Skip to main content

An EEG Based Pervasive Depression Detection for Females

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7719))

Abstract

Recently, depression detection is mainly completed by some rating scales. This procedure requires attendance of physicians and the results may be more subjective. To meet emergent needs of objective and pervasive depression detection, we propose an EEG based approach for females. In the experiment, EEG of 13 depressed females and 12 age matched controls were collected in a resting state with eyes closed. Linear and nonlinear features extracted from artifact-free EEG epochs were subjected to statistical analysis to examine the significance of differences. Results showed that differences were significant for some EEG features between two groups (p<0.05) and the classification rates reached up to 92.9% and 94.2% with KNN and BPNN respectively. Our methods suggest that the discrimination of depressed females from controls is possible. We expect that our EEG based approach could be a pervasive assistant diagnosis tool for psychiatrists and health care specialists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wells, K.B., Stewart, A., Hays, R.D., Burnam, M.A., Rogers, W., Daniels, M., Berry, S., Greenfield, S., Ware, J.: The functioning and well-being of depressed patients. Results from the Medical Outcomes Study. JAMA 262, 914–919 (1989)

    Article  Google Scholar 

  2. Kessler, R.C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K.R., Rush, A.J., Walters, E.E., Wang, P.S.: The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289, 3095–3105 (2003)

    Article  Google Scholar 

  3. Culbertson, F.M.: Depression and gender. An International Review. Am. Psychol. 52, 25–31 (1997)

    Google Scholar 

  4. Kessler, R.C.: Epidemiology of women and depression. J. Affect Disord. 74, 5–13 (2003)

    Article  Google Scholar 

  5. Wetzel, J.W.: Depression: Women at risk. Social Work in Health Care 19, 85–108 (1994)

    Article  Google Scholar 

  6. Michael, S., Carl, M., Pentl, Y.: Objective Physiological and Behavioral Measures for Identifying and Tracking Depression State in Clinically Depressed Patients. Massachusetts Institute of Technology Media Laboratory (2005)

    Google Scholar 

  7. Handte, M., Becker, C., Rothermel, K.: Peer-based automatic configuration of pervasive applications. In: Proceedings of International Conference on Pervasive Services, ICPS 2005, pp. 249–260 (2005)

    Google Scholar 

  8. Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press (2006)

    Google Scholar 

  9. Thakor, N.V., Tong, S.: Advances in quantitative electroencephalogram analysis methods. Annu. Rev. Biomed. Eng. 6, 453–495 (2004)

    Article  Google Scholar 

  10. Bin, H., Majoe, D., Ratcliffe, M., Yanbing, Q., Qinglin, Z., Hong, P., Dangping, F., Fang, Z., Jackson, M., Moore, P.: EEG-Based Cognitive Interfaces for Ubiquitous Applications: Developments and Challenges. IEEE Intelligent Systems 26, 46–53 (2011)

    Google Scholar 

  11. Kaneda, Y., Nakayama, H., Kagawa, K., Furuta, N., Ikuta, T.: Sex differences in visual evoked potential and electroencephalogram of healthy adults. Tokushima J. Exp. Med. 43, 143–157 (1996)

    Google Scholar 

  12. Corsi-Cabrera, M., Arce, C., Ramos, J., Guevara, M.A.: Effect of spatial ability and sex inter- and intrahemispheric correlation of EEG activity. Electroencephalography and Clinical Neurophysiology 102, 5–11 (1997)

    Article  Google Scholar 

  13. Knott, V., Mahoney, C., Kennedy, S., Evans, K.: EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. 106, 123–140 (2001)

    Article  Google Scholar 

  14. Pollock, V.E., Schneidera, L.S.: Quantitative, waking EEG research on depression. Biological Psychiatry 27, 757–780 (1990)

    Article  Google Scholar 

  15. Nuwer, M.R.: Quantitative EEG: II. Frequency analysis and topographic mapping in clinical settings. J. Clin. Neurophysiol. 5, 45–85 (1988)

    Article  Google Scholar 

  16. Li, Y., Tong, S., Liu, D., Gai, Y., Wang, X., Wang, J., Qiu, Y., Zhu, Y.: Abnormal EEG complexity in patients with schizophrenia and depression. Clin. Neurophysiol. 119, 1232–1241 (2008)

    Article  Google Scholar 

  17. Stam, C.J.: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116, 2266–2301 (2005)

    Article  Google Scholar 

  18. Nandrino, J.L., Pezard, L., Martinerie, J.: Decrease of complexity in EEG as a symptom of depression. Neuroreport 5, 528–530 (1994)

    Article  Google Scholar 

  19. Roschke, J., Fell, J., Beckmann, P.: Nonlinear analysis of sleep EEG in depression: calculation of the largest lyapunov exponent. Eur. Arch. Psychiatry Clin. Neurosci. 245, 27–35 (1995)

    Article  Google Scholar 

  20. Foster, P.S., Yung, R.C., Branch, K.K., Stringer, K., Ferguson, B.J., Sullivan, W., Drago, V.: Increased spreading activation in depression. Brain Cogn. 77, 265–270 (2011)

    Article  Google Scholar 

  21. Hong, P., Bin, H., Yanbing, Q., Qinglin, Z., Ratcliffe, M.: An improved EEG de-noising approach in electroencephalogram (EEG) for home care. In: 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 469–474 (2011)

    Google Scholar 

  22. Zhao, Q.L., Hu, B., Liu, L., Ratcliffe, M., Peng, H., Zhai, J.W., Li, L.L., Shi, Q.X., Liu, Q.Y., Qi, Y.B.: An EEG based nonlinearity analysis method for schizophrenia diagnosis. In: The Ninth IASTED International Conference on Biomedical Engineering (2012)

    Google Scholar 

  23. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena 9, 189–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena 65, 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lempel, A., Ziv, J.: On the Complexity of Finite Sequences. IEEE Transactions on Information Theory 22, 75–81 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaspar, F., Schuster, H.G.: Easily calculable measure for the complexity of spatiotemporal patterns. Phys. Rev. A 36, 842–848 (1987)

    Article  MathSciNet  Google Scholar 

  27. Fei-Yan, F., Ying-Jie, L., Yi-Hong, Q., Yi-Sheng, Z.: Use of ANN and Complexity Measures in Cognitive EEG Discrimination. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp. 4638–4641 (2005)

    Google Scholar 

  28. Holla, A.V.R., Aparna, P.: A nearest neighbor based approach for classifying epileptiform EEG using nonlinear DWT features. In: 2012 International Conference on Signal Processing and Communications (SPCOM), pp. 1–5 (2012)

    Google Scholar 

  29. Buchsbaum, M.S., Wu, J., DeLisi, L.E., Holcomb, H., Kessler, R., Johnson, J., King, A.C., Hazlett, E., Langston, K., Post, R.M.: Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. J. Affect Disord. 10, 137–152 (1986)

    Article  Google Scholar 

  30. Nagata, K., Tagawa, K., Hiroi, S., Shishido, F., Uemura, K.: Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction. Electroencephalogr. Clin. Neurophysiol. 72, 16–30 (1989)

    Article  Google Scholar 

  31. Greicius, M.D., Flores, B.H., Menon, V., Glover, G.H., Solvason, H.B., Kenna, H., Reiss, A.L., Schatzberg, A.F.: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62, 429–437 (2007)

    Article  Google Scholar 

  32. Fingelkurts, A.A., Rytsala, H., Suominen, K., Isometsa, E., Kahkonen, S.: Impaired functional connectivity at EEG alpha and theta frequency bands in major depression. Human Brain Mapping 28, 247–261 (2007)

    Article  Google Scholar 

  33. Na, S.H., Jin, S.H., Kim, S.Y., Ham, B.J.: EEG in schizophrenic patients: mutual information analysis. Clin. Neurophysiol. 113, 1954–1960 (2002)

    Article  Google Scholar 

  34. Hosseinifard, B., Moradi, M.H., Rostami, R.: Classifying depression patients and normal subjects using machine learning techniques. In: 19th Iranian Conference on Electrical Engineering (ICEE), Tehran, pp. 1–4 (2011)

    Google Scholar 

  35. Gualtieri, C.T., Johnson, L.G., Benedict, K.B.: Neurocognition in depression: patients on and off medication versus healthy comparison subjects. J. Neuropsychiatry Clin. Neurosci. 18, 217–225 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Hu, B., Zhou, L., Moore, P., Chen, J. (2013). An EEG Based Pervasive Depression Detection for Females. In: Zu, Q., Hu, B., Elçi, A. (eds) Pervasive Computing and the Networked World. ICPCA/SWS 2012. Lecture Notes in Computer Science, vol 7719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37015-1_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37015-1_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37014-4

  • Online ISBN: 978-3-642-37015-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics