, strict local buffer capacities, and
few possible processing routes.

However, most of those researches consider that the number of processors is
large enough to map each stage on only one processor (one-to-one mapping) and
no reconfiguration is required before the next batch. Note that the one-to-one
mapping problem can be solved in polynomial time provided that communica-
tions are homogeneous [4]. In our approach, we consider that the number of
stages is greater than the number of processors. We therefore focus on interval
mappings, where several consecutive stages are mapped onto the same processor.

The difficulty of the mapping problem is twofold. First, as in classical interval
mapping one has to decide how to cut the different stages of the pipeline workflow
into intervals, hence which stages are mapped onto the same processor. Second,
the schedule inside a processor has to be fixed. Switching continuously between
stages may lead to a drop in performance (due to the setup times), whereas
buffering the data and defining a schedule for the processing of stages may limit
the number of setups. Hence buffers are introduced to store intermediate results.
This makes it possible to perform one stage several times before switching to the
next one.



Throughput Optimization for Pipeline Workflow Scheduling 59

Starting from the interval mapping results, we tackle in this paper the problem
of optimizing the cost of switching between stages mapped on the same processor
depending on the buffer sizes. In a first step, we consider the single-processor
scheduling problem where a single processor has to process several consecutive
and dependent pipeline stages. Each stage is associated with a buffer. Usually,
these buffers are limited by the available memory in the system and the buffer
size hence influences the possible schedules as it limits the number of repetitions.
Several other parameters are also taken into account as the duration of each
stage’s setup, the homogeneity or heterogeneity of buffers, and the available
memory. Once the single-scheduling problem has been dealt with, we study in
a second step the overall execution of the pipeline (in terms of throughput).
Because of buffer utilization, data is treated and forwarded in batches, which
leads to a data flow in waves. This particular behavior has to be taken into
account in the solution.

We formally define the optimization problem in Section 2. The main contri-
butions follow: (i) we provide optimal algorithms when buffers are of fixed size
(Section 3); and (ii) we discuss how to allocate memory to buffers on a single
processor in Section 4, both from a theoretical perspective (optimal algorithm
in some cases), and from a practical point of view (b/(b + 1)-approximation
algorithm). Finally, we conclude and discuss future work in Section 5.

2 Framework
The application is a linear workflow application, or pipeline. It continuously pro-
cesses a large amount of consecutive data sets. Formally, a pipeline is expressed
as a set S of n stages: S = {S1, . . . , Sn}. Each data set is fed into the pipeline
and traverses the pipeline from one stage to another until the entire pipeline is
passed. A stage Si receives a task of size δi from the previous stage, treats the
data set which takes a number of wi computations, and outputs data of size δi+1.
The output data of stage Si is the input data of the next stage Si+1.

The target platform is a set P of p homogeneous processors P = {P1, . . . , Pp}
fully interconnected as a clique. Each processor Pu has a processing speed (or
velocity) v, expressed in instructions per time unit, and a memory of size M . It
takes X/v time units for Pu to execute X floating point operations. Each proces-
sor Pu is interconnected with a processor Pv via a bidirectional communication
link of bandwidth β (expressed in input size units per time unit). We work with
a linear cost model for communications, so it takes X/β time units to send or
receive a message of size X from processor Pu to processor Pv. Furthermore
communications are based on the bi-directional one-port model [5,6], where a
given processor can send and receive at the same time, but for both directions
can only support one message at a time. Distinct processor pairs can however
communicate in parallel. Communications are non-blocking, i.e., a sender does
not have to wait for its message to be received as it is stored in a buffer, and
the communications can be covered by the processing times provided that a
processor has enough data to process.

Each processor can process data sets from any stage. However to switch from
an execution stage Si to the next stage Sj , the processor Pu has to be recon-



60 A. Benoit et al.

figured. This induces setup times, denoted as st. The level of heterogeneity in
setup times leads to different models: uniform setup times (st), where all setup
times are fixed to the same value, sequence-independent setup times (sti), where
the setup time only depends on the next stage Si to which the processor is re-
configured, and sequence-dependent setup times (sti,j) that depend on both the
current stage Si and the next stage Sj. The problem with sequence-dependent
setup times requires to look for the best setup order in a schedule to minimize
the impact of setup times. This has already been proven to be NP-hard, and
can be modeled as a Traveling Salesman Problem (TSP) [12]. Hence we will not
study this problem in this paper, and we focus on st and sti instead.

To execute a pipeline on a given platform, each processor is assigned an in-
terval of consecutive stages. Hence, we search for a partition of [1..n] into m ≤ p
intervals Kk = [Ik, Jk] such that Ik ≤ Jk for 1 ≤ k ≤ m, I1 = 1, Ik+1 = Jk + 1
for 1 ≤ k ≤ m − 1 and Jm = n. Interval Kk is mapped onto a processor Pu.
Once the mapping is fixed, the processor internal schedule has to be decided,
since it influences the global execution time. Each processor is indeed able to
perform sequentially its allocated stages. However, setup times are added each
time a processor switches from one stage to another. To reduce setup times a
processor may process several consecutive data sets for a same stage. The inter-
mediate results are stored in buffers, and each stage Si mapped on Pu has an
input buffer Bi of size mi,u.

The sizes of these input buffers depend on the memory size M available on Pu

and on the number of allocated stages, as well as on the input data sizes. The
capacity bi,u of buffer Bi is the number of input data sets that the buffer is
able to store within the allocated memory mi,u. Hence, a processor is able to
process data sets for a stage Si as long as Bi is not empty, and Bi+1 is not full.
Actually if Si is the last stage of the interval mapped on Pu, we allocate an
output buffer BOu of size mou with a capacity bou.

The objective function is to maximize the throughput ρ of the application, ρ =
1
P , where P is the average period of time between the output of two consecutive
data sets. Therefore, we aim at minimizing the period of the application. Since
our framework model allows us to cover communication time by computation
time, P is formally defined by: P = maxu

(
max

(
in(u), cpu(u), out(u)

))
, where

in(u), cpu(u), out(u) are respectively the mean time to input, process and output
one data set onto Pu ∈ P . In the next two sections, we explicitly evaluate the
application period depending on fixed or variable buffer sizes.

3 Fixed Buffer Sizes

In this section, we deal with the scheduling problem with fixed buffer sizes for
both single and multiple processors. We consider that buffers that are allocated
on the same processor Pu are homogeneous, i.e., they have the same capacity bu.
Single Processor Scheduling (bi = b). With a single processor, the mapping
is known, since stages S1 to Sn form a single interval. We propose a polynomial
time greedy algorithm to solve the problem of single processor scheduling and



Throughput Optimization for Pipeline Workflow Scheduling 61

prove its optimality. The idea is to maximize the number of data sets that are
processed for a stage between each setup. This is done by selecting a stage for
which the input buffer is full and the output buffer is empty, so that we can
compute exactly b data sets, where b is the number of data sets that fits in each
buffer. Therefore, we compute b data sets for stage S1, hence filling the input
buffer of S2, and then perform a setup so that we can compute b data sets for
stage S2, and so on, until these b data sets exit the pipeline. Then we start with
stage S1 again. We call the proposed algorithm GREEDY-B in the following.

To prove the optimality of GREEDY-B, we introduce a few definitions: during
the whole execution, for 1 ≤ i ≤ n, nbout is the total number of data sets that are
output; nbsti is the number of setups performed on stage Si; nbst =

∑n
i=1 nbsti

is the total number of setups; and nbcompi is the average number of data sets
processed between two setups on stage Si. We have for 1 ≤ i ≤ n:
nbcompi =

nbout
nbsti

, nbsti = nbout
nbcompi

, and nbst =
∑n

i=1
nbout

nbcompi
.

Proposition 1. For each stage Si (1 ≤ i ≤ n), nbcompi ≤ b.

Proof. For each stage Si, the number of data sets that can be processed after a
setup is limited by its surrounding buffers. Once a setup is done to any stage Si,
it is not possible to perform more computations than there are data sets or than
there is room for result sets. Since all buffers can contain exactly b data sets, we
have nbcompi ≤ b.

Proposition 2. On a single processor with homogeneous buffers, the period can
be expressed as P =

∑n
i=1

wi

v +
∑n

i=1
sti

nbcompi
.

Proof. The period is the total execution time divided by the total number of
processed data sets nbout. The execution time is the sum of the time spent
computing, and the time to perform the setups. The computation time is the
time to compute each stage once (wi/v for stage Si), multiplied by the number
of data sets nbout. The reconfiguration time is the sum of the times required
to perform each setup: nbsti × sti. Therefore, the period can be expressed as
P = 1

nbout

(∑n
i=1

wi

v × nbout+
∑n

i=1 sti × nbsti
)
, and we conclude the proof by

stating that nbsti =
nbout

nbcompi
.

Lemma 1. On a pipeline with homogeneous buffers, the lower bound of the pe-
riod on a processor is Pmin =

∑n
i=1

wi

v +
∑n

i=1
sti
b .

Proof. The result comes directly from Propositions 1 and 2:
P =

∑n
i=1

wi

v +
∑n

i=1
sti

nbcompi
≥ ∑n

i=1
wi

v +
∑n

i=1
sti
b = Pmin.

Theorem 1. The scheduling problem on a single processor can be solved in poly-
nomial time, using the GREEDY-B algorithm.

Proof. It is easy to see that GREEDY-B is always performing b computations
between two setups, and therefore nbcompi = b for 1 ≤ i ≤ n. Therefore, the
period obtained with this algorithm is exactly Pmin, which is a lower bound on
the period and hence it is optimal.



62 A. Benoit et al.

Multi Processor Scheduling (bi = bu). The interval mapping problem
on fully homogeneous platforms without setup times can be solved in polyno-
mial time using dynamic programming [13,14]. We propose the use of this dy-
namic programming algorithm for homogeneous platforms, taking into account
the setup times in the calculation of a processor’s period. To be precise, the
calculation of the period is the one obtained by the GREEDY-B algorithm.

Let c(j, k) be the optimal period achieved by any interval mapping that maps
stages S1 to Sj and that uses at most k processors. Let per(i, j) be the average
period of the processor on which stages Si to Sj are mapped. Note that per(i, j)
takes the communication step into account. We have:

c(j, k) = min
1≤l≤j−1

(max(c(l, k − 1), per(l + 1, j))),

with the initial condition c(j, k) = +∞ if k > j. Given the memory M , we can
compute the corresponding buffer capacity b(i, j) =

⌊
M∑j+1
k=i δk

⌋
= bu, since we

assume identical buffer capacities. Therefore:

per(i, j) = max

(
δi
β
,

j∑
k=i

(wk

v
+

stk
b(i, j)

)
,
δj+1

β

)

The main difference with the ordinary use of the dynamic programming algo-
rithm is that Pu consumes bu input data sets or outputs bu data sets in waves
because of GREEDY-B. So c(n, p) returns the optimal period if and only if the
period is actually dictated by the period of the slowest processor, i.e., the slowest
processor cannot be in starvation or in saturation because of intermittent access
to the input/output buffers. The following theorem ensures that this is true:

Theorem 2. On a pipeline with inner-processor homogeneous buffer capaci-
ties bu, the period P is dictated by the period of the slowest processor.

The proof can be found in the companion research report [3]. It is a proof
by induction, and several cases need to be discussed considering a pipeline of
processors: we prove that the slowest of the processors is never slowed down
either by a lack of data inputs or by a saturation of its output buffer.

Single Processor Scheduling with Different Buffer Sizes. We complete
the fixed buffer size study by considering buffers with different sizes. GREEDY-
B chooses either a stage whose input buffer is full and we have enough space
to fully empty it, or a stage whose output buffer is empty and we have enough
data sets to compute in order to fully fill it. That way, we still maximize the
amount of data sets processed after each setup: we are limited by the lowest
capacity buffer, which is either a fully emptied input buffer, or a fully filled output
buffer. It may not return an optimal schedule in the general case, but we can
prove its optimality in the case of multiple buffers, i.e., each buffer capacity is a
multiple of the capacities of both its predecessor and its successor: for 1 ≤ i ≤ n,
min(bi, bi+1)|max(bi, bi+1).



Throughput Optimization for Pipeline Workflow Scheduling 63

Theorem 3. The scheduling problem with multiple buffers on a single processor
can be solved in polynomial time, using the GREEDY-B algorithm.

The proof of this theorem can be found in the companion research report [3].
Note that GREEDY-B is not optimal for multiple processor scheduling with
multiple buffers.

4 Variable Buffer Sizes

In this section, we tackle the problem of allocating the buffers for all stages on
a single processor P from an available memory M . We first focus on platforms
with homogeneous data input sizes (δi = δ) and setup times (sti = st).

Allocation Algorithm. If n stages are mapped on one processor then it needs
n + 1 buffers. Given the memory M and the size of the data δ, if we want all
buffers to contain the same number of data sets, then the maximum number of
data sets that can fit in each buffer can be computed as b =

⌊
M

(n+1)δ

⌋
.

The ALL-B algorithm allocates memory for each buffer according to this
uniform distribution. The actual memory allocated for each buffer is mi = m =

bδ =
⌊

M
n+1

⌋
. The memory used by this allocation is then (n+ 1)δ× b ≤ M , and

we call R = M − (n + 1)δ × b the remainder of memory after the allocation,
i.e., the unused part of the memory. We prove that this allocation algorithm is
optimal if the remainder is lower than δ.

Theorem 4. The algorithm ALL-B is optimal on a single processor (i.e., the
period is minimized with this allocation) when R = M− (n+1)δ×

⌊
M

(n+1)δ

⌋
< δ.

The proof can be found in the companion research report [3]. It is a proof by
induction on n, and by expressing the general period (with any buffer sizes),
we prove that the minimum is reached when all buffers are identical. The idea
behind this proof is that, starting from a uniform allocation (same buffer sizes),
raising the size of a buffer means reducing the size of another. The period is based
on the amount of computations done before a setup (the st

min(bi,bi+1)
part of the

period), and this value depends on the minimum of two consecutive buffers.
Therefore we would need to raise more buffers than we lower to balance this
value.

Memory Remainder. If there is a remainder in the memory after the al-
location of buffers ALL-B, it is under certain conditions possible to use this
remainder to increase the size of some buffers. It may also be possible to have
another allocation, not based on ALL-B, that would make better or full use of
the memory. In both cases, the period achieved by some scheduling algorithm
may be lower than the one we have.

Proposition 3. Given an application with homogeneous setup times st and in-
put sizes δ, ALL-B may not give an optimal solution if R ≥ δ.



64 A. Benoit et al.

Proof. Let us consider a single processor, with a memory M = 20, and a speed
v = 1. A total of n = 6 stages are mapped on this processor, and we have
δ = w = st = 1. There are seven buffers, and therefore ALL-B returns buffers
of size b = 2, and the remainder is R = 20− 2× 7 = 6. The optimal period
using this distribution is obtained by scheduling the stages with the GREEDY-
B algorithm (see Theorem 1), and therefore:
P =

∑6
i=1

wi

v +
∑6

i=1
st
b = 6 +

(
1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2

)
= 9.

However, let us consider the following allocation: b1 = b2 = b3 = b4 = 2 and
b5 = b6 = b7 = 4. This allocation uses all the memory, and it corresponds to
the definition of multiple buffers. Therefore, the optimal period is obtained by
scheduling the stages with the GREEDY-B algorithm, and:
P =

∑6
i=1

wi

v +
∑6

i=1
st

min(bi,bi+1)
= 6 +

(
1
2 + 1

2 + 1
2 + 1

2 + 1
4 + 1

4

)
= 8.5.

This allocation leads to a smaller period than ALL-B, which concludes the proof.

We propose an heuristic to deal with the memory remainder created by ALL-B
(∀1 ≤ i ≤ n + 1, bi = b). In some cases, it is possible to use R to increase the
size of several (but not all) buffers. According to Proposition 3, the use of this
remainder may lead to a decrease of the period. We restrict to the construction
of multiple buffers as defined above, so that we are able to find optimally the
period thanks to the GREEDY-B algorithm. Hence, if there is enough memory
to increase the size of buffers by steps of b, and if there is as least 2bδ memory
left, then the size of two consecutive buffers can be doubled, resulting in halving
the number of setups for the corresponding stage.

The heuristic, that we call H-REMAIN, starts off by doubling the size of the
two last buffers if there are 2bδ memory units left, then will continue to increase
the capacity of the adjacent buffers by b as long as bδ memory units are still
available. Note that since R < (n + 1)δ, the algorithm is guaranteed to end
before having doubled the size of all buffers.

Given the available memory M , Pb(M) is the period obtained if ∀i ∈ [1, n +
1], bi = b; Palgo(M) is the period obtained by our heuristic; and Popt(M) is the
optimal (minimal) period that can be achieved with memory M .

We compute the value of b obtained by the ALL-B algorithm, and therefore
M = b(n+1)δ+R, with R < (n+1)δ. It has already been proved (see Theorem 4)
that if there is no remainder after ALL-B, Pb(M) is optimal. More formally,
M = b(n + 1)δ ⇐⇒ Pb(M) = Popt(M). We define M∗ = (b + 1)(n + 1)δ =
M+(n+1)δ−R. With a memory M∗, there is also no remainder and Pb+1(M

∗) =
Popt(M

∗). We first prove that both Palgo(M) and Popt(M) can be bounded by
Pb(M) and Pb+1(M

∗) respectively:

Lemma 2. We have Pb(M) ≥ Palgo(M) ≥ Popt(M) ≥ Pb+1(M
∗).

Proof. By definition, we have Palgo(M) ≥ Popt(M). For the upper bound, H-
REMAIN is potentially improving Pb(M) by exploiting the remainder, and the
period cannot be increased by the allocation of the remainder of the memory.



Throughput Optimization for Pipeline Workflow Scheduling 65

For the lower bound, note that Pb+1(M
∗) is the optimal period with mem-

ory M∗ > M , and therefore Popt(M) cannot be better, otherwise we would have
a better solution with M∗ that would not use all memory.

Theorem 5. The two algorithms ALL-B and H-REMAIN are b+1
b -approximation

algorithms.

Proof. Let W =
∑n+1

i=1

(
wi

v

)
. We have Pb(M) = W + (n+1)st

b , and Pb+1(M
∗) =

W + (n+1)st
b+1 . Therefore,

Pb(M)

Pb+1(M∗)
=

W + (n+1)st
b

W + (n+1)st
b+1

≤
(n+1)st

b
(n+1)st

b+1

=
b+ 1

b
,

since W > 0 and (n+1)st
b+1 ≤ (n+1)st

b . Finally, thanks to Lemma 2, we have:

Palgo(M) ≤ Pb(M) ≤ b+ 1

b
Pb+1(M

∗) ≤ b+ 1

b
Popt(M) ,

which concludes the proof (recall that Pb(M) is the period obtained by algorithm
ALL-B). Note that the worst approximation ratio is achieved for b = 1, and
then we have 2-approximation algorithms. However, when b increases, the period
achieved by the algorithms tend to the optimal solution.
With Heterogeneous Setup Times or Data Input Sizes (sti, δi). The
case of heterogeneous setup times (sti) is kept for future work, since it turns
out to be much more complex. Indeed, allocating buffers while taking setup
times into account requires to prioritize higher setup times by allocating larger
buffer capacities. However, this requires both the input and output buffers of
the corresponding stage to be larger, and it will inevitably lead to side effects
on surrounding stages.

For heterogeneous data input sizes (δi), we can use a variant of the ALL-B
algorithm to allocate buffers of identical capacities, in terms of data sets: bi =⌊

M∑n+1
k=1 δk

⌋
= b. In this case, the memory used is

∑n+1
i=1 b × δi ≤ M , and the

remainder is R = M −∑n+1
i=1 b× δi. However, even if there is no remainder, the

allocation may not be optimal:
Let us consider a single processor, with a memory M = 301, speed v = 1.

There are n = 4 stages with w = st = 1. The different input sizes are: δ1 =
20, δ2 = 20, δ3 = 1, δ4 = 1, δ5 = 1. ALL-B returns buffers of size b = 7, and the
remainder is R = 301 − (20 × 7 + 20 × 7 + 1 × 7 + 1 × 7 + 1 × 7) = 0. The
optimal period using this distribution is obtained by scheduling the stages with
the GREEDY-B algorithm (see Theorem 1), and therefore:
P =

∑4
i=1

wi

v +
∑4

i=1
st
b = 4 +

(
1
7 + 1

7 + 1
7 + 1

7

)
= 4.571.

However, let us consider the following allocation: b1 = b2 = 6 and b3 = b4 =
b5 = 18. This allocation uses less memory, yet has way higher capacity buffers for
b3 to b5, with the only trade-off being the reduction of the capacity of b1 and b2 by
one. This allocation corresponds to the definition of multiple buffers. Therefore,
the optimal period is obtained by scheduling the stages with GREEDY-B, and
P =

∑4
i=1

wi

v +
∑4

i=1
st

min(bi,bi+1)
= 4 +

(
1
6 + 1

6 + 1
18 + 1

18

)
= 4.444.

This allocation leads to a smaller period than ALL-B.



66 A. Benoit et al.

5 Conclusion

In this paper, we present solutions to the problem of optimizing setup times
and buffer use for pipeline workflow applications. For the problem of fixed buffer
sizes of identical size within a same processor, we provide an optimal greedy
algorithm for a single processor, and a dynamic programming algorithm for
multiple processors. In the latter case, the application period is equal to the
period of the slowest processor. In the case of variable buffer sizes, we tackle the
problem of distributing the available processor memory into buffers such that
the period is minimized. When the memory allocation results in no remainder
(the whole memory is used), the algorithm turns out to be optimal, and we
propose some approximation algorithms for the other cases.

In future work, we plan to consider sequence-dependent setup times (sti,j),
a problem that is already known to be NP-complete. We envisage the design of
competitive heuristics, whose performance will be assessed through simulation.
Furthermore, for the sti case, we plan to investigate the memory allocation
problem on a single processor. On the long term, we will consider the case of
heterogeneous buffer capacities bi. This case is particularly interesting, as the
buffer allocation heuristics lead to heterogeneous buffer sizes.

References

1. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.: A survey of scheduling problems
with setup times or costs. European J. of Op. Research 187(3), 985–1032 (2008)

2. Allahverdi, A., Soroush, H.: The significance of reducing setup times/setup costs.
European Journal of Operational Research 187(3), 978–984 (2008)

3. Benoit, A., Coqblin, M., Nicod, J.M., Philippe, L., Rehn-Sonigo, V.: Throughput
optimization for pipeline workflow scheduling with setup times. Research Report
7886, INRIA (2012), http://graal.ens-lyon.fr/~abenoit/papers/RR-7886.pdf

4. Benoit, A., Robert, Y.: Mapping pipeline skeletons onto heterogeneous platforms.
J. Parallel and Distributed Computing 68(6), 790–808 (2008)

5. Bhat, P., Raghavendra, C., Prasanna, V.: Efficient collective communication in
distributed heterogeneous systems. In: 19th ICDCS 1999, pp. 15–24 (1999)

6. Bhat, P., Raghavendra, C., Prasanna, V.: Efficient collective communication in
distributed heterogeneous systems. JPDC 63, 251–263 (2003)

7. Norman, B.A.: Norman: Scheduling flowshops with finite buffers and sequence-
dependent setup times. Comp. & Indus. Engineering 36(1), 163–177 (1999)

8. Gendreau, D., Gauthier, M., Hériban, D., Lutz, P.: Modular architecture of the
microfactories for automatic micro-assembly. Journal of Robotics and Computer
Integrated Manufacturing 26(4), 354–360 (2010)

9. Li, L., Qiao, F.: Aco-based scheduling for a single batch processing machine in
semiconductor manufacturing. In: IEEE Int. CASE 2008, pp. 85–90 (2008)

10. Li, L., Qiao, F., Wu, Q.: Aco-based scheduling of parallel batch processing machines
to minimize the total weighted tardiness. In: Int. CASE 2009, pp. 280–285 (2009)

11. Luh, P.B., Gou, L., Zhang, Y., Nagahora, T., Tsuji, M., Yoneda, K., Hasegawa,
T., Kyoya, Y., Kano, T.: Job shop scheduling with group-dependent setups, finite
buffers, and long time horizon. Annals of Operations Research 76, 233–259 (1998)

http://graal.ens-lyon.fr/~abenoit/papers/RR-7886.pdf


Throughput Optimization for Pipeline Workflow Scheduling 67

12. Srikar, B., Ghosh, S.: A milp model for the n-job, m-stage flowshop with sequence
dependent set-up times. Int. J. of Production Research 24(6), 1459–1474 (1986)

13. Subhlok, J., Vondran, G.: Optimal mapping of sequences of data parallel tasks.
ACM SIGPLAN Notices 30(8), 134–143 (1995)

14. Subhlok, J., Vondran, G.: Optimal latency-throughput tradeoffs for data paral-
lel pipelines. In: Proceedings of the Eighth Annual ACM Symposium on Parallel
Algorithms and Architectures, p. 71. ACM (1996)

15. Zhang, M., Goldberg, K.: Calibration of wafer handling robots: A fixturing ap-
proach. In: IEEE Int. CASE 2007, pp. 255–260 (2007)


	Throughput Optimization for Pipeline Workflow Scheduling with Setup Times
	Introduction
	Framework
	Fixed Buffer Sizes
	Variable Buffer Sizes
	Conclusion
	References





