
ar
X

iv
:1

20
7.

51
24

v3
  [

cs
.F

L
] 

 6
 N

ov
 2

01
2

Primitive Words and Lyndon Words in

Automatic and Linearly Recurrent Sequences

Daniel Goč1 and Kalle Saari2 and Jeffrey Shallit1

1 School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1,
Canada

{dgoc,shallit}@cs.uwaterloo.ca
2 Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue,

Winnipeg, MB R3B 2E9, Canada
kasaar2@gmail.com

Abstract. We investigate questions related to the presence of primitive
words and Lyndon words in automatic and linearly recurrent sequences.
We show that the Lyndon factorization of a k-automatic sequence is
itself k-automatic. We also show that the function counting the number
of primitive factors (resp., Lyndon factors) of length n in a k-automatic
sequence is k-regular. Finally, we show that the number of Lyndon factors
of a linearly recurrent sequence is bounded.

1 Introduction

We start with some basic definitions. A nonempty word w is called a power if
it can be written in the form w = xk, for some integer k ≥ 2. Otherwise w is
called primitive. Thus murmur is a power, but murder is primitive. A word y is
a factor of a word w if there exist words x, z such that w = xyz. If further x = ǫ
(resp., z = ǫ), then y is a prefix (resp., suffix) of w. A prefix or suffix of a word
w is called proper if it is unequal to w.

Let Σ be an ordered alphabet. We recall the usual definition of lexicographic
order on the words in Σ∗. We write w < x if either

(a) w is a proper prefix of x; or
(b) there exist words y, z, z′ and letters a < b such that w = yaz and x = ybz′.

For example, using the usual ordering of the alphabet, we have common < con <
conjugate. As usual, we write w ≤ x if w < x or w = x.

A word w is a conjugate of a word x if there exist words u, v such that w = uv
and w = vu. Thus, for example, enlist and listen are conjugates. A word is
said to be Lyndon if it is primitive and lexicographically least among all its
conjugates. Thus, for example, academy is Lyndon, while googol and googoo

are not. A classical theorem is that a finite word is Lyndon if and only if it is
lexicographically less than each of its proper suffixes [10].

We now turn to (right-) infinite words. We write an infinite word in boldface,
as x = a0a1a2 · · · and use indexing starting at 0. For i ≤ j+1, we let [i..j] denote

http://arxiv.org/abs/1207.5124v3


the set {i, i+1, . . . , j}. (If i = j +1 we get the empty set.) We let x[i..j] denote
the word aiai+1 · · · aj. Similarly, [i..∞] denotes the infinite set {i, i+1, . . .} and
x[i..∞] denotes the infinite word aiai+1 · · · .

An infinite word or sequence x = a0a1a2 · · · is said to be k-automatic if there
is a deterministic finite automaton (with outputs associated with the states) that,
on input n expressed in base k, reaches a state q with output τ(q) equal to an.
For more details, see [5] or [3]. In several previous papers [1,4,17,19,11], we have
developed a technique to show that many properties of automatic sequences are
decidable. The fundamental tool is the following:

Theorem 1. Let P (n) be a predicate associated with a k-automatic sequence x,
expressible using addition, subtraction, comparisons, logical operations, indexing
into x, and existential and universal quantifiers. Then there is a computable
finite automaton accepting the base-k representations of those n for which P (n)
holds. Furthermore, we can decide if P (n) holds for at least one n, or for all n,
or for infinitely many n.

If a predicate is constructed as in the previous theorem, we just say it is
“expressible”. Any expressible predicate is decidable. As an example, we prove

Theorem 2. Let x be a k-automatic sequence. The predicate P (i, j) defined by
“x[i..j] is primitive” is expressible.

Proof. (due to Luke Schaeffer) It is easy to see that a word is a power if and
only if it is equal to some cyclic shift of itself, other than the trivial shift. Thus
a word is a power if and only if there is a d, 0 < d < j − i + 1, such that
x[i..j − d] = x[i + d..j] and x[j − d+ 1..j] = x[i..i + d− 1]. A word is primitive
if there is no such d.

Theorem 3. Let x be a k-automatic sequence. The predicate LL(i, j,m, n) de-
fined by “x[i..j] < x[m..n]” is expressible.

Proof. We have x[i..j] < x[m..n] if and only if either

(a) j − i < n−m and x[i..j] = x[m..m+ j − i]; or
(b) there exists t < min(j − i, n − m) such that x[i..i + t] = x[m..m + t] and

x[i + t+ 1] < x[m+ t+ 1].

Theorem 4. Let x be a k-automatic sequence. The predicate L(i, j) defined by
“x[i..j] is a Lyndon word” is expressible.

Proof. It suffices to check that x[i..j] is lexicographically less than each of its
proper suffixes, that is, that LL(i, j, i′, j) holds for all i′ with i < i′ ≤ j.

We can extend the definition of lexicographic order to infinite words in the
obvious way. We can extend the definition of Lyndon words to (right-) infinite
words as follows: an infinite word x = a0a1a2 · · · is Lyndon if it is lexicographi-
cally less than all its suffixes x[j..∞] = ajaj+1 · · · for j ≥ 1. Then we have the
following theorems.



Theorem 5. Let x be a k-automatic sequence. The predicate LL∞(i, j) defined
by “x[i..∞] < x[j..∞] is expressible.

Proof. This is equivalent to ∃t ≥ 0 such that x[i..i+ t− 1] = x[j..j + t− 1] and
x[i + t] < x[j + t].

Theorem 6. Let x be a k-automatic sequence. The predicate L∞(i) defined by
“x[i..∞] is an infinite Lyndon word” is expressible.

Proof. This is equivalent to LL∞(i, j) holding for all j > i.

2 Lyndon factorization

Siromoney et al. [15] proved that every infinite word x = a0a1a2 · · · can be
factorized uniquely in exactly one of the following two ways:

(a) as x = w1w2w3 · · · where each wi is a finite Lyndon word and w1 ≥ w2 ≥
w3 · · · ; or

(b) as x = w1w2w3 · · ·wrw where wi is a finite Lyndon word for 1 ≤ i ≤ r, and
w is an infinite Lyndon word, and w1 ≥ w2 ≥ · · · ≥ wr ≥ w.

If (a) holds we say that the Lyndon factorization of x is infinite; otherwise
we say it is finite.

Ido and Melançon [14,13] gave an explicit description of the Lyndon fac-
torization of the Thue-Morse word t and the period-doubling sequence (among
other things). (Recall that the Thue-Morse word is given by t[n] = the number
of 1’s in the binary expansion of n, taken modulo 2.) For the Thue-Morse word,
this factorization is given by

t = w1w2w3w4 · · · = (011)(01)(0011)(00101101) · · · ,

where each term in the factorization, after the first, is double the length of
the previous. Séébold [18] and Černý generalized these results to other related
automatic sequences.

In this section, generalizing the work of Ido, Melançon, Séébold, and Černý,
we prove that the Lyndon factorization of a k-automatic sequence is itself k-
automatic. Of course, we need to explain how the factorization is encoded. The
easiest and most natural way to do this is to use an infinite word over {0, 1},
where the 1’s indicate the positions where a new term in the factorization begins.
Thus the i’th 1, for i ≥ 0, appears at index |w1w2 · · ·wi|. For example, for the
Thue-Morse word, this encoding is given by

100101000100000001 · · · .

If the factorization is infinite, then there are infinitely many 1’s in its encoding;
otherwise there are finitely many 1’s.

In order to prove the theorem, we need a number of results. We draw a
distinction between a factor f of x (which is just a word) and an occurrence of



that factor (which specifies the exact position at which f occurs). For example,
in the Thue-Morse word t, the factor 0110 occurs as x[0..3] and x[11..15] and
many other places. We call [0..3] and [11..15], and so forth, the occurrences of
0110. An occurrence is said to be Lyndon if the word at that position is Lyndon.
We say an occurrence O1 = [i..j] is inside an occurrence O2 = [i′..j′] if i′ ≤ i
and j′ ≥ j. If, in addition, either i′ < i or j < j′ (or both), then we say O1 is
strictly inside O2. These definitions are easily extended to the case where j or j′

are equal to ∞, and they correspond to the predicates I (inside) and SI (strictly
inside) given below:

I(i, j, i′, j′) is i′ ≤ i and j′ ≥ j

SI(i, j, i′, j′) is I(i, j, i′, j′) and ((i′ < i) or (j′ > j))

An infinite Lyndon factorization

x = w1w2w3 · · ·

then corresponds to an infinite sequence of occurrences

[i1..j1], [i2..j2], · · ·

where wn = x[in..jn] and in+1 = jn + 1 for n ≥ 1, while a finite Lyndon
factorization

x = w1w2 · · ·wrw

corresponds to a finite sequence of occurrences

[i1..j1], [i2..j2], . . . , [ir..jr], [ir+1..∞]

where wn = x[in..jn] and in+1 = jn + 1 for 1 ≤ n ≤ r.

Theorem 7. Let x be an infinite word. Every Lyndon occurrence in x appears
inside a term of the Lyndon factorization of x.

Proof. We prove the result for infinite Lyndon factorizations; the result for finite
factorizations is exactly analogous.

Suppose the factorization is x = w1w2w3 · · · . It suffices to show that no Lyn-
don occurrence can span the boundary between two terms of the factorization.
Suppose, contrary to what we want to prove, that uwiwi+1 · · ·wjv is a Lyndon
word for some u that is a nonempty suffix of wi−1 (possibly equal to wi−1), and
v that is a nonempty prefix of wj+1 (possibly equal to wj+1), and and i ≤ j+1.
(If i = j + 1 then there are no wi’s at all between u and v.)

Since u is a suffix of wi−1 and wi−1 is Lyndon, we have u ≥ wi−1. On the
other hand, by the Lyndon factorization definition we have wi−1 ≥ wi ≥ · · · ≥
wj ≥ wj+1. But v is a prefix of wj+1, so just by the definition of lexicographic
ordering we have wj+1 ≥ v. Putting this all together we get u ≥ v. So ux ≥ v
for all words x.

On the other hand, since uwi · · ·wjv is Lyndon, it must be lexicographically
less than any proper suffix — for instance, v. So uwi · · ·wjv < v. Take x =
wi · · ·wjv to get a contradiction with the conclusion in the previous paragraph.



Corollary 1. The occurrence [i..j] corresponds to a term in the Lyndon factor-
ization of x if and only if

(a) [i..j] is Lyndon; and
(b) [i..j] does not occur strictly inside any other Lyndon occurrence.

Proof. Suppose [i..j] corresponds to a term wn in the Lyndon factorization of x.
Then evidently [i..j] is Lyndon. If it occurred strictly inside some other Lyndon
occurrence, say [i′..j′], then we know from Theorem 7 that [i′..j′] itself lies in
inside some wm, so [i..j] must lie strictly inside wm, which is clearly impossible.

Now suppose [i..j] is Lyndon and does not occur strictly inside any other
Lyndon occurrence. From Theorem 7 [i..j] must occur inside some term of the
factorization [i′..j′]. If [i..j] 6= [i′..j′] then [i..j] lies strictly inside [i′..j′], a contra-
diction. So [i..j] = [i′..j′] and hence corresponds to a term of the factorization.

Corollary 2. The predicate LF (i, j) defined by “[i..j] corresponds to a term of
the Lyndon factorization of x” is expressible.

Proof. Indeed, by Corollary 1, the predicate LF (i, j) can be defined by

L(i, j) and ∀ i′, j′ (SI(i, j, i′, j′) =⇒ ¬L(i′, j′)).

We can now prove the main result of this section.

Theorem 8. Using the encoding mentioned above, the Lyndon factorization of
a k-automatic sequence is itself k-automatic.

Proof. Using the technique of [1], we can create an automaton that on input i
expressed in base k, guesses j and checks if LF (i, j) holds. If so, it outputs 1
and otherwise 0. To get the last i in the case that the Lyndon factorization is
finite, we also accept i if L∞(i) holds.

We also have

Theorem 9. Let x be a k-automatic sequence. It is decidable if the Lyndon
factorization of x is finite or infinite.

Proof. The construction given above in the proof of Theorem 8 produces an
automaton that accepts finitely many distinct i (expressed in base k) if and only
if the Lyndon factorization of x is finite.

We programmed up our method and found the Lyndon factorization of the
Thue-Morse sequence t, the period-doubling sequence d, the paperfolding se-
quence p, and the Rudin-Shapiro sequence r, and their negations. (The results
for Thue-Morse and the period-doubling sequence were already given in [13],
albeit in a different form.) Recall that the period-doubling sequence is defined
by p[n] = |t[n + 1] − t[n]|. The paperfolding sequence p = 0010011 · · · arises

from the limit of the sequence (fn), where f0 = 0 and fn+1 = fn0fn
R
, where

R denotes reversal and x maps 0 to 1 and 1 to 0. Finally, the Rudin-Shapiro
sequence r is defined by r[n] = the number of (possibly overlapping) occurrences
of 11 in the binary expansion of n, taken modulo 2. The results are given in the
theorem below.



Theorem 10. The occurrences corresponding to the Lyndon factorization of
each word is as follows:

– the Thue-Morse sequence t: [0..2], [3..4], [5..8], [9..16], [17..32], . . . , [2i+1..2i+1], . . .;
– the negated Thue-Morse sequence t: [0..0], [1..∞];
– the Rudin-Shapiro sequence r: [0..6], [7..14], [15..30], . . . , [2i−1..2i+1−2], . . .;
– the negated Rudin-Shapiro sequence r: [0..0], [1..1], [2..2], [3..10], [11..42], [43..46], [47..174], . . . , [4i−

4i−1 − 4i−2 − 1..4i − 4i−1 − 2], [4i − 4i−1 − 1..4i+1 − 4i − 4i−1 − 1], . . .;
– the paperfolding sequence p: [0..6], [7..14], [15..30], . . . , [2i − 1..2i+1 − 2], . . .;
– the negated paperfolding sequence p: [0..0], [1..1], [2..4], [5..9], [10..20], [21..84], [85..340], . . . , [(4i−

1)/3..4(4i − 1)/3], . . .;
– the period-doubling sequence d: [0..0], [1..4], [5..20], [21..84], . . . , [(4i−1)/3..4(4i−

1)/3], . . .;
– the negated period-doubling sequence d: [0..1], [2..9], [10..41], [42..169], . . . , [2(4i−

1)/3..2(4i+1 − 1)/3− 1], . . ..

3 Enumeration

There is a useful generalization of k-automatic sequences to sequences over N,
the non-negative integers. A sequence (an)n≥0 over N is called k-regular if there
exist vectors u and v and a matrix-valued morphism µ such that an = uµ(w)v,
where w is the base-k representation of n. For more details, see [2].

The subword complexity function ρ(n) of an infinite sequence x counts the
number of distinct length-n factors of x. There are also many variations, such
as counting the number of palindromic factors or unbordered factors. If x is
k-automatic, then all three of these are k-regular sequences [1]. We now show
that the same result holds for the number ρP

x
(n) of primitive factors and for the

number ρL
x
of Lyndon factors. We refer to these two quantities as the “primitive

complexity” and “Lyndon complexity”, respectively.

Theorem 11. The function counting the number of length-n primitive (resp.,
Lyndon) factors of a k-automatic sequence x is k-regular.

Proof. By the results of [4], it suffices to show that there is an automaton ac-
cepting the base-k representations of pairs (n, i) such that the number of i’s
associated with each n equals the number of primitive (resp., Lyndon) factors
of length n.

To do so, it suffices to show that the predicate P (n, i) defined by “the factor
of length n beginning at position i is primitive (resp., Lyndon) and is the first
occurrence of that factor in x” is expressible. This is just

P (i, i+ n− 1) and ∀j < i x[i..i+ n− 1] 6= x[j..j + n− 1],

(resp.,

L(i, i+ n− 1) and ∀j < i x[i..i + n− 1] 6= x[j..j + n− 1]).



We used our method to compute these sequences for the Thue-Morse se-
quence, and the results are given below.

Theorem 12. Let ρL
t
(n) denote the number of Lyndon factors of length n of

the Thue-Morse sequence. Then

ρL
t
(n) =











1, if n = 2k or 5 · 2k for k ≥ 1 ;

2, if n = 1 or n = 5 or n = 3 · 2k for k ≥ 0;

0, otherwise.

Theorem 13. Let ρP
t
(n) denote the number of primitive factors of length n of

the Thue-Morse sequence. Then

ρP
t
(n) =



















3 · 2t − 4, if n = 2t;

4n− 2t − 4, if 2t + 1 ≤ n < 3 · 2t−1;

5 · 2t − 6, if n = 3 · 2t−1;

2n+ 2t+1 − 2, if 3 · 2t−1 < n < 2t+1.

We can also state a similar result for the Rudin-Shapiro sequence.

Theorem 14. Let ρL
r
(n) denote the Lyndon complexity of the Rudin-Shapiro

sequence. Then ρL
r
(n) ≤ 8 for all n. This sequence is 2-automatic and there is

an automaton of 2444 states that generates it.

Proof. The proof was carried out by machine computation, and we briefly sum-
marize how it was done.

First, we created an automaton A to accept all pairs of integers (n, i), repre-
sented in base 2, such that the factor of length n in r, starting at position i, is a
Lyndon factor, and is the first occurrence of that factor in r. Thus, the number
of distinct integers i associated with each n is ρL

r
(n). The automaton A has 102

states.
Using the techniques in [4], we then used A to create matrices M0 and M1 of

dimension 102×102, and vectors v, w such that vMxw = ρL
r
(n), if x is the base-2

representation of n. Here if x = a1a2 · · ·ai, then by Mx we mean the product
Ma1

Ma2
· · ·Mai

.
From this we then created a new automaton A′ where the states are products

of the form vMx for binary strings x and the transitions are on 0 and 1. This
automaton was built using a breadth-first approach, using a queue to hold states
whose targets on 0 and 1 are not yet known. From Theorem 18 in the next section,
we know that ρL

r
(n) is bounded, so that this approach must terminate. It did so

at 2444 states, and the product of the vMx corresponding to each state with w
gives an integer less than or equal to 8, thus proving the desired result and also
providing an automaton to compute ρL

r
(n).

Remark 1. Note that the Lyndon complexity functions in Theorems 12 and 14
are bounded. This will follow more generally from Theorem 18 below.



4 Finite factorizations

Of course, the original Lyndon factorization was for finite words: every finite
nonempty word x can be factored uniquely as a nonincreasing productw1w2 · · ·wm

of Lyndon words. We can apply this theorem to all prefixes of a k-automatic se-
quence. It is then natural to wonder if a single automaton can encode all the
Lyndon factorizations of all finite prefixes. The answer is yes, as the following
result shows.

Theorem 15. Suppose x is a k-automatic sequence. Then there is an automa-
ton A accepting

{(n, i)k : the Lyndon factorization of x[0..n− 1] is w1w2 · · ·wm

with wm = x[i..n− 1]}.

Proof. As is well-known [10], if w1w2 · · ·wm is the Lyndon factorization of x,
then wm is the lexicographically least suffix of x. So to accept (n, i)k we find i
such that x[i..n− 1] < x[j..n− 1] for 0 ≤ j < n and i 6= j.

Given A, we can find the complete factorization of any prefix x[0..n− 1] by
using this automaton to find the appropriate i (as described in [12]) and then
replacing n with i.

We carried out this construction for the Thue-Morse sequence, and the result
is shown below in Figure 4.

In a similar manner, there is an automaton that encodes the factorization of
every factor of a k-automatic sequence:

Theorem 16. Suppose x is a k-automatic sequence. Then there is an automa-
ton A′ accepting

{(i, j, l)k : the Lyndon factorization of x[i..j − 1] is w1w2 · · ·wm

with wm = x[l..n− 1]}.

We calculated A′ for the Thue-Morse sequence using our method. It is a
34-state machine and is displayed in Figure 4.



Fig. 1. A finite automaton accepting the base-2 representation of (n, i) such that the
Lyndon factorization of t[0..n − 1] ends in the term t[i..n − 1]

Fig. 2. A finite automaton accepting the base-2 representation of (i, j, l) such that the
Lyndon factorization of t[i..j − 1] ends in the term t[l..j − 1]



Another quantity of interest is the number of terms in the Lyndon factoriza-
tion of each prefix.

Theorem 17. Let x be a k-automatic sequence. Then the sequence (f(n))n≥0

defined by

f(n) = the number of terms in the Lyndon factorization of x[0..n]

is k-regular.

Proof. We construct an automaton to accept

{(n, i) : ∃j ≤ n such that L(i, j) and if SI(i, j, i′, j′) and 0 ≤ i′ ≤ j′ ≤ n then ¬L(i′, j′)}.

For the Thue-Morse sequence the corresponding sequence satisfies the rela-
tions

f(4n+ 1) = −f(2n) + f(2n+ 1) + f(4n)

f(8n+ 2) = −f(2n) + f(4n) + f(4n+ 2)

f(8n+ 3) = −f(2n) + f(4n) + f(4n+ 3)

f(8n+ 6) = −f(2n)− f(4n+ 2) + 3f(4n+ 3)

f(8n+ 7) = −f(2n) + 2f(4n+ 3)

f(16n) = −f(2n) + f(4n) + f(8n)

f(16n+ 4) = −f(2n) + f(4n) + f(8n+ 4)

f(16n+ 8) = −f(2n) + f(4n+ 3) + f(8n+ 4)

f(16n+ 12) = −f(2n)− 2f(4n+ 2) + 3f(4n+ 3) + f(8n+ 4)

for n ≥ 1, which allows efficient calculation of this quantity.

5 Linearly recurrent sequences

Definition 1. A recurrent infinite word x = a0a1a2 · · · , where each ai is a
letter, is called linearly recurrent with constant L > 0 if, for every factor u and
its two consecutive occurrences beginning at positions i and j in x with i < j, we
have j − i < L|u|. The word aiai+1 · · · aj−1 is called a return word of u. Thus
linear recurrence can be defined from the condition that every return word w of
every factor u of x satisfy |w| < L|u|. Let Ru denote the set of return words of
u in x.

Remark 2. Linear recurrence implies that every length-k factor appears at least
once in every factor of length (L + 1)k − 1.

Lemma 1 (Durand, Host, and Skau [8]). Let x be an aperiodic linearly
recurrent word with constant L.

(i) If u is a factor of x and w its return word, then |w| > |u|/L.



(ii) The number of return words of any given factor u of x is #Ru ≤ L(L+1)2.

Theorem 18. The Lyndon complexity of any linearly recurrent sequence is bounded.

Proof. Let x be a linearly recurrent sequence with constant L. If x is ultimately
periodic, it is purely periodic because it is recurrent, and thus its Lyndon com-
plexity is bounded. Therefore assume that x is aperiodic, and let n ≥ L. Denote
k = ⌊(n+ 1)/(L+ 1)⌋, so that

(L+ 1)k − 1 ≤ n < (L + 1)(k + 1)− 1. (1)

The left-hand side inequality in (1) and Remark 2 together imply that all factors
in x of length k occur in all factors of length n. Therefore if u is the lexicograph-
ically smallest factor of length k, then every Lyndon factor of x of length n must
begin with u. Since every suffix of x that begins with u can be factorized over
Ru, we conclude further that every length-n Lyndon factor of x is a prefix of a
word in R∗

u.
The return words of u have length at least k/L by Lemma 1. Furthermore,

the right-hand side inequality in (1) gives

n

k/L
<

(L+ 1)(k + 1)− 1

k/L
<

L(L+ 1)(k + 1)

k
≤ 2L(L+ 1).

Therefore any Lyndon factor of length n is a prefix of a word in R
2L(L+1)
u . Since

#Ru ≤ L(L+ 1)2 by Lemma 1, we conclude that

ρL
x
(n) ≤ max

{

ρL
x
(1), ρL

x
(2), . . . , ρL

x
(L − 1), L(L+ 1)4L(L+1)

}

,

so that the Lyndon complexity of x is bounded.

Definition 2. Let h : A∗ → A∗ be a primitive morphism, and let τ : A → B
be a letter-to-letter morphism. If h is prolongable, so that the limit hω(a) :=
limn→∞ hn(a) exists for some letter a ∈ A, then the sequence τ

(

hω(a)
)

is called
primitive morphic.

Lemma 2 (Durand [7,8]). Primitive morphic sequences are linearly recurrent.

Corollary 3. The Lyndon complexity of any primitive morphic sequence is bounded.

Proof. Follows from Lemma 2 and Theorem 18.

Corollary 4. If x is k-automatic and primitive morphic, then its Lyndon com-
plexity is k-automatic.

Proof. Follows from Corollary 3 and Theorem 11, because a k-regular sequence
over a finite alphabet is k-automatic [2].



6 Acknowledgments

We thank Luke Schaeffer for suggesting the argument in the proof of Theorem 2.

References

1. J.-P. Allouche, N. Rampersad, and J. Shallit. Periodicity, repetitions, and orbits
of an automatic sequence. Theor. Comput. Sci. 410 (2009), 2795–2803.

2. J.-P. Allouche and J. O. Shallit. The ring of k-regular sequences. Theor. Comput.

Sci. 98 (1992), 163–197.
3. J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Gener-

alizations, Cambridge, 2003.
4. E. Charlier, N. Rampersad, and J. Shallit. Enumeration and decidable properties

of automatic sequences. In G. Mauri and A. Leporati, eds., Developments in Lan-

guage Theory — 15th International Conference, DLT 2011, Vol. 6795, pp. 165–179,
Springer-Verlag, 2011.

5. A. Cobham. Uniform tag sequences. Math. Systems Theory 6 (1972), 164–192.
6. A. Černý. Lyndon factorization of generalized words of Thue. Disc. Math. Theor.

Comput. Sci. 5 (2002), 17–46.
7. F. Durand. A characterization of primitive substitutive sequences using return

words. Discrete Math. 179 (1998), 89–101.
8. F. Durand, B. Host, and C. Skau. Substitution dynamical systems, Bratteli dia-

grams, and dimension groups. Ergod. Th. & Dynam. Sys. 19 (1999), 953–993.
9. F. Durand. Linearly recurrent subshifts have a finite number of non-periodic sub-

shift factors. Ergod. Th. & Dynam. Sys. 20 (2000), 1061–1078.
10. J. P. Duval. Factorizing words over an ordered alphabet. J. Algorithms 4 (1983),

363–381.
11. D. Goč, D. Henshall, and J. Shallit. Automatic theorem-proving in combinatorics

on words. In N. Moreira and R. Reis, eds., CIAA 2012, Lect. Notes in Comput.
Sci., Vol. 7381, Springer, 2012, pp. 180–191.

12. D. Goč, L. Schaeffer, and J. Shallit. The subword complexity of k-
automatic sequences is k-synchronized. Preprint, June 23 2012. Available from
http://arxiv.org/abs/1206.5352.

13. A. Ido and G. Melançon. Lyndon factorization of the Thue-Morse word and its
relatives. Discrete Math. Theoret. Comput. Sci. 1 (1997), 43–52.

14. G. Melançon. Lyndon factorization of infinite words. In C. Puech and R. Reischuk,
eds., STACS 96, 13th Annual Symposium on Theoretical Aspects of Computer Sci-

ence, Lect. Notes in Comput. Sci., Vol. 1046, Springer, 1996, pp. 147–154.
15. R. Siromoney, L. Matthew, V. R. Dare, and K. G. Subramanian. Infinite Lyndon

words. Info. Process. Letters 50 (1994), 101–104.
16. E. Rowland and J. Shallit. k-automatic sets of rational numbers. In A. H. Dediu

and C. Mart́ın-Vide, eds., LATA 2012 Proceedings, Lect. Notes in Comp. Sci., Vol.
7183, Springer, 2012, pp. 490–501.

17. L. Schaeffer and J. Shallit. The critical exponent is computable for automatic
sequences. Int. J. Found. Comput. Sci., to appear, 2012.

18. P. Séébold. Lyndon factorization of the Prouhet words. Theor. Comput. Sci. 307

(2003), 179–197.
19. J. Shallit. The critical exponent is computable for automatic sequences. In P. Am-

broz, S. Holub, and Z. Másaková, eds., Proceedings 8th International Conference

Words 2011, Vol. 63 of Elect. Proc. Theor. Comput. Sci., pp. 231–239, 2011.

http://arxiv.org/abs/1206.5352

	Primitive Words and Lyndon Words in Automatic and Linearly Recurrent Sequences

