
ar
X

iv
:1

30
1.

33
16

v1
 [

cs
.F

L
]

 1
5

Ja
n

20
13

Two-Sided Derivatives for Regular Expressions

and for Hairpin Expressions

Jean-Marc Champarnaud Jean-Philippe Dubernard

Hadrien Jeanne Ludovic Mignot

January 22, 2018

Abstract

The aim of this paper is to design the polynomial construction of

a finite recognizer for hairpin completions of regular languages. This

is achieved by considering completions as new expression operators and

by applying derivation techniques to the associated extended expressions

called hairpin expressions. More precisely, we extend partial derivation of

regular expressions to two-sided partial derivation of hairpin expressions

and we show how to deduce a recognizer for a hairpin expression from its

two-sided derived term automaton, providing an alternative proof of the

fact that hairpin completions of regular languages are linear context-free.

1 Introduction

The aim of this paper is to design the polynomial construction of a finite recog-
nizer for hairpin completions of regular languages. Given an integer k > 0 and
an involution H over an alphabet Γ, the hairpin k-completion of two languages
L1 and L2 over Γ is the language Hk(L1, L2) = {αβγH(β)H(α) | α, β, γ ∈ Γ∗ ∧
(αβγH(β) ∈ L1 ∨βγH(β)H(α) ∈ L2)∧ |β| = k} (see Figure 1). Hairpin comple-
tion has been deeply studied [2, 6, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23].
The hairpin completion of formal languages has been introduced in [9] by reason
of its application to biochemistry. It aroused numerous studies that investigate
theoretical and algorithmic properties of hairpin completions or related opera-
tions (see for example [14, 18, 21]). One of the most recent result concerns the
problem of deciding regularity of hairpin completions of regular languages; it can
be found in [11] as well as a complete bibliography about hairpin completion.

1

http://arxiv.org/abs/1301.3316v1

α

β

γ

H(β)

β
γ

H(β)
H(α)

α

β

γ

H(β)

H(α)

Figure 1: The Hairpin Completion.

Hairpin completions of regular languages are proved to be linear context-free
from [9]. An alternative proof is presented in this paper, with a somehow more
constructive approach, since it provides a recognizer for the hairpin completion.
This is achieved by considering completions as new expression operators and by
applying derivation techniques to the associated extended expressions, that we
call hairpin expressions. Notice that a similar derivation-based approach has
been used to study approximate regular expressions [8], through the definition
of new distance operators.

Two-sided derivation is shown to be particularly suitable for the study of
hairpin expressions. More precisely, we extend partial derivation of regular
expressions [1] to two-sided partial derivation of regular expressions first and
then of hairpin expressions. We prove that the set of two-sided derived terms
of a hairpin expression E over an alphabet Γ is finite. Hence the two-sided
derived term automaton A is a finite one. Furthermore the automaton A is over
the alphabet (Γ ∪ {ε})2 and, as we prove it, the language over Γ of such an
automaton is linear context-free and not necessarily regular. Finally we show
that the language of the hairpin expression E and the language over Γ of the
automaton A are equal.

This paper is an extended version of the conference paper [7]. It is organized
as follows. Next section gathers useful definitions and properties concerning au-
tomata and regular expressions. The notion of two-sided residual of a language
is introduced in Section 3, as well as the related notion of Γ-couple automaton.
In Section 4, hairpin completions of regular languages and their two-sided resid-
uals are investigated. The two-sided partial derivation of hairpin expressions
is considered in Section 5, leading to the construction of a finite recognizer. A
specific case is examined in Section 6.

2 Preliminaries

An alphabet is a finite set of distinct symbols. Given an alphabet Σ, we denote by
Σ∗ the set of all the words over Σ. The empty word is denoted by ε. A language
over Σ is a subset of Σ∗. The three operations ∪, · and ∗ are defined for any
two languages L1 and L2 over Σ by: L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 ∨ w ∈ L2},
L1 ·L2 = {w1w2 ∈ Σ∗ | w1 ∈ L1 ∧ w2 ∈ L2}, L∗1 = {ε}∪ {w1 · · ·wk ∈ Σ∗ | ∀j ∈
{1, . . . , k}, wj ∈ L1}. The family of regular languages over Σ is the smallest

2

family F closed under the three operations ∪, · and ∗ satisfying ∅ ∈ F and
∀a ∈ Σ, {a} ∈ F . Regular languages can be represented by regular expressions.
A regular expression over Σ is inductively defined by: E = a, E = ε, E = ∅,
E = F + G, E = F · G, E = F ∗, where a is any symbol in Σ and F and
G are any two regular expressions over Σ. The width of E is the number of
occurrences of symbols in E, and its star number the number of occurrences of
the operator ∗. The language denoted by E is the language L(E) inductively
defined by: L(A) = {a}, L(ε) = {ε}, L(∅) = ∅, L(F + G) = L(F) ∪ L(G),
L(F · G) = L(F) · L(G), L(F ∗) = (L(F))∗, where a is any symbol in Σ and
F and G are any two regular expressions over Σ. The language denoted by a
regular expression is regular.

Let w be a word in Σ∗ and L be a language. The left residual (resp. right
residual) of L w.r.t. w is the language w−1(L) = {w′ ∈ Σ∗ | ww′ ∈ L} (resp.
(L)w−1 = {w′ ∈ Σ∗ | w′w ∈ L}). It has been shown that the set of the left
residuals (resp. right residuals) of a language is a finite set if and only if the
language is regular.

An automaton (or a NFA) over an alphabet Σ is a 5-tuple A = (Σ, Q, I, F, δ)
where Σ is an alphabet, Q a finite set of states, I ⊂ Q the set of initial states,
F ⊂ Q the set of final states and δ the transition function from Q × Σ to 2Q.
The domain of the function δ can be extended to 2Q × Σ∗ as follows: for any
word w in Σ∗, for any symbol a in Σ, for any set of states P ⊂ Q, for any state
p ∈ Q, δ(P, ε) = P , δ(p, aw) = δ(δ(p, a), w) and δ(P,w) =

⋃

p∈P δ(p, w).
The language recognized by the automaton A is the set L(A) = {w ∈ Σ∗ |

δ(I, w) ∩ F 6= ∅}. Given a state q in Q, the right language of q is the set
−→
L (q) = {w ∈ Σ∗ | δ(q, w)∩F 6= ∅}. It can be shown that (1) L(A) =

⋃

i∈I

−→
L (i),

(2)
−→
L (q) = {ε | q ∈ F} ∪ (

⋃

a∈Σ,p∈δ(q,a){a} ·
−→
L (p)) and (3) a−1(

−→
L (q)) =

⋃

p∈δ(q,a)

−→
L (p).

Kleene Theorem [15] asserts that a language is regular if and only if there
exists an NFA that recognizes it. As a consequence, for any language L, there
exists a regular expression E such that L(E) = L if and only if there exists an
NFA A such that L(A) = L. Conversion methods from an NFA to a regular
expression and vice versa have been deeply studied. In this paper, we focus on
the notion of partial derivative defined by Antimirov [1]1.

Given a regular expression E over an alphabet Σ and a word w in Σ∗, the left
partial derivative of E w.r.t. w is the set ∂

∂w
(E) of regular expressions satisfying:

⋃

E′∈ ∂
∂w

(E) L(E
′) = w−1(L(E)).

This set is inductively computed as follows: for any two regular expressions
F and G, for any word w in Σ∗ and for any two distinct symbols a and b in Σ,

∂
∂a
(a) = {ε}, ∂

∂a
(b) = ∂

∂a
(ε) = ∂

∂a
(∅) = ∅,

∂
∂a
(F +G) = ∂

∂a
(F) ∪ ∂

∂a
(G), ∂

∂a
(F ∗) = ∂

∂a
(F) · F ∗,

∂
∂a
(F ·G) =

{ ∂
∂a
(F) ·G ∪ ∂

∂a
(G) if ε ∈ L(F),

∂
∂a
(F) ·G otherwise,

1Partial derivation is investigated in the more general framework of weighted expressions
in [17].

3

∂
∂aw

(F) = ∂
∂w

(∂
∂a
(F)), ∂

∂ε
(F) = {F},

where for any set E of regular expressions, for any word w in Σ∗, for any
regular expression F , ∂

∂w
(E) =

⋃

E∈E
∂
∂w

(E) and E · F =
⋃

E∈E{E · F}. Any
expression appearing in a left partial derivative is called a left derived term.
Similarly, the right partial derivative of a regular expression E over an alphabet
Σ w.r.t. a word w in Σ∗ is the set (E) ∂

∂w
inductively defined as follows for any

two regular expressions F and G, for any word w in Σ∗ and for any two distinct
symbols a and b in Σ,

(a) ∂
∂a

= {ε}, (b) ∂
∂a

= (ε) ∂
∂a

= (∅) ∂
∂a

= ∅,

(F +G) ∂
∂a

= (F) ∂
∂a
∪ (G) ∂

∂a
, (F ∗) ∂

∂a
= F ∗ · (F) ∂

∂a
,

(F ·G) ∂
∂a

=

{

F · (G) ∂
∂a
∪ (F) ∂

∂a
if ε ∈ L(G),

F · (G) ∂
∂a

otherwise,

(F) ∂
∂aw

= ((F) ∂
∂a
) ∂
∂w

, (F) ∂
∂ε

= {F},
where for any set E of regular expressions, for any word w in Σ∗, for any

regular expression F , (E) ∂
∂w

=
⋃

E∈E(E) ∂
∂w

and F · E =
⋃

E∈E{F · E}. Any
expression appearing in a right partial derivative is called a right derived term.

We denote by
←−
DE (resp.

−→
DE) the set of left (resp. right) derived terms of

the expression E. From the set of left derived terms of a regular expression E
of width n, Antimirov defined in [1] the derived term automaton A of E and
showed that A is a k-state NFA that recognizes L(E), with k ≤ n+ 1.

A language over an alphabet Γ is said to be linear context-free if it can be
generated by a linear grammar, that is a grammar equipped with productions
in one of the following forms:

1. A→ xBy, where A and B are any two non-terminal symbols, and x and
y are any two symbols in Γ ∪ {ε} such that (x, y) 6= (ε, ε),

2. A→ ε, where A is any non-terminal symbol.

Notice that the family of regular languages is strictly included into the family
of linear context-free languages. In the following, we will consider combinations
of left and right partial derivatives in order to deal with non-regular languages.

3 Two-sided Residuals of a Language and Couple

NFA

In this section, we extend residuals to two-sided residuals. This operation is the
composition of left and right residuals, but it is more powerful than classical
residuals since it allows to compute a finite subset of the set of residuals even
for non-regular languages, which leads to the construction of a derivative-based
finite recognizer.

Definition 1. Let L be a language over an alphabet Γ and let u and v be
two words in Γ∗. The two-sided residual of L w.r.t. (u, v) is the language
(u, v)−1(L) = {w ∈ Γ∗ | uwv ∈ L}.

4

As above-mentioned, the two-sided residual operation is the composition of
the two operations of left and right residuals.

Lemma 1. Let L be a language over an alphabet Γ and u and v be two words
in Γ∗. Then: (u, v)−1(L) = (u−1(L))v−1 = u−1((L)v−1).

Proof. Let w be a word in Γ∗.
w ∈ (u−1(L))v−1 ⇔ wv ∈ u−1(L) ⇔ uwv ∈ L ⇔ (u, v)−1(L)

⇔ uwv ∈ L ⇔ uw ∈ (L)v−1 ⇔ w ∈ u−1((L)v−1).

Corollary 1. Let L be a language over an alphabet Γ and u and v be two words
in Γ∗. Then: ε ∈ (u, v)−1(L) ⇔ uv ∈ L.

It is a folk knowledge that NFAs are related to left residual computation
according to the following assertion (A): in an NFA (Σ, Q, I, F, δ), a word

aw belongs to
−→
L (q) with q ∈ Q if and only if w belongs to a−1(

−→
L (q)) =

⋃

q′∈δ(q,a)

−→
L (q′). Since a two-sided residual w.r.t. a couple (x, y) of symbols in

an alphabet Γ is by definition the combination of a left residual w.r.t. x and of a
right residual w.r.t. y, the assertion (A) can be extended to two-sided residuals
by introducing couple NFAs equipped with transitions labelled by couples of
symbols in Γ. The notion of right language of a state is extended to the one
of Γ-right language as follows: if a given word w in Γ∗ belongs to the Γ-right
language of a state q′ and if there exists a transition from a state q to q′ labelled
by a couple (x, y), then the word xwy belongs to the Γ-right language of q.

More precisely, given an alphabet Γ, we set ΣΓ = {(x, y) | x, y ∈ Γ ∪ {ε} ∧
(x, y) 6= (ε, ε)}. We consider the mapping Im from (ΣΓ)

∗ to Γ∗ inductively
defined for any word w in (ΣΓ)

∗ and for any symbol (x, y) ∈ ΣΓ by: Im(ε) = ε
and Im((x, y) · w) = x · Im(w) · y. Notice that this mapping was introduced by
Sempere [24] in order to compute the language denoted by a linear expression.
Linear expressions denote linear context-free languages, and are equivalent to
the regular-like expressions of Brzozowski [3].

Definition 2. Let A = (Σ, Q, I, F, δ) be an NFA. The NFA A is a couple NFA
if there exists an alphabet Γ such that Σ ⊂ ΣΓ. In this case, A is called a Γ-
couple NFA. The Γ-language of a Γ-couple NFA A is the subset LΓ(A) of Γ∗

defined by: LΓ(A) = {Im(w) | w ∈ L(A)}.

The definition of right languages and their classical properties extend to
couple NFAs as follows. Let A = (Σ, Q, I, F, δ) be a Γ-couple NFA and q be

a state in Q. The Γ-right language of q is the subset
−→
L Γ(q) of Γ∗ defined by:

−→
L Γ(q) = {Im(w) | w ∈

−→
L (q)}.

Lemma 2. Let A = (Σ, Q, I, F, δ) be a Γ-couple NFA and q be a state in Q.

Then: LΓ(A) =
⋃

i∈I

−→
L Γ(i).

Proof. Trivially deduced from Definition 2, from definition of Γ-right languages

and from the fact that L(A) =
⋃

i∈I

−→
L (i).

5

Lemma 3. Let A = (Σ, Q, I, F, δ) be a Γ-couple NFA and q be a state in Q.

Then:
−→
L Γ(q) = {ε | q ∈ F} ∪

⋃

(x,y)∈Σ,q′∈δ(q,(x,y)){x} ·
−→
L Γ(q

′) · {y}.

Proof. Trivially deduced from Definition 2, from definition of Γ-right languages

and from the fact that
−→
L (q) = {ε | q ∈ F} ∪

⋃

a∈Σ,q′∈δ(q,a){a} ·
−→
L (q′).

Corollary 2. Let A = (Σ, Q, I, F, δ) be a Γ-couple NFA, (x, y) be a couple in

ΣΓ and q be a state in Q. Then: (x, y)−1(
−→
L Γ(q)) =

⋃

q′∈δ(q,(x,y))

−→
L Γ(q

′).

The following example illustrates the fact that there exist non-regular lan-
guages that can be recognized by couple NFAs.

Example 1. Let Γ = {a, b} and A be the automaton of the Figure 2. The
Γ-language of A is LΓ(A) = {anbn | n ∈ N}.

1 (a, b)

Figure 2: The Couple Automaton A.

As a consequence there exist non-regular languages that are recognized by
a couple NFA. In fact, the family of languages recognized by couple NFAs is
exactly the family of linear context-free languages.

Proposition 1. The Γ-language recognized by a Γ-couple NFA is linear context-
free.

Proof. Let A = (Σ, Q, I, F, δ). Let us define the grammar G = (X,V, P, S) by:

• X = Γ, the set of terminal symbols,

• V = {Aq | q ∈ Q} ∪ {S}, the set of non-terminal symbols,

• P = {S → Aq | q ∈ I} ∪ {Aq → ε | q ∈ F} ∪ {Aq → αAq′β | q′ ∈
δ(q, (α, β))}, the set of productions,

• S, the axiom.

1. Let w be word in Γ∗. Let us first show that w belongs to the language

generated by the grammar Gq = (X,V, P,Aq) if and only if it is in
−→
L Γ(q),

by recurrence over the length of w.

(a) Let us suppose that w = ε. By construction of Gq, Aq → ε if and

only if q ∈ F , i.e. ε ∈
−→
L Γ(q).

(b) Let us suppose that w = αw′β with (α, β) 6= (ε, ε). By definition
of L(Gq), w ∈ L(Gq) if there exists a symbol Aq′ in V such that
Aq → αAq′β and w′ ∈ L(Gq′). By recurrence hypothesis, it holds

6

that w′ ∈ L(Gq′) ⇔ w′ ∈
−→
L Γ(q

′). Since by construction Aq →

αAq′β ⇔ q′ ∈ δ(q, (α, β)) and since according to Lemma 3,
−→
L Γ(q) =

{ε | q ∈ F} ∪
⋃

(x,y)∈Σ,q′∈δ(q,(x,y)){x} ·
−→
L Γ(q

′) · {y}, it holds that

w ∈ L(Gq)⇔ w ∈
−→
L Γ(q).

2. Since L(G) =
⋃

q|S→Aq
L(Gq), it holds from (1) that L(G) =

⋃

q∈I

−→
L Γ(q),

that equals according to Lemma 2 to L(A).

Finally, since the Γ-language of A is generated by a linear grammar, it is
linear context free.

Proposition 2. The language generated by a linear grammar is recognized by
a couple NFA.

Proof. Let G = (X,V, P, S) be a linear grammar. Let us define the automaton
A = (Σ, Q, I, F, δ) by:

• Σ = ΣX ,

• Q = V ,

• I = {S},

• F = {B ∈ V | (B → ε) ∈ P},

• B′ ∈ δ(B, (x, y))⇔ (B → xBy) ∈ P .

For any symbol B in V , let us set GB = (X,V, P,B). Let w be a word in X∗.

Let us show by recurrence over the length of w that w ∈ L(GB)⇔ w ∈
−→
LX(B).

1. Let w = ε. Then ε ∈ L(GB) if and only if (GB → ε) ∈ P . By construction,

it is equivalent to B ∈ F and to ε ∈
−→
LX(B).

2. Let us suppose that w is different from ε. Then by recurrence hypothesis
and according to Lemma 3:

w ∈ L(GB)
⇔ ∃(x, y) ∈ ΣX , w′ ∈ X∗, B′ ∈ V | w = xw′y ∧ (B → xB′y) ∈ P ∧w′ ∈ L(GB′)

⇔ ∃(x, y) ∈ ΣX , w′ ∈ X∗, B′ ∈ V | w = xw′y ∧B′ ∈ δ(B, (x, y)) ∧ w′ ∈
−→
LX(B′)

⇔ w ∈
−→
LX(B)

Finally, since L(G) = L(GS) =
−→
L S(B), it holds from Lemma 2 that L(G) =

L(A).

Theorem 1. A language is linear context-free if and only if it is recognized by
a couple NFA.

Proof. Directly from Proposition 1 and from Proposition 2.

7

We present here two algorithms in order to solve the membership problem2

via a couple NFA. The Algorithm 2 checks whether the word w ∈ Γ∗ is recog-
nized by the Γ-couple NFA A. It returns TRUE if there exists an initial state
such that its Γ-right language contains w. The Algorithm 1 checks whether the
word w ∈ Γ∗ is in the Γ-right language of the state q.

Algorithm 1 IsInRightLanguage(A,w,q)

Require: A = (Σ, Q, I, F, δ) a Γ-couple NFA, w a word in Γ∗, q a state in Q

Ensure: Returns (w ∈
−→
L Γ(q))

1: if w = ε then
2: P ← (q ∈ F)
3: else
4: P ← FALSE
5: for all (q, (α, β), q′) ∈ δ | w = αw′β do
6: P ← P ∨ IsInRightLanguage(A, w′, q′)
7: end for
8: end if
9: return P

Algorithm 2 MembershipTest(A,w)

Require: A = (Σ, Q, I, F, δ) a Γ-couple NFA, w a word in Γ∗

Ensure: Returns (w ∈ LΓ(A))
1: R ← FALSE
2: for all i ∈ I do
3: R ← R ∨ IsInRightLanguage(A, w, i)
4: end for
5: return R

Proposition 3. Let A = (Σ, Q, I, F, δ) be a Γ-couple NFA, q be a state in Q
and w be a word in Γ∗. The two following propositions are satisfied:

1. Algorithm 1: IsInRightLanguage(A, w, q) returns (w ∈
−→
L Γ(q)),

2. Algorithm 2: MembershipTest(A,w) returns (w ∈ LΓ(A)).

Proof. Let w be a word in Γ∗.

1. Let us show by recurrence over the length of w that the algorithm IsIn-

RightLanguage(A, w, q) returns (w ∈
−→
L Γ(q)).

If w = ε, P = TRUE ⇔ q ∈ F ⇔ ε ∈
−→
L Γ(q).

Let us suppose now that |w| ≥ 1. Then P =
∨

(q,(α,β),q′)∈δ|w=αw′β IsIn-

RightLanguage(A, w′, q′). If there is no transition (q, (α, β), q′) ∈ δ,

2Given a language L and a word w, does w belong to L?

8

then trivially w /∈
−→
L Γ(q). For any (q, (α, β), q′) ∈ δ, let us notice that

(α, β) ∈ ΣΓ. As a consequence, the length of any word w′ satisfying
w = αw′β ∧ (q, (α, β), q′) ∈ δ is strictly smaller than |w|. Let w′ be a
word satisfying w = αw′β ∧ (q, (α, β), q′) ∈ δ. According to recurrence

hypothesis, IsInRightLanguage(A, w′, q′) returns (w′ ∈
−→
L Γ(q

′)). Hence

P =
∨

(q,(α,β),q′)∈δ|w=αw′β (w′ ∈
−→
L Γ(q

′)). Finally, according to Lemma 3,

P = (w ∈
−→
L Γ(q)).

2. Since R =
∨

i∈I IsInRightLanguage(A, w, i), it holds as a direct conse-

quence that R =
∨

i∈I(w ∈
−→
L Γ(i)). Hence, according to Lemma 2, it

holds that R = (w ∈ LΓ(A)).

The following sections are devoted to hairpin completions and their two-
sided residuals. It turns out that hairpin completions are linear context-free
languages. Hence, we show how to compute a couple NFA that recognizes a
given hairpin completion.

4 Hairpin Completion of a Language and its Resid-

uals

Let Γ be an alphabet. An involution f over Γ is a mapping from Γ to Γ satisfying
for any symbol a in Γ, f(f(a)) = a. An anti-morphism µ over Γ∗ is a mapping
from Γ∗ to Γ∗ satisfying for any two words u and v in Γ∗ µ(u · v) = µ(v) · µ(u).
Any mapping g from Γ to Γ can be extended as an anti-morphism over Γ∗ as
follows: ∀a ∈ Γ, ∀w ∈ Γ∗, g(ε) = ε, g(a · w) = g(w) · g(a).

Definition 3. Let Γ be an alphabet and H be an anti-morphism over Γ∗. Let L1

and L2 be two languages over Γ. Let k > 0 be an integer. The (H, k)-completion
of L1 and L2 is the language Hk(L1, L2) defined by:

Hk(L1, L2)
=

{αβγH(β)H(α) | α, β, γ ∈ Γ∗ ∧ (αβγH(β) ∈ L1 ∨ βγH(β)H(α) ∈ L2) ∧ |β| = k}.

The (H, k)-completion operator can be defined as the union of two unary

operators
←−
Hk and

−→
Hk.

Definition 4. Let Γ be an alphabet and H be an anti-morphism over Γ∗. Let
L be a language over Γ. Let k > 0 be an integer. The right (resp. left) (H, k)-

completion of L is the language
−→
Hk(L) (resp.

←−
Hk(L)) defined by:

−→
Hk(L) = {αβγH(β)H(α) | α, β, γ ∈ Γ∗ ∧ αβγH(β) ∈ L ∧ |β| = k},
←−
Hk(L) = {αβγH(β)H(α) | α, β, γ ∈ Γ∗ ∧ βγH(β)H(α) ∈ L ∧ |β| = k}.

Lemma 4. Let Γ be an alphabet and H be an anti-morphism over Γ∗. Let L1

and L2 be two languages over Γ. Let k > 0 be an integer. Then:

Hk(L1, L2) =
−→
Hk(L1) ∪

←−
Hk(L2).

9

Proof. Let w be a word in Γ∗.

w ∈ Hk(L1, L2) ⇔

w = αβγH(β)H(α)
∧(αβγH(β) ∈ L1 ∨ βγH(β)H(α) ∈ L2)
∧|β| = k

⇔

{

(w = αβγH(β)H(α) ∧ αβγH(β) ∈ L1 ∧ |β| = k)
∨(w = αβγH(β)H(α) ∧ βγH(β)H(α) ∈ L2 ∧ |β| = k)

⇔ w ∈
−→
Hk(L1) ∨ w ∈

←−
Hk(L2) ⇔ w ∈

−→
Hk(L1) ∪

←−
Hk(L2).

When H is an involution over Γ, the (H, k)-completion of L1 and L2 is called
a hairpin completion [9]. Even in the case where H is not an involution, we will

say that languages such as
−→
Hk(L),

←−
Hk(L) or Hk(L,L

′) are hairpin completed
languages and we will speak of hairpin completions. We first establish formu-
lae in this general setting in order to compute the two-sided residuals of the
completed language of an arbitrary language. The following operator is useful.

Definition 5. Let Γ be an alphabet and H be an anti-morphism over Γ∗. Let L
be a language over an alphabet Γ. Let k > 0 be an integer. The language H′k(L)
is defined by: H′k(L) = {βγH(β) ∈ L | β, γ ∈ Γ∗ ∧ |β| = k}.

We split the computation of two-sided residuals of a completed language
w.r.t. (x, y) couples: the first case is when both x and y are symbols.

Lemma 5. Let Γ be an alphabet and H be an anti-morphism over Γ∗. Let L be
a language over an alphabet Γ. Let k > 0 be an integer. Let L′ be a language in

{
←−
Hk(L),

−→
Hk(L),H

′
k(L)}. Let w a word in Γ∗. Then:

w ∈ L′ ⇒ |w| ≥ k ∧ ∃a ∈ Γ, ∃w′ ∈ Γ∗, w = aw′H(a).

Proof. Trivially deduced from Definition 4 and Definition 5.

Corollary 3. Let Γ be an alphabet and H be an anti-morphism over Γ∗. Let L
be a language over an alphabet Γ. Let k > 0 be an integer. Let L′ be a language

in {
←−
Hk(L),

−→
Hk(L),H

′
k(L)}. Then: L′ =

⋃

x∈Γ{x} · ((x,H(x))
−1(L′)) · {H(x)}.

Proposition 4. Let Γ be an alphabet and H be an anti-morphism over Γ∗. Let
L be a language over Γ. Let (x, y) a couple of symbols in Γ × Γ. Let k > 0 be
an integer. Then:

(x, y)−1(
−→
Hk(L)) =

∅ if y 6= H(x),
−→
Hk(x

−1(L)) ∪ (x, y)−1(L) if y = H(x) ∧ k = 1,
−→
Hk(x

−1(L)) ∪ H′k−1((x, y)
−1(L)) otherwise,

(x, y)−1(
←−
Hk(L)) =

∅ if y 6= H(x),
←−
Hk((L)y

−1) ∪ (x, y)−1(L) if y = H(x) ∧ k = 1,
←−
Hk((L)y

−1) ∪ H′k−1((x, y)
−1(L)) otherwise,

(x, y)−1(H′k(L)) =

∅ if y 6= H(x),
H′k−1((x, y)

−1(L)) if y = H(x) ∧ k > 1,
(x, y)−1(L) otherwise.

10

Proof. Let w be a word in Γ∗. According to Lemma 5, any word u in
−→
Hk(L) ∪

←−
Hk(x

−1(L)) ∪ H′k(L) can be split up into avb with b = H(a). As a conse-

quence, whenever y 6= H(x), it holds that (x, y)−1(
−→
Hk(L)) = (x, y)−1(

←−
Hk(L)) =

(x, y)−1(H′k(L)) = ∅. Let us suppose now that y = H(x).
(I) Let us define the languages L1 and L2 by:

L1 = (x, y)−1(
−→
Hk(L)),

L2 =

{ −→
Hk(x

−1(L)) ∪H′k−1((x, y)
−1(L)) if k > 1,

−→
Hk(x

−1(L)) ∪ (x, y)−1(L) otherwise.
Then:

w ∈ L1 ⇔ xwy ∈
−→
Hk(L)

⇔

{

(xwy = xαβγH(β)H(α)y ∧ y = H(x) ∧ xαβγH(β) ∈ L ∧ |β| = k)
∨(xwy = xβγH(β)y ∧ y = H(x) ∧ xβγH(β)y ∈ L ∧ |β| = k − 1)

⇔

{

(w = αβγH(β)H(α) ∧ y = H(x) ∧ αβγH(β) ∈ x−1(L) ∧ |β| = k)
∨(w = βγH(β) ∧ y = H(x) ∧ βγH(β) ∈ (x, y)−1(L) ∧ |β| = k − 1)

⇔

(w = αβγH(β)H(α) ∧ y = H(x) ∧ w ∈
−→
Hk(x

−1(L)))
∨(w = βγH(β) ∧ y = H(x) ∧ w ∈ H′k−1((x, y)

−1(L)) ∧ k 6= 1)
∨(w = γ ∧ y = H(x) ∧ w ∈ (x, y)−1(L) ∧ k = 1)

⇔ w ∈ L2.
(II) Let us set:

L1 = (x, y)−1(
←−
Hk(L)),

L2 =

{ ←−
Hk(x

−1(L)) ∪H′k−1((x, y)
−1(L)) if k > 1,

←−
Hk(x

−1(L)) ∪ (x, y)−1(L) otherwise.
Then

w ∈ L1 ⇔ xwy ∈
←−
Hk(L)

⇔

{

(xwy = xαβγH(β)H(α)y ∧ y = H(x) ∧ βγH(β)H(α)y ∈ L ∧ |β| = k)
∨(xwy = xβγH(β)y ∧ y = H(x) ∧ xβγH(β)y ∈ L ∧ |β| = k − 1)

⇔

{

(w = αβγH(β)H(α) ∧ y = H(x) ∧ βγH(β)H(α) ∈ (L)y−1 ∧ |β| = k)
∨(w = βγH(β) ∧ y = H(x) ∧ βγH(β) ∈ (x, y)−1(L) ∧ |β| = k − 1)

⇔

(w = αβγH(β)H(α) ∧ y = H(x) ∧ w ∈
←−
Hk((L)y

−1))
∨(w = βγH(β) ∧ y = H(x) ∧ w ∈ H′k−1((x, y)

−1(L)) ∧ k 6= 1)
∨(w = γ ∧ y = H(x) ∧ w ∈ (x, y)−1(L) ∧ k = 1)

⇔ w ∈ L2.
(III) Let us set:

L1 = (x, y)−1(H′k(L)),
L2 = H′k−1((x, y)

−1(L)),
L3 = (x, y)−1(L).

Then:

11

w ∈ L1 ⇔ xwy ∈ H′k(L)

⇔

xwy = xβγH(β)y
∧y = H(x)
∧xβγH(β)y ∈ L
∧|β| = k − 1

⇔

w = βγH(β)
∧y = H(x)
∧βγH(β) ∈ (x, y)−1(L)
∧|β| = k − 1

⇔

{

(w = βγH(β) ∧ y = H(x) ∧ w ∈ H′k−1((x, y)
−1(L)) ∧ k > 1)

∨(w ∈ (x, y)−1(L) ∧ k = 1)

⇔

{

(w ∈ L2 ∧ k > 1)
∨(w ∈ L3 ∧ k = 1)

The problem of two-sided residuals of an hairpin completion w.r.t. couples
(x, y) with either x or y equal to ε is that they add one catenation that has to
be memorized. It can be checked that this may lead to infinite sets of two-sided
residuals.

Proposition 5. Let Γ be an alphabet and H be an anti-morphism over Γ∗. Let
L be a language over an alphabet Γ. Let k > 0 be an integer. Let L′ be a

language in {
←−
Hk(L),

−→
Hk(L),H

′
k(L)}. Let x be a symbol in Γ. Then:

(x, ε)−1(L′) = (x,H(x))−1(L′) · {H(x)},
(ε, x)−1(L′) =

⋃

z∈Γ|H(z)=x{z} · (z, x)
−1(L′).

Proof. Directly deduced from Lemma 1 and from Corollary 3.

Let L be a language over an alphabet Γ. The set RL of two-sided residuals
of L is defined by: RL =

⋃

k≥1R
k
L, where

Rk
L =

{

{(x, y)−1(L) | (x, y) ∈ ΣΓ} if k = 1,

{(x, y)−1(L′) | (x, y) ∈ ΣΓ ∧ L′ ∈ Rk−1
L } otherwise.

From now on we focus on hairpin completion of regular languages. Let us
recall that such a completion is not necessarily regular [9].

Lemma 6. The family of regular languages is not closed under hairpin comple-
tion.

Proof. Let Γ = {a, b, c}, k > 0 be a fixed integer and H be the anti-morphism

over Γ∗ defined by H(a) = a, H(b) = c and H(c) = b. Let L′ =
−→
Hk(L(a

∗bkck)).
Let us first show that L′ = {anbkckan | n ≥ 0}. Let w be a word in Γ∗.

w ∈ L′ ⇔ w = αβγH(β)H(α) ∧ αβγH(β) ∈ L(a∗bkck) ∧ |β| = k
⇔ w = αβγH(β)H(α) ∧ α ∈ L(a∗) ∧ H(β) = ck ∧ β = bk

⇔ w = anbkckan with n ≥ 0.
For any integer j ≥ 0, let us define the language L′j by:

L′j =

{

L′ if j = 0,
a−1(L′j−1) otherwise.

12

Consequently, it holds L′j = {an−jbkckan | n ≥ j}. Finally, since for any

two distinct integers j and j′, the word bkckaj belongs to L′j \L
′
j′ , it holds that

for any two distinct integers j and j′, L′j 6= L′j′ and (aj)−1(L′) 6= (aj
′

)−1(L′).
As a consequence, the set of left residuals of L′ is infinite.

The set of two-sided residuals of a hairpin completion of a regular language
may be infinite, but the restriction to residuals w.r.t. couples (x, y) of symbols
is sufficient to obtain a finite set of two-sided residuals and a finite recognizer.

5 The Two-Sided Derived Term Automaton

The computation of residuals is intractable when it is defined over languages.
However, derived terms of regular expressions denote residuals of regular lan-
guages. We then extend the partial derivation of regular expressions [1] to the
partial derivation of hairpin expressions.

A hairpin expression E over an alphabet Γ is a regular expression over Γ or

is inductively defined by: E =
←−
Hk(F), E =

−→
Hk(F), E = H′k(F), E = G1 +G2,

where H is any anti-morphism over Γ∗, k > 0 is any integer, F is any regular
expression over Γ, and G1 and G2 are any two hairpin expressions over Σ.
If the only operators appearing in E are regular operators (+, · or ∗), the
expression E is said to be a simple hairpin expression. The language denoted
by a hairpin expression E over an alphabet Γ is the regular language L(E) if

E is a regular expression or is inductively defined by: L(
←−
Hk(F)) =

←−
Hk(L(F)),

L(
−→
Hk(F)) =

−→
Hk(L(F)), L(H′k(F)) = H′k(L(F)), L(G1 +G2) = L(G1) ∪ L(G2),

where H is any anti-morphism over Γ∗, k > 0 is any integer, F is any regular
expression over Γ, and G1 and G2 are any two hairpin expressions over Γ.

Definition 6. Let E be a hairpin expression over an alphabet Γ. Let (x, y)
be a couple of symbols in ΣΓ. Let k > 0 be an integer. The two-sided partial
derivative of E w.r.t. (x, y) is the set ∂

∂(x,y)
(E) of hairpin expressions defined

by:

∂
∂(x,y)

(F) =

(F) ∂
∂y

if x = ε,
∂
∂x
(F) if y = ε,

⋃

F ′∈ ∂
∂x

(F)(F
′) ∂

∂y
otherwise,

∂
∂(x,y)

(
−→
Hk(F)) =

∅ if y 6= H(x),
−→
Hk(

∂
∂x
(F)) ∪ ∂

∂(x,y)
(F) if y = H(x) ∧ k = 1

−→
Hk(

∂
∂x
(F)) ∪H′k−1(

∂
∂(x,y)

(F)) otherwise,

∂
∂(x,y)

(
←−
Hk(F)) =

∅ if y 6= H(x),
←−
Hk((F) ∂

∂y
) ∪ ∂

∂(x,y)
(F) if y = H(x) ∧ k = 1

←−
Hk((F) ∂

∂y
) ∪ H′k−1(

∂
∂(x,y)

(F)) otherwise,

13

∂
∂(x,y)

(H′k(F)) =

∅ if y 6= H(x),
H′k−1(

∂
∂(x,y)

(F)) if k>1,
∂

∂(x,y)
(F) otherwise,

∂
∂(x,y)

(G1 +G2) =
∂

∂(x,y)
(G1) ∪

∂
∂(x,y)

(G2),

where H is any anti-morphism over Γ∗, k > 0 is any integer, F is any
regular expression over Γ, G1 and G2 are any two hairpin expressions over

Γ, and for any set H of hairpin expressions:
−→
Hk(H) = {

−→
Hk(H) | H ∈ H},

←−
Hk(H) = {

←−
Hk(H) | H ∈ H}, H′k(H) = {H

′
k(H) | H ∈ H}.

Let E be a hairpin expression over an alphabet Γ. The set
←→
DE of two-sided

derived terms of the expression E is defined by:
←→
DE =

⋃

k≥1

←→
Dk

E , where:

←→
Dk

E =

{ ⋃

(x,y)∈ΣΓ

∂
∂(x,y)(E) if k = 1,

⋃

(x,y)∈ΣΓ,E′∈
←−−→
Dk−1

E

∂
∂(x,y)(E

′) otherwise.

Derived terms of regular expressions are related to left residuals. Let us show
that derived terms of hairpin expressions are related to two-sided residuals.

Proposition 6. Let E be a hairpin expression over an alphabet Γ. Let (x, y)
be a couple of symbols in Γ2. Then:

⋃

F∈ ∂
∂(x,y)

(E) L(F) = (x, y)−1(L(E)).

Furthermore, if E is a regular expression, the proposition still holds whenever
(x, y) is a couple of symbols in ΣΓ.

Proof. Trivially proved by induction over the structure of E, according to Propo-
sition 4.

Determining whether the empty word belongs to the language denoted by a
regular expression E can be performed syntactically and inductively as follows:

ε /∈ L(a), ε /∈ L(∅), ε ∈ L(ε),
ε ∈ L(G1 ·G2)⇔ ε ∈ L(G1) ∧ ε ∈ L(G2),

ε ∈ L(G1 +G2)⇔ ε ∈ L(G1) ∨ ε ∈ L(G2), ε ∈ L(G∗1).
This syntactical test is needed to compute the derived term automaton since

it defines the finality of the states. We now show how to extend this computation
to hairpin expressions.

Lemma 7. Let F be a regular expression and G1 and G2 be two hairpin ex-
pressions. Then:

ε /∈ L(
−→
Hk(F)), ε /∈ L(

←−
Hk(F)), ε /∈ L(H′k(F)),

ε ∈ L(G1 +G2)⇔ ε ∈ L(G1) ∨ ε ∈ L(G2).

Proof. Trivially proved according to Definition 4, Definition 5 and definition of
languages denoted by hairpin expressions.

The following example illustrates the computation of derived terms. For
clarity, in this example, we assume that hairpin expressions are quotiented w.r.t.
the following rules: ε · E ∼ E, ∅ ·E ∼ ∅. Moreover, sets of expressions are also
quotiented w.r.t. the following rule: {∅} ∼ ∅.

14

Example 2. Let Γ = {a, b, c} and H be the anti-morphism over Γ∗ defined by

H(a) = a, H(b) = c and H(c) = b. Let E =
−→
H1(a

∗bc). Derived terms of E are
computed as follows:

∂
∂(a,a)(E) = {E},

∂
∂(b,c) (E) = {

−→
H1(c), ε},

∂
∂(c,b)(

−→
H1(c)) = {

−→
H1(ε)}.

Other partial derivatives are equal to ∅. Furthermore, it holds that ε is the
only derived term F of E such that ε belongs to L(F).

In the following we are looking for an upper bound over the cardinality of
the set of two-sided derived terms, thus we apply no reduction to the regular
expressions. Notice that this cardinality decreases whenever any reduction is
applied.

Lemma 8. Let E and F be two regular expressions over an alphabet Γ. Then
the three following propositions hold:

1.
←−−→
DE+F ⊂

←→
DE ∪

←→
DF ,

2.
←−→
DE·F ⊂

←−
DE ·

−→
DF ∪

←→
DE ∪

←→
DF ,

3.
←−→
DE∗ ⊂

←−
DE · E∗ ∪E∗ ·

−→
DE ∪

←→
DE ∪ (

←−
DE · E∗) ·

−→
DE ∪

←−
DE · (E∗ ·

−→
DE).

Furthermore,
←→
Dε =

←→
D∅ = ∅ and

←→
Da = {ε} for any symbol a in Γ.

Proof. Basic cases (ε, ∅ and a in Γ) are trivially proved directly applying Defi-
nition 6.

By induction over the structure of the set of two-sided derived terms. Sup-
pose that E and F are two regular expressions over an alphabet Γ. Let (x, y)
be a couple of symbols in ΣΓ.

1. Let us first show that ∂
∂(x,y)(E+F) ⊂

←→
DE∪

←→
DF . According to Definition 6,

it holds:

∂
∂(x,y)(E + F) =

∂
∂x
(E + F) if y = ε,

(E + F) ∂
∂y

if x = ε,
⋃

G∈ ∂
∂x

(E+F)(G) ∂
∂y

otherwise.

=

∂
∂x
(E) ∪ ∂

∂x
(F) if y = ε,

(E) ∂
∂y
∪ (F) ∂

∂y
if x = ε,

⋃

G∈ ∂
∂x

(E)(G) ∂
∂y
∪
⋃

G∈ ∂
∂x

(F)(G) ∂
∂y

otherwise.

Notice that the three following conditions hold:
∂
∂x
(E) ∪ ∂

∂x
(F) ⊂

←−
DE ∪

←−
DF ⊂

←→
DE ∪

←→
DF ,

(E) ∂
∂y
∪ (F) ∂

∂y
⊂
−→
DE ∪

−→
DF ⊂

←→
DE ∪

←→
DF ,

⋃

G∈ ∂
∂x

(E)(G) ∂
∂y
∪
⋃

G∈ ∂
∂x

(F)(G) ∂
∂y

= ∂
∂(x,y)(E) ∪ ∂

∂(x,y)(F) ⊂
←→
DE ∪

←→
DF .

As a consequence, ∂
∂(x,y)(E + F) ⊂

←→
DE ∪

←→
DF .

15

Furthermore, since by definition of the sets of two-sided derived terms, for

any expression G in
←→
DE (resp. in

←→
DF), ∂

∂(x,y)(G) ⊂
←→
DE (resp. ∂

∂(x,y)(G) ⊂
←→
DF), the proposition is satisfied.

2. Let us set E =
←−
DE ·

−→
DF ∪

←→
DE ∪

←→
DF .

(a) Let us first show that
∂

∂(x,y)(E · F) ⊂ ∂
∂x
(E) · (F) ∂

∂y
∪ ∂

∂(x,y)(E) ∪ ∂
∂(x,y)(F) ⊂ E .

According to Definition 6, it holds:

∂
∂(x,y)(E · F) =

∂
∂x
(E · F) if y = ε,

(E · F) ∂
∂y

if x = ε,
⋃

G∈ ∂
∂x

(E·F)(G) ∂
∂y

otherwise.

=

∂
∂x
(E) · F ∪ ∂

∂x
(F) if y = ε ∧ ε ∈ L(E),

∂
∂x
(E) · F if y = ε ∧ ε /∈ L(E),

(E) ∂
∂y
∪ E · (F) ∂

∂y
if x = ε ∧ ε ∈ L(F),

E · (F) ∂
∂y

if x = ε ∧ ε /∈ L(F),
⋃

G∈ ∂
∂x

(E)·F (G) ∂
∂y
∪
⋃

G∈ ∂
∂x

(F)(G) ∂
∂y

if x, y ∈ Γ ∧ ε ∈ L(E)
⋃

G∈ ∂
∂x

(E)·F (G) ∂
∂y

otherwise.

Notice that the three following conditions hold:
∂
∂x
(E) · F ∪ ∂

∂x
(F) ⊂

←−
DE ·

−→
DF ∪

←→
DF ,

(E) ∂
∂y
∪ E · (F) ∂

∂y
⊂
←→
DE ∪

←−
DE ·

−→
DF ,

⋃

G∈ ∂
∂x

(F)(G) ∂
∂y

= ∂
∂(x,y)(F) ⊂

−→
DF .

Moreover,

⋃

G∈ ∂
∂x

(E)·F (G) ∂
∂y

=

{
⋃

G∈ ∂
∂x

(E) G · (F) ∂
∂y
∪
⋃

G∈ ∂
∂x

(E)(G) ∂
∂y

if ε ∈ L(F),
⋃

G∈ ∂
∂x

(E) G · (F) ∂
∂y

otherwise.

Finally, since
⋃

G∈ ∂
∂x

(E) G · (F) ∂
∂y

= ∂
∂x
(E) · (F) ∂

∂y
⊂
←−
DE ·

−→
DF and

since
⋃

G∈ ∂
∂x

(E)(G) ∂
∂y

= ∂
∂(x,y)(E) ⊂

−→
DE , the proposition is satisfied.

(b) Let us now show that for any expression G in E , ∂
∂(x,y)(G) ⊂ E .

i. if G belongs to
←→
DE (resp. to

←→
DF), by definition of the set of two-

sided derived terms it holds ∂
∂(x,y)(G) ⊂

←→
DE (resp. ∂

∂(x,y)(G) ⊂
←→
DF).

ii. If G belongs to
←−
DE ·

−→
DF , then G = G1 · G2 and from (2a) it

holds that ∂
∂(x,y)(G) ⊂

←−−
DG1 ·

−−→
DG2 ∪

←−→
DG1 ∪

←−→
DG2 . According to

definition of the set of two-sided derived terms, the four follwong
conditions hold:
←−−
DG1 ⊂

←−
DE ,

←−→
DG1 ⊂

←→
DE ,

−−→
DG2 ⊂

−→
DF and

←−→
DG2 ⊂

←→
DF .

As a consequence, the proposition is satisfied.

3. Let us set E =
←−
DE ·E∗ ∪E∗ ·

−→
DE ∪

←→
DE ∪ (

←−
DE ·E∗) ·

−→
DE ∪

←−
DE · (E∗ ·

−→
DE).

16

(a) Let us first show that ∂
∂(x,y)(E

∗) ⊂ E . According to Definition 6, it

holds:

∂
∂(x,y)(E

∗) =

∂
∂x
(E∗) if y = ε,

(E∗) ∂
∂y

if x = ε,
⋃

G∈ ∂
∂x

(E∗)(G) ∂
∂y

otherwise.

=

∂
∂x
(E) · E∗ if y = ε,

E∗ · (E) ∂
∂y

if x = ε,
⋃

G∈ ∂
∂x

(E)(G ·E
∗) ∂

∂y
otherwise.

Notice that ∂
∂x
(E) ·E∗ ⊂

←−
DE ·E∗ and that E∗ · (E) ∂

∂y
⊂ E∗ ·

−→
DE .

Moreover,
⋃

G∈ ∂
∂x

(E)(G · E
∗) ∂

∂y

=
⋃

G∈ ∂
∂x

(E)(G) ∂
∂y
∪G · (E∗) ∂

∂y

=
⋃

G∈ ∂
∂x

(E)(G) ∂
∂y
∪G · (E∗ · (E) ∂

∂y
)

=
⋃

G∈ ∂
∂x

(E)(G) ∂
∂y
∪
⋃

G∈ ∂
∂x

(E) G · (E
∗ · (E) ∂

∂y
)

Finally, since the two following conditions hold:
⋃

G∈ ∂
∂x

(E)(G) ∂
∂y

= ∂
∂(x,y)(E) ⊂

←→
DE

and
⋃

G∈ ∂
∂x

(E) G · (E
∗ · (E) ∂

∂y
) = ∂

∂x
(E) · (E∗ · (E) ∂

∂y
) ⊂
←−
DE · (E∗ ·

−→
DE),

it holds that ∂
∂(x,y)(E

∗) ⊂ E .

(b) Let us now show that for any expression G in E , ∂
∂(x,y)(G) ⊂ E .

i. if G belongs to
←→
DE , by definition of the set of two-sided derived

terms it holds ∂
∂(x,y) ⊂

←→
DE .

ii. if G belongs to
←−
DE ·E

∗, then G = G1 ·E
∗ and from (2a) it holds

that:
∂

∂(x,y)(G) ⊂ ∂
∂x
(G1) · (E∗)

∂
∂y
∪ ∂

∂(x,y)(G1) ∪
∂

∂(x,y)(E
∗).

Moreover, since from (3a) ∂
∂(x,y)(E

∗) ⊂ E , since ∂
∂x
(G1) ⊂

←−
DE

and since ∂
∂(x,y)(G1) ⊂

←→
DE , it holds that:

∂
∂(x,y)(G)

⊂
←−
DE · (E∗ · (E) ∂

∂y
) ∪
←→
DE ∪ E

⊂
←−
DE · (E∗ ·

−→
DE) ∪

←→
DE ∪ E

⊂ E

iii. if G belongs to E∗ ·
−→
DE , then G = E∗ ·G1 and from (2a) it holds

that:
∂

∂(x,y)(G) ⊂ ∂
∂x
(E∗) · (G1)

∂
∂y
∪ ∂

∂(x,y)(E
∗) ∪ ∂

∂(x,y)(G1).

Moreover, since from (3a) ∂
∂(x,y)(E

∗) ⊂ E , since (G1)
∂
∂y
⊂
−→
DE

and since ∂
∂(x,y)(G1) ⊂

←→
DE :

∂
∂(x,y)(G)

17

⊂ (∂
∂x
(E) ·E∗) ·

−→
DE ∪ E ∪

←→
DE

⊂ (
←−
DE · E∗) ·

−→
DE ∪ E ∪

←→
DE

⊂ E

iv. If G belongs to (
←−
DE ·E∗) ·

−→
DE , then G = (G1 ·E∗) ·G2 and from

(2a) it holds that:
∂

∂(x,y)(G) ⊂ ∂
∂x
(G1 ·E∗) · (G2)

∂
∂y
∪ ∂

∂(x,y)(G1 ·E∗) ∪
∂

∂(x,y)(G2).

Since ∂
∂x
(G1 ·E∗) ⊂

∂
∂x
(G1) · E∗ ∪

∂
∂x
(E∗), it holds that:

∂
∂x
(G1 ·E∗) · (G2)

∂
∂y
⊂ (∂

∂x
(G1) · E∗) · (G2)

∂
∂y
∪ (∂

∂x
(E) ·E∗) · (G2)

∂
∂y

.

Finally, since from (3bii) ∂
∂(x,y)(G1 · E∗) ⊂ E , it holds:

∂
∂(x,y)(G)

⊂ (
←−
DE · E∗) ·

−→
DE ∪ E ∪

←→
DE

⊂ E

v. If G belongs to
←−
DE · (E∗ ·

−→
DE), then G = G1 · (E∗ ·G2) and from

(2a) it holds that:
∂

∂(x,y)(G) ⊂ ∂
∂x
(G1) · (E∗ ·G2)

∂
∂y
∪ ∂

∂(x,y)(G1) ∪
∂

∂(x,y)(E
∗ ·G2).

Since (E∗ ·G2)
∂
∂y
⊂ (E∗) ∂

∂y
∪ E∗ · (G2)

∂
∂y

, it holds that:
∂
∂x
(G1) · (E∗ ·G2)

∂
∂y
⊂ ∂

∂x
(G1) · (E∗)

∂
∂y
∪ ∂

∂x
(G1) · (E∗ · (G2)

∂
∂y
).

Finally, since from (3biii) ∂
∂(x,y)(E

∗ ·G2) ⊂ E , it holds:
∂

∂(x,y)(G)

⊂
←−
DE · (E∗ ·

−→
DE) ∪ E ∪

←→
DE

⊂ E

As a consequence, the proposition is satisfied.

Proposition 7. Let E be a regular expression of width n > 0 and of star number
h. Let us set m = n+ h. Then the three following propositions hold:

1. Card(
←−
DE) ≤ n,

2. Card(
−→
DE) ≤ n,

3. Card(
←→
DE) ≤

2m×(m+1)×(m+2)
3 − 3.

Proof. For the set of left derived terms, the proposition is proved in [1], where
it is shown that the cardinality of the set {E′ | ∃w ∈ Σ+, E′ ∈ ∂

∂w
(E)} is less

than n. This bound still holds for the set of right derived terms.
Let n1 (resp. n2) be the width of a regular expression F (resp. G) and h1

(resp. h2) be the star number of F (resp. G). Let us set m1 = n1 + h1 and
m2 = n2 + h2. For E = F + G and for E = F · G, we have n = n1 + n2,
h = h1 + h2 and m = m1 +m2. For E = F ∗, we have n = n1, h = h1 + 1 and
m = m1 + 1.

According to Lemma 8, we get:

18

1.
←−−→
DF+G ⊂

←→
DF ∪

←→
DG,

2.
←−→
DF ·G ⊂

←−
DF ·

−→
DG ∪

←→
DF ∪

←→
DG,

3.
←−→
DF∗ ⊂

←−
DF · F ∗ ∪ F ∗ ·

−→
DF ∪

←→
DF ∪ (

←−
DF · F ∗) ·

−→
DF ∪

←−
DF · (F ∗ ·

−→
DF).

As a consequence, we get:

1. Card(
←−−→
DF+G) ≤ Card(

←→
DF) + Card(

←→
DG),

2. Card(
←−→
DF ·G) ≤ Card(

←→
DF) + Card(

←→
DG) + n1n2,

3. Card(
←−→
DF∗) ≤ Card(

←→
DF) + 2n1(n1 + 1).

On the one hand the cardinality of
←−→
DF∗ is strictly greater than the cardinality

of
←→
DF although F and F ∗ have the same width n1; we therefore substitute the

parameter m1 = n1 + h1 to n1, so that F ∗ is associated with m1 + 1.

On the other hand, the maximal increase of the cardinality of
←→
DE (w.r.t. m)

occurs in the star case; we therefore consider the function φ such that:

1. φ(0) = 0 and φ(1) = 1,

2. φ(k + 1) = φ(k) + 2× k × (k + 1),

and we show that
←→
DE ≤ φ(m) for any regular expression E.

According to Lemma 8 and by induction hypothesis, it holds:

1. Card(
←−−→
DF+G) ≤ φ(m1) + φ(m2),

2. Card(
←−→
DF ·G) ≤ φ(m1) + φ(m2) + n1 × n2,

3. Card(
←−→
DF∗) ≤ φ(m1) + 2n1(n1 + 1).

It can be checked that:
φ(m1) + φ(m2) ≤ φ(m1) + φ(m2) + n1 × n2 ≤ φ(m1 +m2).

As a consequence, it holds:

1. Card(
←−−→
DF+G) ≤ φ(m1 +m2),

2. Card(
←−→
DF ·G) ≤ φ(m1 +m2).

Furthermore, by definition of φ and since m1 ≥ n1, it holds:
φ(m1) + 2n1(n1 + 1) ≤ φ(m1) + 2(m1)(m1 + 1) = φ(m1 + 1)

and consequently Card(
←−→
DF∗) ≤ φ(m1 + 1).

Finally, since
∑k

j=1 j(j + 1) = k(k+1)(k+2)
3 , it holds for all integer k ≥ 1:

φ(k) = 2k(k+1)(k+2)
3 − 3.

Proposition 8. Let E be a regular expression over an alphabet Γ, H be an
antimorphism over Γ∗ and k > 0 be an integer. Then:

19

1. Card(
←−−−→
DH′

k
(E)) ≤ k × Card(

←→
DE),

2. Card(
←−−−→
D−→

Hk(E)
) ≤ Card(

←−
DE) + k × Card(

←→
DE),

3. Card(
←−−−→
D←−

Hk(E)
) ≤ Card(

−→
DE) + k × Card(

←→
DE).

Proof. Let E be a regular expression.

(1) Let us set E = {H′k′(E′) | E′ ∈
←→
DE ∧ k′ < k} ∪

←→
DE . Let us show that

←−−−→
DH′

k
(E) ⊂ E .

(a) According to Definition 6, for any couple (x, y) in ΣΓ, ∂
∂(x,y)(H

′
k(E)) ⊂ E .

(b) Let us show that any derived term of an expression G in E belongs to
E .

(i) if G belongs to
←→
DE , so do its derived terms.

(ii) if G ∈ {H′k′(E′) | E′ ∈
←→
DE ∧ k′ < k}, then G = H′k′ (G1) with G1 ∈

←→
DE

and from Definition 6 it holds:
∂

∂(x,y)(G) ⊂ {H′k′′(G2) | G2 ∈
←−→
DG1 ∧ k′′ < k′} ∪

←−→
DG1 .

By definition of G1,
←−→
DG1 ⊂

←→
DE . Consequently ∂

∂(x,y)(G) ⊂ E .

(c) Finally, since Card(E) = (k−1)×Card(
←→
DE)+Card(

←→
DE), the proposition

holds.
(2) Let us set E = {

−→
Hk(E

′) | E′ ∈
←−
DE}∪{H′k′(E′) | E′ ∈

←→
DE ∧ k′ < k}∪

←→
DE .

Let us show that
←−−−→
D−→

Hk(E)
⊂ E .

(a) According to Definition 6, for any couple (x, y) in ΣΓ, ∂
∂(x,y)(

−→
Hk(E)) ⊂ E .

(b) Let us show that any derived term of an expression G in E belongs to
E .

(i) if G belongs to {
−→
Hk(E

′) | E′ ∈
←−
DE} then G =

−→
Hk(G1) with G1 ∈

←→
DE

and from Definition 6 it holds that:
∂

∂(x,y)(G) ⊂ {
−→
Hk(G2) | G2 ∈

←−−
DG1} ∪ {H

′
k′ (G2) | G2 ∈

←−→
DG1 ∧ k′ < k} ∪

←−→
DG1 .

Since by definition of G1,
←−→
DG1 ⊂

←→
DE and

←−−
DG1 ⊂

←−
DE , it holds: ∂

∂(x,y)(G) ⊂ E .

(ii) if G belongs to {H′k′(E′) | E′ ∈
←→
DE ∧ k′ < k},then G = H′k′ (G1) with

G1 ∈
←→
DE and from Definition 6 it holds:

∂
∂(x,y)(G) ⊂ {H′k′′(G2) | G2 ∈

←−→
DG1 ∧ k′′ < k′} ∪

←−→
DG1 .

By definition of G1,
←−→
DG1 ⊂

←→
DE . Hence ∂

∂(x,y)(G) ⊂ E .

(iii) if G belongs to
←→
DE , so do its derived terms.

(c) Finally, since Card(E) = Card(
←−
DE) + (k − 1)× Card(

←→
DE) + Card(

←→
DE),

the proposition holds.

(3)The proof is similar as for case (2), with
−→
DE playing the role of

←−
DE .

The index of a hairpin expression E is the integer index(E) inductively
defined by:

index(F) = 0,

20

index(
←−
Hk(F)) = k, index(

−→
Hk(F)) = k, index(H′k(F)) = k,

index(G1 +G2) = max(index(G1), index(G2)),
where H is any anti-morphism over Γ∗, k > 0 is any integer, F is any regular

expression over Γ, and G1 and G2 are any two hairpin expressions over Γ.

Proposition 9. Let E be a hairpin expression over an alphabet Γ. Then
←→
DE is

a finite set the cardinal of which is upper bounded by k×(2m(m+1)(m+2)
3 −3)+n,

where k is the index of E, and m = n+h with n its width and h its star number.

Proof. Directly deduced from Proposition 7 and from Proposition 8 for the non-
sum cases. Whenever E = G1 +G2, let us set for i ∈ {1, 2}, ni the width of Gi,
hi its star number, ki its index and mi = ni + hi. Without loss of generality
suppose that k1 ≥ k2. Let φ be the function defined by:

φ(k) =

{

0 if k = 0,
2k(k+1)(k+2)

3 − 3 otherwise.
It can be checked that the following proposition P holds:

φ(k1 + k2) ≥ φ(k1) + φ(k2).
By induction and from P it holds:

Card(
←−→
DG1) + Card(

←−→
DG2) ≤ k1 × φ(m1) + n1 + k2φ(m2) + n2

≤ k1 × (φ(m1) + φ(m2)) + n
≤ k1 × φ(m1 +m2) + n

This finite set of two-sided derived terms allows us to extend the finite de-
rived term automaton to hairpin expressions.

Definition 7. Let E be a hairpin expression over an alphabet Γ. Let A =
(ΣΓ, Q, I, F, δ) be the NFA defined by:

• Q = {E} ∪
←→
DE,

• I = {E},

• F = {E′ ∈ Q | ε ∈ L(E′)},

• ∀(x, y) ∈ ΣΓ, ∀E′ ∈ Q, δ(E′, (x, y)) = ∂
∂(x,y)

(E′).

The automaton A is the two-sided derived term automaton of E.

By construction, A is a Γ-couple NFA where Γ is the alphabet of E.

Example 3. Let E be the hairpin expression of Example 2. The derived term
automaton of E is the automaton presented in Figure 3.

E
−→
H1(c)ε

−→
H1(ε)

(a, a)

(b, c)(b, c) (c, b)

Figure 3: The Derived Term Automaton of the Expression E.

21

Proposition 10. Let E be a hairpin expression over an alphabet Γ and A be
the two-sided derived term automaton of E. Then: L(E) = LΓ(A).

Proof. Let A = (Σ, Q, I, F, δ), let w be a word in Γ∗ and let E′ be a state in

Q. Let us show that the following proposition (P) is satisfied: w ∈
−→
L Γ(E

′) ⇔
w ∈ L(E′). By recurrence over the length of w.

(I) If w = ε, then:

w ∈
−→
L Γ(E

′)
⇔ E′ ∈ F (Lemma 3)
⇔ ε ∈ L(E′) (Construction of A)
⇔ w ∈ L(E′).
(II) Let us suppose that |w| > 0. Then ∃(x, y) ∈ ΣΓ, ∃w′ ∈ Γ∗ such that

w = xw′y.
(a) If E′ is a simple hairpin expression, then

xw′y ∈
−→
L Γ(E

′)

⇔ w′ ∈ (x, y)−1(
−→
L Γ(E

′)) (Definition 1)

⇔ w′ ∈
⋃

E′′∈δ(E′,(x,y))

−→
L Γ(E

′′) (Corollary 2)

⇔ w′ ∈
⋃

E′′∈ ∂
∂(x,y)

(E′)

−→
L Γ(E

′′) (Construction of A)

⇔ w′ ∈
⋃

E′′∈ ∂
∂(x,y) (E

′) L(E
′′) (Recurrence hypothesis)

⇔ w′ ∈ (x, y)−1(L(E′)) (Proposition 6)
⇔ xw′y ∈ L(E′) (Definition 1) ⇔ w ∈ L(E′).

(b) If E′ ∈ {
←−
H k(F),

−→
H k(F),H′k(F)}, then it holds w ∈ L(E′) ⇒ y = H(x)

(according to Lemma 5). Consequently, if y 6= H(x),δ(E′, (x, y)) = ∅ and w /∈
−→
L Γ(E

′). Hence, since w /∈ L(E′), proposition is satisfied. Let us now suppose
that y = H(x). Since (ε, ε) /∈ ΣΓ, (x, y) ∈ Γ× Γ.

xw′H(x) ∈
−→
L Γ(E

′)

⇔ w′ ∈ (x,H(x))−1(
−→
L Γ(E

′)) (Definition 1)

⇔ w′ ∈
⋃

E′′∈δ(E′,(x,H(x)))

−→
L Γ(E

′′) (Corollary 2)

⇔ w′ ∈
⋃

E′′∈ ∂
∂(x,H(x))

(E′)

−→
L Γ(E

′′) (Construction of A)

⇔ w′ ∈
⋃

E′′∈ ∂
∂(x,H(x)) (E

′) L(E
′′) (Recurrence hypothesis)

⇔ w′ ∈ (x,H(x))−1(L(E′′)) (Proposition 6)
⇔ xw′H(x) ∈ L(E′) (Definition 1)
⇔ w ∈ L(E′)
Finally,

LΓ(A) =
⋃

i∈I

−→
L Γ(i) (Lemma 2)

=
−→
L Γ(E) (Construction of A)

= L(E) (proposition P).

Theorem 2. Let A be the two-sided derived term automaton of a hairpin expres-
sion E over an alphabet Γ and let k be the index of E. Then LΓ(A) = L(E).

Furthermore A has at most k × (2m×(m+1)×(m+2)
3 − 3) + n + 1 states where

m = n+ h, with n the width of E and h its star number.

22

Proof. Corollary of Proposition 10 and of Proposition 9.

Finally, the computation of the two-sided derived term automaton provides
an alternative proof of the following theorem.

Theorem 3. The language denoted by a hairpin expression is linear context-
free.

Proof. According to Theorem 1 and to Proposition 10.

6 The (H, 0)-Completion

In the literature, the case where k = 0 is usually not considered. Neverthe-
less, this case is interesting since the associated derivation computation yields
a recognizer with a linear number of states w.r.t. the width of the expression.

Let L1 and L2 be two languages over an alphabet Γ and H be an anti-
morphism over Γ∗. The (H, 0)-completion of L1 and L2 is the languageH0(L1, L2) =
{αγH(α) | α, γ ∈ Γ∗ ∧ (αγ ∈ L1 ∨ γH(α) ∈ L2)}. As in the general case, the

(H, 0)-completion can be defined as the union of two unary operators
←−
H0 and

−→
H0.

The left (resp. right) (H, 0)-completion of a language L over an alphabet Γ

is the language
←−
H 0(L) = {αγH(α) | α, γ ∈ Γ∗ ∧ γH(α) ∈ L} (resp.

−→
H 0(L) =

{αγH(α) | α, γ ∈ Γ∗ ∧ αγ ∈ L}).
Let E be a regular expression over Γ and H be an anti-morphism over Γ∗.

The left (resp. right) (H, 0)-completion of E is the expression
←−
H 0(E) (resp.

−→
H 0(E)) that denotes

←−
H 0(L(E)) (resp.

−→
H 0(L(E))).

Lemma 9. Let Γ be an alphabet and H be an anti-morphism over Γ∗. Let L be
a language over Γ. Then the two following conditions are satisfied:

• ε ∈
−→
H 0(L)⇔ ε ∈ L,

• ε ∈
←−
H 0(L)⇔ ε ∈ L.

Proof. Trivially proved from the definitions of left and right (H, 0)-completions.

We now consider the construction of a recognizer for the (H, 0)-completion of
a regular expression E. On the opposite of the general case, it is not necessary
to consider the whole computation of partial derivatives. We show that it is
sufficient to consider one-sided partial derivatives of regular expression.

Definition 8. Let Γ be an alphabet and H be an anti-morphism over Γ∗. Let

F be a regular expression over Γ. Let E =
−→
H0(F) (resp. E =

←−
H 0(F)). The

effective subset associated with E is the set defined by:

E =
−→
H0(
←−
DF) ∪

←−
DF ,

(resp. E =
←−
H 0(
−→
DF) ∪

−→
DF).

23

Definition 9. Let Γ be an alphabet and H be an anti-morphism over Γ∗. Let

F be a regular expression over Γ. Let E =
−→
H0(F) (resp. E =

←−
H 0(F)). Let

E be the effective subset associated with E. Let A = (ΣΓ, Q, I, F, δ) be the
couple NFA defined by: Q = {E} ∪ E, I = {E}, F = {E′ ∈ Q | ε ∈ L(E′)},
∀(x, y) ∈ ΣΓ, ∀E

′ ∈ Q,

δ(E′, (x, y)) =

−→
H 0(

∂
∂x
(E′′)) if y = H(x) ∧ E′ =

−→
H0(E

′′),
∂
∂x
(E′′) if y = ε ∧ E′ =

−→
H 0(E

′′),
∂
∂x
(E′) if y = ε ∧ E′ is a regular expression,

∅ otherwise,

resp. δ(E′, (x, y)) =

←−
H 0((E

′′) ∂
∂y
) if y = H(x) ∧ E′ =

←−
H 0(E

′′),

(E′′) ∂
∂y

if x = ε ∧ E′ =
←−
H 0(E

′′),

(E′) ∂
∂y

if x = ε ∧ E′ is a regular expression,

∅ otherwise.
The automaton A is said to be the effective automaton of E.

Theorem 4. Let F be a regular expression over an alphabet Γ. Let A be the

effective automaton of the expression E =
−→
H 0(F) (resp. E =

←−
H 0(F)). Then

LΓ(A) = L(E). Furthermore A has at most 2n+ 1 states where n is the width
of E.

Proof. Let us set A = (ΣΓ, Q, I, F, δ).
(I) Let us show now that LΓ(A) = L(E).

(a) Let us suppose that E =
−→
H 0(F). Let w be a word in Γ∗. Let us show

by recurrence over the length of w that for any state E′ in Q, w ∈ L(E′) ⇔

w ∈
−→
L Γ(E

′).

(1) If w = ε, w ∈ L(E′) ⇔ E′ ∈ F ⇔ w ∈
−→
L Γ(E

′).
(2) Let w be a word different from ε.
(i) If E′ is a regular expression, a−1(L(E′)) =

⋃

E′′∈ ∂
∂a

(E′) L(E
′′). Hence

since there exists a in Γ and w′ in Γ∗ such that w = aw′, it holds:
aw′ ∈ L(E′) ⇔ w′ ∈ a−1(L(E′)) ⇔ w′ ∈

⋃

E′′∈ ∂
∂a

(E′) L(E
′′)

⇔ w′ ∈
⋃

E′′∈ ∂
∂a

(E′)

−→
L Γ(E

′′)

⇔ w′ ∈
⋃

E′′∈δ(E′,(a,ε))

−→
L Γ(E

′′) (Recurrence Hypothesis)

⇔ aw′ ∈
−→
L Γ(E

′).

(ii) If E′ =
←−
H0(E

′′) then:

w ∈ L(
←−
H 0(E

′′)) ⇔ ∃α, γ ∈ Γ∗, (w = αγH(α) ∧ αγ ∈ L(E′′))
⇔ ∃a ∈ Γ, γ ∈ Γ∗, α′ ∈ Γ∗, ((w = γ ∧ γ ∈ L(E′′)) ∨ (w = aα′γH(α′)H(a) ∧

aα′γ ∈ L(E′′))
⇔ ∃a ∈ Γ, γ ∈ Γ∗, α′ ∈ Γ∗, w′ ∈ Γ∗, ((w = aw′ ∧ w′ ∈ a−1(L(E′′))) ∨ (w =

aα′γH(α′)H(a) ∧ α′γ ∈ a−1(L(E′′))))
⇔ ∃a ∈ Γ, γ ∈ Γ∗, α′ ∈ Γ∗, w′ ∈ Γ∗, ((w = aw′ ∧ w′ ∈

⋃

E′′∈ ∂
∂a

(E′) L(E
′′)) ∨

(w = aα′γH(α′)H(a) ∧ α′γ ∈
⋃

E′′∈ ∂
∂a

(E′) L(E
′′)))

24

⇔∃a ∈ Γ, γ ∈ Γ∗, α′ ∈ Γ∗, w′ ∈ Γ∗, ((w = aw′ ∧ w′ ∈
⋃

E′′∈ ∂
∂a

(E′)

−→
L Γ(E

′′)) ∨

(w = aα′γH(α′)H(a) ∧ α′γ ∈
⋃

E′′∈ ∂
∂a

(E′)

−→
L Γ(E

′′))) (Recurrence Hypothesis)

⇔∃a ∈ Γ, γ ∈ Γ∗, α′ ∈ Γ∗, w′ ∈ Γ∗, ((w = aw′ ∧ w′ ∈
⋃

E′′∈δ(E′,(a,ε))

−→
L Γ(E

′′)) ∨

(w = aα′γH(α′)H(a) ∧ α′γ ∈
⋃

E′′∈δ(E′,(a,H(a)))

−→
L Γ(E

′′)))

⇔ w ∈
−→
L Γ(E

′).

Finally since L(A) =
−→
L Γ(E) and since L(E) =

−→
L Γ(E), then L(A) = L(E).

(b) The case where E =
←−
H0(F) is based on the same reasoning.

(II) Let E =
−→
H0(
←−
DF) ∪

←−
DF be the effective subset associated with E (resp.

E =
←−
H 0(
−→
DF) ∪

−→
DF). Since Card(

←−
DF) ≤ n (resp. Card(

−→
DF) ≤ n), the number

of states of A is at most 2n. Finally, since Q = E ∪ {E}, it holds that A has at
most 2n+ 1 states.

Example 4. Let H be the anti-morphism defined in Example 2. Let E =
−→
H0(a

∗bc). Notice that
←−
Da∗bc = {a∗bc, c, ε}. Hence the effective subset associated

with E is the set {
−→
H0(a

∗bc),
−→
H0(c),

−→
H0(ε), a

∗bc, c, ε}.
The effective automaton A of E is given Figure 4.
It can be checked that L(A) = {anbc | n ∈ N}∪{anbcan | n ∈ N}∪{anbccan |

n ∈ N} ∪ {anbcbcan | n ∈ N} that is exactly L(E) (see Table 1).

α γ H(α)
ε anbc ε
an bc an

anb c can

anbc ε bcan

Table 1: The Language L(E)

E
−→
H0(c)

−→
H0(ε)

a∗bc c ε

(a, a)

(a, ε)

(b, c) (c, b)

(a, ε)
(b, ε)

(b, ε) (c, ε)

(c, ε)

Figure 4: The Effective Automaton of the Expression E

25

7 Conclusion

This paper provides an alternative proof of the fact that hairpin completions
of regular languages are linear context-free. This proof is obtained by consid-
ering the family of regular expressions extended to hairpin operators and by
computing their partial derivatives, a technique that has already been applied
to regular expressions extended to boolean operators [4], to multi-tilde-bar op-
erators [5] and to approximate operators [8]. Moreover it is a constructive proof
since it is based on the computation of a polynomial size recognizer for hairpin
completions of regular languages. We also proved that it is possible to compute
a linear size recognizer for (H, 0)-completions of regular languages.

References

[1] V. Antimirov. Partial derivatives of regular expressions and finite automa-
ton constructions. Theoret. Comput. Sci., 155:291–319, 1996.

[2] P. Bottoni, A. Labella, V. Manca, and V. Mitrana. Superposition based on
watson-crick-like complementarity. Theory Comput. Syst., 39(4):503–524,
2006.

[3] J. A. Brzozowski. Regular-like expressions for some irregular languages. In
SWAT (FOCS), pages 278–286. IEEE Computer Society, 1968.

[4] P. Caron, J.-M. Champarnaud, and L. Mignot. Partial derivatives of an
extended regular expression. In Adrian Horia Dediu, Shunsuke Inenaga,
and Carlos Martín-Vide, editors, LATA, volume 6638 of Lecture Notes in
Computer Science, pages 179–191. Springer, 2011.

[5] P. Caron, J.-M. Champarnaud, and L. Mignot. Multi-tilde-bar derivatives.
In Nelma Moreira and Rogério Reis, editors, CIAA, volume 7381 of Lecture
Notes in Computer Science, pages 321–328. Springer, 2012.

[6] J. Castellanos and V. Mitrana. Some remarks on hairpin and loop lan-
guages. In Masami Ito, Gheorghe Paun, and Sheng Yu, editors, Words,
Semigroups, and Transductions, pages 47–58. World Scientific, 2001.

[7] J.-M. Champarnaud, J.-P. Dubernard, H. Jeanne, and L. Mignot. Two-
sided derivatives for regular expressions and for hairpin expressions. In
LATA, 2013. To appear.

[8] J.-M. Champarnaud, H. Jeanne, and L. Mignot. Approximate regular ex-
pressions and their derivatives. In Adrian Horia Dediu and Carlos Martín-
Vide, editors, LATA, volume 7183 of Lecture Notes in Computer Science,
pages 179–191. Springer, 2012.

[9] D. Cheptea, C. Martìn-Vide, and V. Mitrana. A new operation on words
suggested by DNA biochemistry: hairpin completion. Transgressive Com-
puting, pages 216–228, 2006.

26

[10] V. Diekert, S. Kopecki, and V. Mitrana. On the hairpin completion of
regular languages. In Martin Leucker and Carroll Morgan, editors, IC-
TAC, volume 5684 of Lecture Notes in Computer Science, pages 170–184.
Springer, 2009.

[11] V. Diekert, S. Kopecki, and V. Mitrana. Deciding regularity of hairpin
completions of regular languages in polynomial time. Inf. Comput., 217:12–
30, 2012.

[12] M. Ito, P. Leupold, F. Manea, and V. Mitrana. Bounded hairpin comple-
tion. Inf. Comput., 209(3):471–485, 2011.

[13] L. Kari, S. Kopecki, and S. Seki. Iterated hairpin completions of non-
crossing words. In Mária Bieliková, Gerhard Friedrich, Georg Gottlob,
Stefan Katzenbeisser, and György Turán, editors, SOFSEM, volume 7147
of Lecture Notes in Computer Science, pages 337–348. Springer, 2012.

[14] L. Kari, S. Seki, and S. Kopecki. On the regularity of iterated hairpin
completion of a single word. Fundam. Inform., 110(1-4):201–215, 2011.

[15] S. Kleene. Representation of events in nerve nets and finite automata.
Automata Studies, Ann. Math. Studies 34:3–41, 1956. Princeton U. Press.

[16] S. Kopecki. On iterated hairpin completion. Theor. Comput. Sci.,
412(29):3629–3638, 2011.

[17] S. Lombardy and J. Sakarovitch. Derivatives of rational expressions with
multiplicity. Theor. Comput. Sci., 332(1-3):141–177, 2005.

[18] F. Manea, C. Martín-Vide, and V. Mitrana. On some algorithmic prob-
lems regarding the hairpin completion. Discrete Applied Mathematics,
157(9):2143–2152, 2009.

[19] F. Manea, C. Martín-Vide, and V. Mitrana. Hairpin lengthening. In
Fernando Ferreira, Benedikt Löwe, Elvira Mayordomo, and Luís Mendes
Gomes, editors, CiE, volume 6158 of Lecture Notes in Computer Science,
pages 296–306. Springer, 2010.

[20] F. Manea and V. Mitrana. Hairpin completion versus hairpin reduction. In
S. Barry Cooper, Benedikt Löwe, and Andrea Sorbi, editors, CiE, volume
4497 of Lecture Notes in Computer Science, pages 532–541. Springer, 2007.

[21] F. Manea, V. Mitrana, and T. Yokomori. Two complementary operations
inspired by the DNA hairpin formation: Completion and reduction. Theor.
Comput. Sci., 410(4-5):417–425, 2009.

[22] F. Manea, V. Mitrana, and T. Yokomori. Some remarks on the hairpin
completion. Int. J. Found. Comput. Sci., 21(5):859–872, 2010.

27

[23] V. Mitrana, F. Manea, and C. Martín-Vide. On some algorithmic problems
regarding the hairpin completion. Electronic Notes in Discrete Mathemat-
ics, 27:71–72, 2006.

[24] J. M. Sempere. On a class of regular-like expressions for linear languages.
Journal of Automata, Languages and Combinatorics, 5(3):343–354, 2000.

28

	1 Introduction
	2 Preliminaries
	3 Two-sided Residuals of a Language and Couple NFA
	4 Hairpin Completion of a Language and its Residuals
	5 The Two-Sided Derived Term Automaton
	6 The (H,0)-Completion
	7 Conclusion

