Skip to main content

Abstract

Computational simulations of the heart are a powerful tool for a comprehensive understanding of cardiac function and its intrinsic relationship with its muscular architecture. Cardiac biomechanical models require a vector field representing the orientation of cardiac fibers. A wrong orientation of the fibers can lead to a non-realistic simulation of the heart functionality.

In this paper we explore the impact of the fiber information on the simulated biomechanics of cardiac muscular anatomy. We have used the John Hopkins database to perform a biomechanical simulation using both a synthetic benchmark fiber distribution and the data obtained experimentally from DTI. Results illustrate how differences in fiber orientation affect heart deformation along cardiac cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, M.J., Hales, P., Plank, G., Gavaghan, D.J., Scheider, J., Grau, V.: Comparison of Rule-Based and DTMRI-Derived Fibre Architecture in a Whole Rat Ventricular Computational Model. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 87–96. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1(6), 445–466 (1961)

    Article  Google Scholar 

  3. Frindel, C., Schaerer, J., Gueth, P., Clarysse, P., Zhu, Y.-M., Robini, M.: A global approach to cardiac tractography. In: ISBI, pp. 883–886 (2008)

    Google Scholar 

  4. Gurev, V., Lee, T., Constantino, J., et al.: Models of cardiac electromechanics based on individual hearts imaging data. Biomech. Mod. Mechanobiology 10(3), 295–306 (2011)

    Article  Google Scholar 

  5. Helm, P., Faisal, M., Miller, M.I., Winslow, R.L.: Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann. N. Y. Acad. Sci. 1047, 296–307 (2005)

    Article  Google Scholar 

  6. Houzeaux, G., Aubry, R., Vázquez, M.: Extension of fractional step techniques for incompressible flows: The preconditioned orthomin(1) for the pressure schur complement. Computers and Fluids 44(1), 297–313 (2011)

    Article  MathSciNet  Google Scholar 

  7. Nielsen, P., Le Grice, I., Smail, B., Hunter, P.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260(29), H1365–H1378 (1991)

    Google Scholar 

  8. Vázquez, M., Lafortune, P., Aris, R., Houzeaux, G.: Coupled parallel electromechanical model of the heart. Int. J. Num. Meth. Biomed. Eng. 28(1), 72–86 (2012)

    Article  MATH  Google Scholar 

  9. Peskin, C.S.: Fiber architecture of the left ventricular wall: An asymptotic analysis. Comm. on Pure and App. Math. 42(1), 79–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pitt-Francis, J.M., Pathmanathan, P., Bernabeu, M.O., et al.: Chaste: a test-driven approach to software development for biological modelling. Comp. Phys. Comm. 180(12), 2452–2471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Plank, G., Burton, R., Hales, P., et al.: Generation of histo-anatomically representative models of the individual heart: tools and application. Phil. Trans. Royal Soc. 367, 2257–2292 (1896)

    MathSciNet  Google Scholar 

  12. Potse, M., Dube, B., Richer, J., et al.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. Trans. Biomed. Eng. 53(12), 2425–2435 (2006)

    Article  Google Scholar 

  13. Quinn, T.A., Casero, R., Burton, R.A.B., et al.: Cardiac valve annulus manual segmentation using computer assisted visual feedback in three-dimensional image data. In: EMBC, WeBPo10.7 (2010)

    Google Scholar 

  14. Rohmer, D., Sitek, A., Gullberg, G.: Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging DTMRI data. Invest. Radiol. 42(11), 777–789 (2007)

    Article  Google Scholar 

  15. Savadjiev, P., Strijkers, G.J., Bakermans, A.J., et al.: Heart wall myofibers are arranged in minimal surfaces to optimize organ function. Proc. Natl. Acad. Sci. 109(24), 9248–9253 (2012)

    Article  Google Scholar 

  16. Scollan, D.F., Holmes, A., Winslow, R., Forder, J.: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol. 275(6 Pt 2), H2308–H2318 (1998)

    Google Scholar 

  17. Stevens, C., Remme, E., LeGrice, I., Hunter, P.: Ventricular mechanics in diastole: material parameter sensitivity. J. Biomech. 36, 737–748 (2003)

    Article  Google Scholar 

  18. Streeter, D.D., Spotnitz, H.M., Patel, D.P., et al.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(2), 339–347 (1969)

    Article  Google Scholar 

  19. Vadakkumpadan, F., Arevalo, H., Prassl, A.J., et al.: Image-based models of cardiac structure in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2(4), 489–506 (2010)

    Article  Google Scholar 

  20. Vazquez, M., Aris, R., Hozeaux, G., et al.: A massively parallel computational electrophysiology model of the heart. Int. J. Num. Meth. Biomed. Eng. 27, 1911–1929 (2011)

    Article  MATH  Google Scholar 

  21. Vetter, F.J., McCulloch, A.D.: Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. Prog. Biophys. Mol. Biol. 69, 157–183 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gil, D. et al. (2013). What a Difference in Biomechanics Cardiac Fiber Makes. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2012. Lecture Notes in Computer Science, vol 7746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36961-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36961-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36960-5

  • Online ISBN: 978-3-642-36961-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics