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Abstract. Justification logics are propositional modal-like logics that
instead of statements A is known include statements of the form A is
known for reason t where the term t can represent an informal justifi-
cation for A or a formal proof of A. In our present work, we introduce
model-theoretic tools, namely: filtrations and a certain form of generated
submodels, in the context of justification logic in order to obtain decid-
ability results. Apart from reproving already known results in a uniform
way, we also prove new results. In particular, we use our submodel con-
struction to establish decidability for a justification logic with common
knowledge for which so far no decidability proof was available.
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1 Introduction

Justification logics are epistemic logics that explicitly include justifications for
the agents’ knowledge [3,4]. The first logic of this kind, the Logic of Proofs LP,
was developed by Artemov to provide the modal logic S4 with provability se-
mantics [1,2]. The language of justification logics has also been used to create
a new approach to the logical omniscience problem [5], to study self-referential
proofs [14], and to explore the evidential dynamics of public announcements |8,
10].

Instead of statements A is known, denoted [JA, justification logics reason
about justifications for knowledge by using the construct ¢t : A to formalize
statements t is a justification for A, where, dependent on the application, the
evidence term t can be viewed as an informal justification or a formal mathe-
matical proof. For an example see Fig. 1 where the axioms of the justification
logic LP are listed alongside the axioms of S4 to point out the correspondence
of the operations on evidence terms to standard modal axioms. This correspon-
dence (as well as many other such correspondences between certain modal logics
and justification logics) can be shown in a formal way. While it is easy to see,
that replacing all justification terms by [0 in a theorem of LP yields a theorem
of S4, the other direction is much more involved and known as the realization
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S4 axioms LP axioms

0(A — B) —» (DA — OB) t:(A— B)—(s:A—t-s:B) (application)
0A— A t:A— A (reflexivity)
0A - 0O0A t: A=t A (inspection)

t:AVs:A—t+s: A (sum)

Fig. 1. Non-propositional axioms of S4 and LP

theorem. See [7] for a uniform proof and survey of realization theorems for all
logics in the modal cube.

Fitting [11] introduced epistemic semantics for justification logics. The so-
called Fitting models are Kripke models (W, R,v) augmented by an evidence
relation & that states which terms are admissible evidence for which formulae.

Filtrations are a tool in modal logic for obtaining from a given, usually infi-
nite, model a smaller, usually finite, model by factoring the set of worlds with
respect to a certain equivalence relation. As noted in [6], filtrations were first
introduced in [19] and given their name in [15]. Given the close relationship be-
tween Fitting models and Kripke models, it is a natural task to adopt filtrations
for justification logics. The crucial step is of course to take into account the
evidence relation when identifying states.

Filtrations are often used to prove a finite model property and thereby es-
tablish decidability of a given modal logic, see e.g. [6]. Decidability for the justi-
fication logics presented here was originally shown in [12,13, 16]. We adapt the
filtration technique from modal logic to obtain an alternative uniform proof of
decidability for these justification logics. We then apply the newly developed
technique to establish the decidability of the multi-agent justification logic with
common knowledge presented in [9].

In Section 2, we introduce the syntax and semantics of the justification logics
we are using. In Section 3, we define filtrations for justification logics and prove
their basic properties. We treat two specific examples of filtrations in Sections 4
and 5. In Section 6, we use these two examples to prove the decidability of the
defined justification logics. This also leads us to investigate general properties
necessary for the decidability of justification logics and enables us to prove the
decidability of a multi-agent justification logic with common knowledge in Sec-
tion 7.

2 Justification Logics

Justification terms are built from constants ¢; and variables x; according to the
following grammar:

tu=ci|la | @ t) | (E+2t) |1t

We denote the set of terms by Tm. Formulae are built from atomic propositions
p; according to the following grammar:

Fu=p, | 2F|(F—=F)|t:F



Prop denotes the set of atomic propositions and Fm denotes the set of formulae.
The set Sub(F') of subformulae of a given formula F' is defined inductively
as follows
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— Sub(F; — F2) = {Fl — FQ} U Sub(Fl) U Sub(Fg)
— Sub(t: F):={t: F} USub(F)

A set of formulae ¢ C Fm is closed under subformulae if | J g4 Sub(F) C @.
The axioms of Jcs consist of all instances of the following schemes:

A1 finitely many schemes axiomatizing classical propositional logic
A2t:(A—-B)—(s:A—t-s:B)
A3 t:AVvs:A—t+s: A

We will consider extension of Jcs by the following axioms schemes.

Gd) t: L—1
Gty t: A= A
(Ga) t:A-lt:t: A

A constant specification CS for a logic L is any subset
CS C{c:A|cis aconstant and A is an axiom of L}.

A constant specification CS for a logic L is called

1. axiomatically appropriate if for each axiom A of Lcs there is a constant ¢
such that ¢: A € CS

2. schematic if for each constant c the set {A | ¢: A € CS} consists of one or
several (possibly zero) axiom schemes, i.e., every constant justifies certain
axiom schemes.

For a constant specification CS the deductive system Jcs is the Hilbert sys-
tem given by the axioms A1-A3 and by the rules modus ponens and axiom
necessitation:

c:AecCS
AA'%B(MP) o TModeiT e dledeic: A (any |
n n—1

where n > 0. In the presence of the j4 axiom a simplified axiom necessitation

rule can be used:
c:AeCS

A (AN) .

Table 1 defines the various logics we consider.
We now present the semantics for these logics



Al A2 A3jd jt j4 MP AN! AN
Js |V v ¢ v 7
IDes |v v vV o v
s |v v v v v v
WDics|v v v v vV v
Jacs |v v v v v
LPes |v v v VvV V v

Table 1. Deductive Systems

Definition 1 (Evidence relation). Let (W, R) be a Kripke frame, i.e., W # &
and R C W x W, and CS be a constant specification. An admissible evidence
relation € for a logic Lcs is a subset of Tm x Fm x W that satisfies the closure
conditions:

1. if (s, A,w) € € or (t, A,w) € E, then (s +t, A, w) € E
2. if (s,A— B,w) €€ and (t,A,w) € &, then (s-t,B,w) € £

Depending on whether or not the logic Lcs contains the j4 axiom, the evidence
function has to satisfy one of the following two sets of closure conditions. If Lcs
does not include the j4 axiom, then the additional requirement is:

3. ifc: AeCSandwe W, then (I--le,l-- e dletlee: Ayw) € €
T~
n n—1
If Lcs includes the j4 axiom, then the additional requirement is:
4. if c: A€ CS and w € W, then (¢, A,w) € €

5 af (t,A,w) € &, then (It,t: A,w) € &
6. if (t,A,w) € & and wRv, then (t, A,v) € £

If we drop condition 6, then we say & is a t-evidence relation.
Sometimes we use E(s, A,w) for (s, A,w) € £.

Definition 2 (Evidence bases).

1. An evidence base B is a subset of Tm x Fm x W.
2. An evidence relation £ is based on B, if B C £.

The closure conditions in the definition of admissible evidence function give
rise to a monotone operator. The minimal evidence relation based on B is the
least fixed point of that operator and thus always exists.

Definition 3 (Model). Let CS be a constant specification. A Fitting model for
a logic Lcs is a quadruple M = (W, R, E,v) where

— (W, R) is a Kripke frame such that
e if Lcs includes the jj axiom, then R is transitive;
e if Lcs includes the jt aziom, then R is reflexive;



e if Lcs includes the jd axiom, then R is serial.
— & is an admissible evidence relation for Lcs over the frame (W, R),
— v : Prop — P(W), called a valuation function.

Definition 4 (Satisfaction relation). The relation of formula A being satis-
fied in a model M = (W, R,E,v) at a world w € W is defined by induction on
the structure of A by

— M,wlk p; if and only if w € v(p;)

— Ik commutes with Boolean connectives

— M,wlkt: B if and only if
1) M,vl+ B for allv e W with wRv and
2) (t,B,w) €&

We say a formula A is valid in a model M = (W, R,E,v) if for all w € W we
have M,wIF A. We say a formula A is valid for a logic Lcs if for all models M
for Les we have that A is valid in M.

The logics defined above are sound and complete (with a restriction in case
of the logics containing the jd axiom). See [3,11,17] for the full proofs of the
following results.

Soundness can be obtained by an easy induction on the derivation of the
formula.

Theorem 5 (Soundness). Let CS be a constant specification. If a formula A
is derivable in a logic Lcs, then A is valid for Lcs.

For completeness a canonical model construction is used. The axiomatical
appropriateness of the constant specification in case the logic contains the jd
axiom is necessary to show the seriality condition on the accessibility relation.

Theorem 6 (Completeness).

1. Let CS be a constant specification. If a formula A is not derivable in Lcs €
{Jcs, JTcs, Jacs, LPcs}, then there exists a model M for Lcs with M, w I A
for some world w in M.

2. Let CS be an axiomatically appropriate constant specification. If a formula
A is not derivable in Lcs € {JDcs, JD4cs}, then there exists a model M for
Les with M, w Iff A for some world w in M.

3 Filtrations

Given the close relationship of models for justification logics to Kripke models,
it is not surprising that the two definitions of filtrations look very similar. The
major difference is that we have to take the evidence relation into considera-
tion. In modal logic we identify worlds that behave the same way, whereas in
justification logic we identify worlds that behave the same way for the same
TeAson.



Definition 7 (Filtration). Let M = (W, R,&,v) be a model and & some set
of formulae that is closed under subformulae. We define an equivalence relation
=g on W by setting w =¢ v if and only if for all A € ®

M,w - A if and only if M,v - A
and for allt: B € @
E(t, B,w) if and only if E(t, B,v).

We denote the equivalence classes of @ by [w]e. When @ is clear from the context,
we will often only write [w] instead of [w]s.

A model Mg = Wo, Rp,Ep,ve) is called a filtration of M through @ if it
satisfies the following:

1. W ={[w]s | we W}
2. Ry satisfies
(RY) for all w,v € W if R(w,v), then Rg([w]es, [v]s)
(R2) for all [w]g, v]e € W, if Re([w]s, [v]e), then for any t : B € & we
have
if Mywl-t: B then M,v I+ B

3. Ep satisfies
(E1) for allw e W and t: B € $ we have

if Myw -t : B then (t, B, [w]g) € £
(E2) for allw € W andt: B € ¢ we have
if (t,B,[w]g) € Ep then (t,B,w) € £
4. v satisfies for all atomic propositions p € @

ve(p) = {[wle | w € v(p)}

There are two major changes of the definition compared to the case for modal
logic. The first change concerns the definition of the equivalence relation to
identify worlds. Whereas a modal formula [JB can only fail due to the existence
of an accessible world not satisfying B, a justification formula ¢ : B might fail in
two ways: either B is not satisfied in an accessible world or t is not admissible
evidence for B at the current world. So we have to refine our equivalence relation
to only identify worlds that do not only satisfy the same formulae but also behave
the same with respect to the evidence relation. The second change concerns the
evidence relation of the filtration: it has to satisfy conditions similar to the Min-
and Max-conditions (R1) and (R2) for the accessibility relation.

The crucial property of a filtration of a model through @ is that the behavior
of the model and the filtration is the same with respect to formulae in @:



Lemma 8. Let M = (W, R,E,v) be a model, & a set of formulae closed under
subformulae, and Mo = (Wa, Re, Ep,Ve) a filtration of M through ®. Then for
all worlds w € W and formulae A € & we have

Mg, [w]e IF A if and only if M,w I+ A.

Proof. The proof is by induction on the structure of A. The case for propositional
variables is immediate by the definition of v and the cases for the propositional
connectives are immediate by the induction hypothesis. Let us now consider the
case A=t:B.

First we show the direction from right to left. Assume M,w I+ ¢t : B. If
Rg([w]s, [v]s), then by (R2) we have M,v IF B. By the induction hypothesis
we get Mg, [v]g I+ B. Further from (E1) we get (¢, B,[w|s) € Ep and thus
Mg, [w]e IFt: B.

For the other direction suppose Mg, [w]g IF ¢ : B, that is

Mg, [v]g Ik B for all [v]g with Re([w]s, [v]s) (1)

(t, B, [w]qs) X (2)

If R(w,v), then by (R1) also R ([w]s,[v]s) and by (1) and the induction hy-
pothesis we get M, v |- B. Furthermore, from (2) and (E2) we get £(¢, B, w) and
we conclude M, w Ikt : B.

A filtration inherits some conditions on the accessibility relations. Further-
more, a filtration through a finite set has finitely many worlds.

Lemma 9. Let M = (W, R,E,v) be a model, Y a set of formulae closed under
subformulae, and Mg = Ws, Re,Es,vs) a filtration of M through .

1. If R is serial, so is Rg.
2. If R is reflexive, so is Rg.
8. If @ is finite, then so is Wg.

Proof. The first two claims follow immediately from (R1). The last claim follows
from the fact that each element [w]s € Wg can be characterized by the set of
formulae A € @ that hold in [w]g as well as the set of formulae ¢ : B € ¢ with
Es(t, B, [w]g) and the fact that P(P) x P(P) has only finitely many elements.

4 Non-transitive Case

As a first example we will define filtrations for logics not containing the j4 axiom.

Definition 10 (Filtration: non-transitive case). Let M = (W, R,&,v) be
a model and @ a set of formulae closed under subformulae. We consider the
filtration M3 = (WJt, R ED, vAY) that is given by

1. W}t is the set of equivalence classes induced by =¢



2. RI([w], [v]) if and only if for all t : B € & we have M,w I+ t : B implies
M,vI-B
3. EFtis the minimal evidence relation based on B, where

By (t, B, [v]) if and only ift : B € ® and E(t, B,v).

4. vt is given by

VoK) = {{[w] |wev(p)} ifped,

o 0 otherwise.

Lemma 11. MY is a filtration of M through &.
Proof. We have to check the following conditions.

(R1) Assume R(w,v). If M,w I+ ¢ : B, then M,v |- B. Thus we conclude
Ry ([w], [v]).

(R2) Let t : B € & and Ry ([w], [v]). If M,w IF ¢t : B, then we get M,v I+ B
immediately from the definition of R .

(E1) Assumet: B € @ and M,w IFt : B. We have £(t, B, w) and we immedi-
ately get E3'(t, B, [w]) by the definition of £.

(E2) We show for all ¢ : B, not only for those contained in @, that for all w’ € [w]

EX(t, B, [w]) implies E(t, B,w') .

We proceed by induction on the construction of EJ'.

— If E3(t, B, [w]) because By (¢, B, [w]), then by definition of Bj we have
that ¢t : B € ¢ and £(t, B,w") for some w” € [w]. By v’ =4 w" we
conclude &(t, B,w'").

— If t = t1 + t2 and ER(t, B, [w]) because of ERt(¢;, B, [w]) (for some i €
{1,2}), then by induction hypothesis we get that £(¢;, B,w’) and thus
also E(t1 + to, B, w’) by the closure conditions on .

—If t = t; - to and EJ'(¢, B, [w]) because there is an A € Fm such that
EX(t1,A — B,[w]) and EF(t2, A, [w]), then by induction hypothesis
E(t1,A — B,w') and E(ta, A, w’). So, by the closure conditions, we get
g(tl . tQ, B, w').

— The case for axiom necessitation is trivial, as we have

E(l-- el Meritlere: Ayw)
NP

n n—1

for any world v € W.
5 Transitive Case
The case for logics containing the j4 axiom is a bit more involved, as now the

accessibility relation of the filtration has to be transitive, which is not guaranteed
by the definition of filtration.



Definition 12 (Filtration: transitive case). Let M = (W, R, £, v) be a model
and @ a set of formulae closed under subformulae. We consider the filtration
&= (W RY EE VE) that is given by

~

W is the set of equivalence classes induced by =¢

2. RE([w], [v]) if and only if for all t : B € & we have M,w IF t : B implies
M,vlF BAt: B

3. &Y is the minimal t-evidence relation based on BY, where

BY(t, B, [v]) if and only if t : B € ® and M,vI-t: B.

4. v is given by

V() — {{[w] |wevp)} ifped,

0 otherwise.

As a first step we have to show that £Y as defined is not only a t-evidence
relation but an actual evidence relation.

Lemma 13. &Y is an admissible evidence relation over (WY, RY).

Proof. We have to show that condition (6) in Definition 1 holds, i.e., we have to
show
EZ(t, B, [w]) and RE([w], [v]) imply E% (¢, B, [v])

So assume EY (¢, B, [w]) and RY([w], [v]). We now show E¥ (¢, B, [v]) by induc-
tion on the construction of £Y.

Let EX(t, B, [w]) because of BY(t, B, [w]). Wehavet: B € dand M,w F¢: B
by definition of BY. Since Rg([w], [v]), it follows that M, v IF B At : B and, in
particular, M,v |- ¢t : B. Thus, BY(t, B, [v]) by definition of BY, and clearly
EY(t, B, v).

Let us now distinguish the different possible closure conditions from Defini-
tion 1:

1. Assume we have t = t; + t2 and £ (¢, B, [w]) because of £Y(t;, B, [w]) for
i =1 or i = 2. Then by induction hypothesis ¥ (¢;, B, [v]) and thus also
E5(t, B, [v]).

2. The case for - and ! follows immediately from the induction hypothesis in
the same manner as the previous case.

3. The case for axiom necessitation (AN) trivially holds.

The accessibility relation for the filtration is transitive.
Lemma 14. RY is transitive.

Proof. Assume (a) RY¥([w],[v]) and (b) R%([v], [u]). Suppose t : B € & and
M,wlFt: B. By (a) we get M, vt : B. Then by (b) we get M,u - BAt: B.
Hence, we conclude RY([w], [u]).



Lemma 15. MY is a filtration of M through ®.
Proof. We have to check the following conditions.

(R1) Assume R(w,v). If M,w It : B, then M,v |+ B and M,w IFlt : t : B
which implies M, v IF ¢ : B. Thus we conclude RY([w], [v]).

(R2) Let t : B € @ and Ry ([w], [v]). If M,w IF ¢ : B, then we get M,v I+ B
immediately from the definition of RY.

(E1) Assume ¢: B € ¢ and M,w IF ¢ : B. We immediately get £¥ (¢, B, [w]) by
the definition of £F.

(E2) As in the proof of Lemma 11 we can show for all ¢ : B and all w’ € [w]

EF(t, B, [w]) implies E(¢, B,w') .

6 Decidability

The theorems in this section originate from [13]. We thus only give proof sketches
for the sake of brevity.

Definition 16 (Finitary model). A model M = (W, R,E,v) is called finitary
if

1. W is finite,

2. there exists a finite base B such that £ is the minimal evidence relation based
on B, and

3. the set {(w,p) € W x Prop | w € v(p)} is finite.

Using filtrations we see that if a formula is satisfiable, then it is satisfiable in
a finitary model. Thus we have the following

Lemma 17 (Completeness w.r.t. finitary models).

1. Let Les € {Jes,dTes, J4cs, LPcs} and CS be a constant specification for L.
If a formula A is not derivable in Lcs, then there exists a finitary model M
for Les with M, w I A for some world w in M.

2. Let Lcs € {JDcs, JD4cs} and CS be an aziomatically appropriate constant
specification for L. If a formula A is not derivable in Lcs, then there exists
a finitary model M for Lcs with M,w I A for some world w in M.

Proof. Let CS be as required above. If A is not derivable in Lc¢s, then by Theo-
rem 6 there exists a model M for Lcg with M, v | A for some world v in M.
Now set @ := Sub(A) and let Mg denote either M or M from Definitions 10
and 12 respectively, depending on whether L¢s contains the j4 axiom. It is easy
to see that Mg is a finitary model: by Lemma 9 the set of worlds is finite and, by
definition of Mg, the evidence relation is finitely based and the valuation func-
tion satisfies condition 3 from Definition 16. Finally, since Mg is a filtration of
M through @ by Lemma 11 or by Lemma 15, by Lemma 8 we have Mg, [v] I} A.

10



Corollary 18. All statements of Lemma 17 hold if an additional restriction is
imposed that the domain of the model M be a finite subset of N.

Proof. The claim follows trivially from Lemma 17 by renaming worlds to natural
numbers.

The following theorem is a simple instance of Post’s theorem [18]: A set is
decidable if and only if both the set and its complement are recursively enumer-
able.

Theorem 19. A logic is decidable if it is recursively enumerable and is sound
and complete with respect to a set C such that

1. C is a recursively enumerable set of finite models and
2. the relation M,w I+ A between models M € C, worlds w in M, and formu-
lae A is decidable.

Proof. We give a proof sketch, for full details cf. [13, Theorem 4.3.3]

Given a formula A, we can simultaneously enumerate theorems By, B1, ... of
the logic and potential counter-models Mg, M1,... € C and at each step check
whether (a) A = B; or (b) M;,w I A for some w € M,. Eventually either (a)
or (b) will hold for some i, thus indicating whether the logic proves A.

Lemma 20. Let Lcs € {Jcs, JDcs, JD4cs, JTcs, Jacs, LPcs}. The set of finitary
models for Lcs with the domain being a finite subset of N is recursively enumer-
able.

Proof. We give a proof sketch, for full details cf. [13, Lemma 4.4.6].

It is obvious that the set of such models for Jcs can be recursively enumerated.
Models of each of the other five logics must additionally satisfy certain conditions
on the accessibility relation, some combination of transitivity, reflexivity, and
seriality. Since each of these conditions can be effectively verified, the models
of Jcs that are unsuitable for a given logic can be effectively removed from the
enumeration of models for Lcs.

Lemma 21. Let CS be a decidable schematic constant specification and Lcs €
{Jcs,  Dcs, JD4cs, JTcs, Jacs, LPcs}. Let M = (W, R,E,v) be a finitary model
for Lcs. Then the relation M, w - A between worlds w € W and formulae A is
decidable.

Proof. We give a proof sketch, for full details cf. [13, Corollary 4.4.8].

We can show this by induction on the formula A, the cases for propositions
and Boolean connectives being trivial.

The crucial step is to show that the relation £(¢, B, w) between terms ¢t € Tm,
formulae B € Fm and worlds w € W is decidable (see [13, Lemma 4.4.7]).

Let B be the base for the minimal evidence relation £ of M. Given a fixed
term ¢, we will construct a sequence of sets & (w) inductively, which can be seen
as a partial evidence function that lists all formulae for which ¢ or one of its
subterms are admissible evidence at world w.

11



In order to keep the sets finite and as we are given a schematic constant
specification, we will use variables X,Y,... ranging over schemes of formulae
and variables P, @, ... ranging over formulae. Also, we assume that our constant
specification is given in terms of schemes, i.e.

CS ={c: X | cis a constant and X is a scheme}.

The sets are defined as follows

EY(w) := {(s,B) | B(s, B,w) and s € Sub(t)}
U{(¢,X) ] c:X €CSand c € Sub(t)}

Assume &' (w) has been constructed, in order to obtain £ (w) add the follow-
ing

— (81 89,Y10) for any (s1,X1 — Y1) € & (w) and (s2, X2) € E'(w) such that
the most general unifier o of X; and X5 exists and s; - s € Sub(t)
— (81 82,Q) for any (s1, P) € £(w) and (s2,X2) € &*(w) where Q is a fresh
variable over formulas and s - so € Sub(¢)
— (814 82, X) for any (s1,X) or (s2, X) € &' (w) with s1 + s3 € Sub(t)
— depending on whether the logic Lcs contains the j4 axiom, we distinguish
the following two cases: If the logic does not contain the j4 axiom, we add
o (M-dellleriiitleie: X) for any ¢: X € CS with [!-- -1 ¢ € Sub(t)
— —
n+1 n n+1
If the logic contains the j4 axiom, we add
o (Is,s: X) for any (s, X) € &(w) with !s € Sub(¢)
e (s5,X) for any (s, X) € &'(v) with R(v,w) and s € Sub(t)

All the sets & (w) are finite. As W and Sub(t) are finite, there is an n easily
computable from the size of W and the length of ¢ such that & (w) = & (w) for
all ¢ > n. Furthermore, we have £(t, B,w) if and only if B unifies with some X
such that (¢, X) € &*(w). Thus, the relation £(¢, B, w) is decidable.

Corollary 22 (Decidability).

1. Any justification logic in {Jcs,JTcs, J4cs, LPcs} with a decidable schematic
CS s decidable.

2. Any justification logic in {JDcs,JD4cs} with a decidable, schematic and az-
iomatically appropriate CS is decidable.

Proof. All logics presented are obviously recursively enumerable. By Corollary 18,
Lemma 20 and Lemma 21 all logics presented satisfy the conditions of Theo-
rem 19 and are, therefore, decidable.

12



7 The Case of Common Knowledge

While the finiteness of the sets of worlds is a key feature of filtrations, the finite
bases of our examples are due to the specific setup of the models and are by no
means a necessary property of filtrations. On the other hand, if we start with
a logic L¢cs which we already know to be sound and complete with respect to a
class of finite models, we can adapt the construction we used to finitely base the
evidence function for the filtrations.

Definition 23. Let M = (W, R,&E,v) be a model and ¢ some set of formulae
that is closed under subformulae. The ®@-generated submodel M | @ of M 1is
defined as (W, R,E | ®,v | ®) where

1. € | @ is the minimal evidence relation based on Bg where
Bg(t, B,w) if and only if t : B € & and E(t, B,w)

2. v | ® is given by

(v ®)(p) = {{w |wevp)} ifped

0 otherwise

Like in the case for filtrations we get the following lemma.

Lemma 24. Let M = (W, R,&,v) be a model, D a set of formulae closed under
subformulae, and M | @ the ®-generated submodel of M. Then for all worlds w
mn M and formulae A € & we have

M| D,wlk A if and only if M,w I+ A.

Proof. The proof is by induction on A. The case for atomic propositions is im-
mediate by the definition of v | @ and the cases for boolean connectives follow
immediately by induction hypothesis. Let us consider the case when A is ¢t : B.

So assume M | @, w -t : B. We get (¢, B,w) € £ | P and M | &,v I B for
all v € W with R(w,v). The latter gives us M, v IF B by induction hypothesis
whereas from the former we get (¢, B,w) € £ as both £ and € | ¢ are based on
Bg and € | @ is minimal with that property and hence £ [ @ C £. So we have
M,wl-t: B.

For the other direction assume M, w IF ¢ : B. We have thus £(¢, B, w) and
M, v Ik B for all v € W with R(w,v). Again, the latter gives us M | ¢,v |- B
by induction hypothesis and by the definition of £ [ @ we immediately get
(t, B,w) € £ | & from the former and thus M | &, w -t : B.

We can use this technique (adapted to the multi-agent case) to establish
decidability for the justification logic with common knowledge LP% that was
introduced in [9].

The logic LP% is a multi-agent version of LPcs with additional axioms and
operations on terms to deal with mutual and common knowledge. There are
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separate sets of terms for each agent i € {1,...,h} as well as for mutual knowl-
edge E and for common knowledge C. The different kinds of knowledge suggest a
slight change of notation. We will write [t|gB to mean “¢ is a justification term
of type & for B”, where ® € {1,...,h,E,C}. Furthermore * will always denote
an element of {1,...,h,C}.

The logic LP%(CS) is given by the following axioms as well as the rules for
modus ponens and axiom necessitation (for a given constant specification CS):

1. finitely many schemes axiomatizing classical propositional logic

2. [t]l«(A— B) = ([s]«+A — [t - s].B) (application)
3. [t]eAV [s]sA — [t + s].A (sum)
4. [t};A— A (reflexivity)
5. [t]iA — [!t]i t]; A (inspection)
6. [t1]1AN - AltplnAd = [{t1,...,tn)]eA (tupling)
7. [tleA — [m i A (projection)
8. [tjcA — [ccl t)eA, [tlcA — [ccla(t)]e [t]cA (co-closure)
9. AN[tlc(A — [s]e ) [ind(t, s)]cA (induction)

The semantics for LP% is given by models
M = (WuRla" '7Rhu51a"'7€h76E76C7y)

where R; are reflexive, transitive accessibility relations on W and g are evidence
relations satisfying closure conditions modeled on the axioms of LP% analogous
to the logics presented in Section 2.! Furthermore we define Rg := Ule R; and
R as the transitive closure of Rg. A formula being satisfied at a given world is
then defined as before with the following crucial case for the formula being of
the form [t]|gB

1) Ee(t, B, w) holds and
2) M,vlF B for all v € W with (w,v) € Rg.

Using a canonical model construction we can show the soundness and com-
pleteness of LP§ with respect to this class of models and as an immediate corol-
lary of this construction (see [9, Theorem 20]) we obtain

Theorem 25. LP$(CS) is sound and complete with respect to the class of sin-
gleton models for LP$(CS).

We can easily adapt the &-generated submodels from Definition 23 and
Lemma 24 to the multi-agent case and turn these singleton models into fini-
tary models. Obviously the class of these finitary, singleton models is recursively
enumerable and adapting Lemma 21 to the multi-agent case shows that LP%
satisfies the conditions of Theorem 19. Decidability of LP$ then follows as in the
previous section.

Theorem 26. LP§(CS) with a decidable schematic CS is decidable.

! Note that these closure conditions are very similar and also give rise to a monotone
operator as before. This is crucial in adapting the previous proofs to the multi-agent
case.
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8 Conclusion

We have presented a uniform method of proving decidability for justification
logics using a refinement of the finite model property. In order to achieve this
property, we have adapted the modal techniques of filtration and generated sub-
models to justification logics. Apart from reproving the known decidability re-
sults for Jcs, JD¢s, JTcs, J4cs, JD4cs, and LPcs, this method has enabled us
to establish the decidability of the justification logic with common knowledge
introduced in [9].

The main difference from the modal case is the presence of an additional
element in models called evidence relation. As evidence relations are in general
infinite objects, the filtration has to be performed in such a way that apart from
finitizing the set of worlds, also the evidence relation is finitely representable.
This finite representation is achieved by using least fixed points of a certain
monotone operator that can be read off the axioms of the logic. The existence
of the least fixed point is guaranteed when the operator is monotone, which is
the case for all the logics considered. Some logics, e.g. justification logics with
negative introspection, however, give rise to non-monotone operators. Proving
decidability for them requires more involved techniques, see [20].
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