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Abstract

We show that the local period at positiann a characteristic Sturmian word can be given
in terms of the Ostrowski representation fos- 1.

1 Introduction

We consider characteristic Sturmian words, which are iginords ove0, 1} such that theth

character is
la(i+1)] = ai] — |

for some irrationak. We give an alternate definition later better suited to ouppses. Leff,,(n)
denote the number of factors of lengtlin w, also known as theubword complexitgf O(n). Itis
well-known thatf,,(n) = n+1 whenw is a Sturmian word. On the other hand, the Coven-Hedlund
theorem([4] states thgt,(n) is either bounded of,,(n) > n + 1 for all n. In this sense, Sturmian
words are extremal with respect to subword complexity.

In a recent paper [3], Restivo and Mignosi show that chareti®e Sturmian words are also ex-
tremal with respect to local period, which we define shorlypart of Definitior 2. Letp,,(n)
denote the local period of a word at positionn. The critical factorization theorem states that
eitherp,,(n) is bounded op,,(n) > n + 1 for infinitely manyn. Restivo and Mignosi show that
whenw is a characteristic Sturmian worg, (n) is at mostn + 1 andp,,(n) = n + 1 infinitely
often. Hence, characteristic Sturmian words also haveml local periods.
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n 0
1

3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 |20
pr(n) 1 5 2 2 1 3

3 1 13 2 2 5 1 5 2 2 21

1 2 7
2 3 8

Table 1: The local period function for the Fibonacci word.

Unlike subword complexity, the local period functipp(n) is erratic. Consider Tablg 1, which
gives the local period at points ifi, the Fibonacci word. Although there are patterns in theetabl
(for example, eachr(n) is a Fibonacci number), it is not obvious hw(n) is related ton in
general. Shallit[[1] showed that-(n) is easily computed from the Zeckendorf representation
of n + 1, and conjectured that for a general characteristic Sturmiard w, p,,(n) is a simple
function of the corresponding Ostrowski representatiomfe1. In this paper, we confirm Shallit's
conjecture by describing, (n) in terms of the Ostrowski representation fo#- 1.

2 Notation

LetX := {0, 1} for the rest of this paper. We write[n] to denote theth letter of a wordw (finite
or infinite), andw:..j] for the factorw(i|w[i + 1] - - - w[j — 1Jw[j]. We use the convention that the
first character inv is w[0]. Let |w| denote the length of a finite word.

2.1 Repetition words

Definition 1. Letw be an infinite word over a finite alphalyet A repetition word inw at position
i is a non-empty factow(i..j] such that eithew]i..j] is a prefix ofw[0..i — 1] or w[0..i — 1] is a
prefix of wi..j].

If the infinite wordw is recurrent (i.e., every factor it occurs more than once in) then every
factor occurs infinitely many times. In particular, for eyethe prefixw[0..i— 1] occurs inw|i..co],
So there exists a repetition word at every position in a recword.

Definition 2. Let w be an infinite recurrent word over a finite alphabetLet r, (i) denote the
shortest repetition word in at position:. The length of the shortest repetition word, denoted by
pw(i) := |ry(i)|, is called thdocal period inw at position.

We note that Sturmian words are recurrentps@) andr,, (i) exist at every position for a charac-
teristic Sturmian wordv. We omit further discussion of the existencepgfi) andr,, (7).

For example, consider the Fibonacci waFdshown in Figurél. The factorg[5..6] = 01,
F[5..9] = 01001 and F'[5..17] = 0100100101001 are examples of repetition words in the Fi-
bonacci word at position 5. The shortest repetition wordoaitpn5 is 7 (5) = F[5..6] = 01 and
therefore the local period at position 5is(5) = 2.
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Figure 1. The Fibonacci worfl' and some repetition words at position

3 Characteristic Sturmian Words and the Ostrowski Repre-
sentation

We define characteristic Sturmian words and the Ostrowsgkesentation based on directive se-
guences of integers, defined below. For every directiveesszpithere is a corresponding charac-
teristic Sturmian word. Similarly, for each directive seque there is an Ostrowski representation
associating nonnegative integers with strings.

Definition 3. A directive sequence = {a;}°, is a sequence of nonnegative integers, where
a; > 0forall 7 > 0.

Directive sequences are in some sense infinite words oveuatioeal numbers, so we use the same
indexing/factor notation. The notatierj:] indicates theth term,a;. We will frequently separate a
directive sequence into the first termq[0], and the rest of the sequeneg]..co].

Note that our definitions for characteristic Sturmian waoaidd Ostrowski representations deviate
slightly from the definitions given in our references, [2PdB]. Specifically, there are two main
differences between our definition and [2]:

1. We start indexing the directive sequence at zero insteaden

2. The first term is interpreted differently. For exampleh# first term in the sequeneghen
our characteristic Sturmian word begins with, whereas the characteristic Sturmian word
in [2] begins with0—'1.

In other words, we are describing the same mathematicatishjbut label them with slightly
different directive sequences. Any result that does noi@ip reference the terms of the directive
sequence will be true for either set of definitions. Thisudels our main result, Theorém| 13.

3.1 Characteristic Sturmian Words

Consider the following collection of morphisms.



Definition 4. For eacht > 0, we define a morphismy, : >* — X* such that
¢r(0) = 071
ei(1) =0

forall £ > 0.

Given a directive sequence, we use this collection of marphkito construct a sequence of words.

Definition 5. Let a be a directive sequence. We define a sequence of finite Wofds®,, overx:.
where

Xn - (900[[0} ©---0 (pa[n—l})(o)-

We call{ X, }:°, thestandard sequencand we sayX; is theith characteristic block

Sometimes the characteristic blocks are defined recuysageiollows.

Proposition 6. Let « be a directive sequence and IgX; }°, be the corresponding directive se-
guence. Then

0, if n=0;
X, = ¢ 00007, if n =1,
XX, L, ifn > 2.

Proof. See Theorem 9.1.8 inl[2]. Note that due to a difference in defirs, the authors number
the directive sequence starting from one instead of zerd tlagy treat the first term differently
(i.e., they defineX; as0*~'1 instead of)*"1). O

It follows from the proposition thak(,, ; is a prefix ofX,, for eachn > 2, and therefore the limit
lim,,_,, X,, exists. We define,, the characteristic Sturmian word corresponding to thective
sequencey, to be this limit.

C, = nll_{rolo X,,.

ThenX, is a prefix ofc, for eachn > 2.

There is a simple relationship between «[0] andc,[;. ., given in the following proposition.

Proposition 7. Let« be a directive sequence, and [et= «[l..cc]. Then
Co = ()Oa[O} (CB)
Proof. (Sketch) We factop,j, out of eachX; and then out of the limit.

Co = 1im (P @+ © Gain-1)(0) = Pt (im (¢ary o+ © Pain-1)(0)) = Papo] (C1)

Alternatively, see Theorem 9.1.8 in [2] for a similar result 0J
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Notice that ifa[0] = 0 thenc, andcg are the same infinite word up to permutation of the alphabet,
sincey, swaps 0 and 1. Permuting the alphabet does not affect thiglead or repetition words,

so henceforth we assume that the first term of any directigqeesece is positive (and therefore all
terms are positive). Consequently, all characteristicrSitan words we consider will start with 0
and avoid the factor1.

Let us give an example of a characteristic Sturmian word. si@an the directive sequence
beginningl, 3, 2, 2. Then we can compute the first five terms of the standard sequen

XO =0
X; =01
X, = 0101010

X3 =0101010010101001
X4 =010101001010100101010100101010010101010.

We know X, is a prefix ofc,, so we can deduce the firist,| = 39 characters of,,. Thus,
C, = 010101001010100101010100101010010101010 - - -
By Propositioni V¢, is equal tap; (Cap1..o0])-

C,=010101001010100101010100101010010101010---
= ¢1(0001000100001000100001 - - - ).

3.2 Ostrowski representation

For each directive sequence there is a corresponding characteristic Sturmian wrd For
each characteristic Sturmian word there is a numeratiotesysthe Ostrowski representation,
which is closely related to the standard sequence. For deaifiphe directive sequence is =
1,1,1,... thenc, is F', the Fibonacci word. The Ostrowski representationdoe 1,1,1,...is
the Zeckendorf representation, where we write an integex stsm of Fibonacci numbers. See
chapter three in_[2] for a description of these numeratisiesys, but note that their definition of
Ostrowski representation differs from our definition.

Definition 8. Let « be a directive sequence, and {eX;}2, be the corresponding standard se-
quence. Define an integer sequefigg°, whereg; = | X;| for all i > 0. Letn > 0 be an integer.
An a-Ostrowski representatiofor simply Ostrowski representatiowhenca is understood) for,

is a sequence of non-negative integgts °, such that

1. Only finitely manyd; are nonzero.

3. 0<d; <afi]foralli > 0.



4. If d; = afi] thend;_; = 0 foralli > 1.

Note that by Propositiohl 6, we can also generaig:°, directly from « using the following
recurrence

1, if n=0;
qn = { 0] + 1, if n=1;
QN—la[/n’ - 1] + n—2; if n Z 2.

It is well-known that for any given directive sequence, ghisra unique Ostrowski representation,
which we denote ORn), for every non-negative integer![2]. Also note that formalR,,(n)

is an infinite sequencéd,}°,, but we often write the terms up to the last nonzero term, e.g.
dpdy_1 - - - didy, with the understanding that = 0 for ¢ > k. This is analogous to decimal
representation of integers, where we write the least s@gmifidigit last and omit leading zeros.

Theorem 9. Let « be a directive sequence. Let> 0 be an integer, and lef,d;._ - - - d1dy be an
Ostrowski representation for. Then

w = XX XX
is a proper prefix ofX}., 1, and thereforew is a prefix ofc,. Sincew| = ), di | X;| = n, it follows
thatw = c,[0..n — 1].
Proof. This is essentially Theorem 9.1.13in [2]. O

The following technical lemma relates Ostrowski repreagons fora: anda[l1..cc0], in much the
same way that Propositiof 7 relatesto C, ;...

Lemma 10. Let o be a directive sequence and defife= «a[l..00]. Letn > 0 be an integer
with Ostrowski representatio®R,(n) = dy. - - - dy. Then there exists an integer > 0 such that
ORB(m) =d---d; and

Cal0..n — 1] = g (C5[0..m — 1])0%.
Furthermore, ifd, > 0 thencg[m| = 0.
Proof. We leave it to the reader to show thatdif - - - dy is an a-Ostrowski representation then

d. - - - dy is a 5-Ostrowski representation, and converselyi,if - - d; is a/3-Ostrowski representa-
tion thend,, - - - d;0 is ana-Ostrowski representation. Theoréin 9 proves that

Cal0n — 1) = XXM XD XD = ch[0..m — 1)0%.
Finally, suppose that, > 0 andcg[m]| = 1 for a contradiction. We consider the integer d, + 1

and its Ostrowski representations. On the one hdpd,- d;1 is a valid Ostrowski representation
andd, — 1 less tham. On the other hand,

Cal0..n — do] = @ajo)(Cs[0..m — 1])0 = pa(g(Cs[0..m]),

6



so OR;(m + 1) followed by0 is another Ostrowski representation for- d, + 1. This contradicts
the uniqueness of Ostrowski representations. O

Let us continue our earlier example, where we had a direségeiencer beginningl, 3, 2, 2. We
can compute the first five terms §f; }3°,.

4o = \Xo\ =1
Q=X =2
@ =1Xo| =7
g3 = |X3| =16
qs = | X4| = 39.

In Table[2, we show Ostrowski representations for some snteljers. By Theorem 9, we should

OR,(n) | n OR4(n) | n OR4(n) | n OR,(n)
0 15 201 30 1200 |45 10030

1 16 1000 |31 1201 |46 10100

10 17 1001 |32 2000 |47 10101
11 18 1010 |33 2001 |48 10110
20 19 1011 34 2010 49 10111
21 20 1020 35 2011 50 10120
30 21 1021 36 2020 51 10121
100 |22 1030 |37 2021 |52 10130
101 23 1100 |38 2030 |53 10200
110 24 1101 |39 10000 |54 10201
10 111 25 1110 | 40 10001 |55 11000
11 120 26 1111 41 10010 | 56 11001
12 121 27 1120 |42 10011 |57 11010
13 130 28 1121 | 43 10020 |58 11011
14 200 29 1130 |44 10021 |59 11020

© 0~ Ut W= O3

Table 2: Ostrowski representations where- 1,3,2,2, - - -

be able to decompog[0..20] as X3 X7 X, since OR(21) = 1021.

C4[0..20] = 010101001010100101010
= (0101010010101001)(01)%0
= X3X?2Xo.

4 Local periods in characteristic Sturmian words

Let o be a directive sequence. Lgt(n) := pc, (n) andr,(n) := r¢, (n) be notation for the local
period and shortest repetition word for characteristiar8tan words. In this section we discuss
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howp,(n) andr,(n) are related to ORn + 1).

Definition 11. Let x, y be words inX*. Thenz is aconjugateof y if there exist words:, v € >*
such thatr = uv andy = vu.

Lemma 12. Let « be a directive sequence, I6t:= a[l..oo] andk := «[0]. Suppose we have
integersm, n > 0 such thatc,[0..n] = ¢(cs[0..m]). Then
(i) If w is a repetition word incg at positionm then there exists a repetition wotdin c, at

positionn such thatp,(u) is a conjugate ob.
(i) If v is a repetition word inc, at positionn then there exists a repetition wordin c; at
positionm such thatp,(u) is a conjugate of.

In particular, r,(n) is a conjugate ofpy(rz(m)) whenc,[0..n] = ¢px(cz[0..m]).

Proof. We divide into two cases based on whettigfn| is 0 or 1. The situation wheng|[m| = 0 is
shown in FiguréR, and;[m] = 1 is shown in Figurél3. These figures, along with the more dstail
diagrams in Figurels 4 amnd 5 later in the proof, indicate hgunaps blocks ircs to blocks inc,.

Cﬁ[O..m} 05[0..m]
Cs = 0 Cs = 01
Co = |()k1 C, = |Ok1 0‘..
Cal0..7] Cal0..1]
Figure 2: Simple diagram farz[m| = 0 Figure 3: Simple diagram farz[m| = 1

Case g[m| = 0:
Clearlyc,[0..n] ends with0*1 = ¢,,(0) sincecs|[m| = 0. This gives us Figurgl 2.

(i) Let u be a repetition word irc; at positionm. If cz[0..m — 1] is a suffix ofu then
certainlyc,[0..n — 1] = ¢x(cs[0..m — 1]) is a suffix of . (u).
Suppose that is a suffix ofcs[0..m — 1]. Sincecg[m] = 0 we knowu begins with0
and writeu = Ou’. Sincev’ is a prefix ofcs[m + 1..00], we see that’ := ¢ (v') is a
prefix ofc,[n+1..00]. The prefixu’ in cg[m+1..00] is followed by00, 01 or 10. Since
©v1(00), ©x(01) andy,(10) all start with at leask zeros, we deduce that(as it occurs
at the beginning o, [n + 1..00]) is followed byk zeros. Thusy := 1v/0* is a prefix
of c,[n..00]. From the other occurrence af(as a suffix ofcs[0..m — 1]) we deduce
that 1v'0* is also a suffix ofc,[0..n — 1]. We conclude that is a repetition word in
c, at position, and note that= 1v/0* is a conjugate 00*1v' = . (0u') = @i (u), as
required.



C, = Olc 1 4 Ok; 1 v Ok

Figure 4: Detailed diagram fax;[m| = 0

(i) Let v be a repetition word irc, at positionn. The 1 at positionn is preceded byt
zeros. Hences, [0..n — 1] ends in0*, sov ends in0*. Clearlyv begins withl, letv’ be
such that = 1v'0¥. We do not know whether the trailingj is the beginning of;.(0)
or ¢, (10), but in either case’ is (') for v’ a factor ofcg.

If c,[0..n — 1] is a proper suffix ofv thenc,[0..n — k& — 1] is a suffix ofv’. Then
c3[0..m — 1] is a suffix ofu/, and hence: := 0u’ is a repetition word ircs at position
m such thaw is a conjugate oy (u).

Otherwisey is a suffix ofc,[0..n — 1]. The trailing0* in this occurrence of is in the
image ofcs[m] = 0. The remainingv’ must be preceded Wy, and therd*1v' is the
image of0u’, which occurs as a suffix af;[0..m — 1]. Now we have the situation in
Figurel[4. It follows that, := 0u’ is a repetition word, and = 1v'0* is a conjugate of
or(u) = 0*10'.

Case g[m| = 1:
The characteristic Sturmian words we consider start Wjttom # 0. Sincecz does not
contain the factot 1, we knowcs[m — 1] = 0. Thereforec, [0..n] ends inp;(01) = 0*10,
as shown in Figurgl 3.

Cs = 1 u' 011 u 0

(R
(g

Figure 5: Detailed diagram fa|m] = 1

(i) Supposeu is a repetition word irc; at positionm, and letv := ¢, (u). We know that
i (Cs[0..m — 1]) = €,[0..n — 1] andyy(Cs[m..c0]) = C4[n..00]. Thus,
e v is a prefix ofc, [n..oo] if u is a prefix ofcs[m..oo]
e v is a suffix ofc,[0..n — 1] if u is a suffix ofcs[0..m — 1]
e C,[0..n — 1] is a suffix ofv if cg[0..m — 1] is a suffix ofu.
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It follows thatwv is a repetition word irt,, at positionn.

(i) Supposew is a repetition word irc, at positionn. We knowwv starts with0O since
C.[n] = 0, andv ends withl sincec,[n — 1] = 1, thereforev = 00’01 for somev'.
Thenv' = ¢, (u') for someu’, and we define: := 140 so that

or(1) = pp(11/0) = 00'0F1 = v.

It is also clear that

e u is a prefix ofcs[m..oo]
e u is a suffix ofcs[0..m — 1] if v is a suffix ofc,[0..n — 1]
e C3[0..m — 1] is a suffix ofu if c,[0..n — 1] is a suffix ofv,

so we conclude that is a repetition word irtg at positionm.

O

Theorem 13. Let o be a directive sequence and [ét.= «a[l..00]. Letn > 0 be a nonnegative
integer. Lett be the number of trailing zeros @R, (n + 1). Thenr,(n) is a conjugate ofX,,
except when all of the following conditions are met:

e The last nonzero digit iI®R,(n + 1) is 1.

e OR,(n + 1) contains at least two nonzero digits.

e The last two nonzero digits @R, (n + 1) are separated by an even number of zeros.

WhenOR, (n + 1) meets these conditions, thef(n) is a conjugate ofX,, .

Proof. Letdy. - - -dy = OR,(n + 1) be the Ostrowski representationof- 1. Lett be the number
of trailing zeros in OR(n + 1). We use induction onto prove that,(n) is a conjugate oX, or
under the conditions described above, a conjugaté, of.

Base case = 0: Sincen + 1 > 0, we haved, > 0. By Theorem B, we have
Col0..m] = Xk - X o

If dy > 2 then we are done sinag [0..n] ends in00. Hencec,[n — 1] = ¢,[n] = 0 and
ro(n) = 0 = Xy is the shortest repetition word at positionLet us assume without loss of
generality thatl, = 1.

According to the induction hypothesis, the second last aandigit in OR,(n+ 1) becomes
relevant when the last nonzero digit is 1.dlf is the only nonzero digit, then = 0 and
ro(0) is clearlyc,[0] = 0. Otherwise, pick > 0 minimal such thatl, # 0. That s, letd, be
the second last nonzero digit. Note that by Thedrém 9, thel wgdf..n — 1] ends inX,.
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If ¢ is even thenX, ends in0 (by a simple induction), so,[n — 1] = 0 and it follows that
ro(n) = 0. When/ is odd, the wordX, ends inX; and X; ends inl. It follows that

Ca[0..n — 1] = @qa0)(Cs[0..m — 1])
for somem > 0. We claim thatcs[m| = 0, since otherwise

Pafo(Cs[0..m]) = C4[0..1]

so Lemma 1D states that QR + 1) ends in0, contradictingl, = 1. Thenc,[n..co] begins
With .0 (Ca[m]) = X7, S074(n) = X;.

Inductive stept > 0: We note that removing (or adding) trailing zeros from QR+ 1) does
not change whether it satisfies all three conditions in tle®ibm. We will assume that
OR,(n + 1) does not meet the conditions, since the proof is nearly iclrif it does meet
the conditions.

Let { X;}2, and{Y;}2, be standard sequences corresponding to the directive remzgse
and respectively. Lemma_10 states thegf0..n] = a0 (Cs[0..m]) wherem > 0 is such
that

ORg(m +1) =dy,- - - d.

Note thatdy, - - - d; hast — 1 trailing zeros, sos(m) is a conjugate o¥;_, by induction. By
Lemma 12y, (n) is a conjugate op,(Y;—1) = X;, completing the proof.

Let us continue our example with a directive sequemnstarting withl, 3,2, 2. Recall that
C, = 010101001010100 1010101001 0101001010 1010 - - -

Consider the shortest repetition words at positions 23ugjind®26. These positions happen to give
illustrative examples of the theorem.

ra(23) =0 Xo=0 OR,(24) = 1101
ro(24) = 1010100 X, = 0101010 OR,(25) = 1110
ro(25) = 01 X; =01 OR,(26) = 1111
ro(26) = 10 X; =01 OR,(27) = 1120

Whenn = 23, there are no trailing zeros in QR4) = 1101 and we have an odd number of zeros
between the last two nonzero digits. Hencg(23) is a conjugate of, = 0. Compare this to
n = 25, where OR/(26) = 1111 also has no trailing zeros, but the last two ones are adjasent
r+(25) is a conjugate ofX;. We are in a similar situation for = 24, but with an trailing zero
sor,(24) is a conjugate ofX,. Finally, considem = 26 where the last two nonzero digits are
adjacent and we have a trailing zero, like= 24, but the last nonzero digit is not a one. It follows
thatr,(26) is a conjugate ofX;. Althoughr,(25) andr,(26) are both conjugates of;, they are
not the same.
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5 Open Problems and Further Work

It would be interesting to generalize the result to two-didurmian words, with an appropriate
definition for local period in two-sided words. We might defia repetition word inv € “»*

at positionn as a word that is simultaneously a prefixwf..co] and a suffix ofw|[—occ..n — 1].
Note that if we extend a characteristic Sturmian weydo a two-sided wordv, the local period at
positionn in w may not be the same as the local period at positianc,.

Our main result is about the local period and the shortestitéggm word, but LemmB_12 applies to
all repetition words at a specific position. Is it possiblexbend our result to all repetition words,
not just the shortest repetition word? Patterns in the lengt repetition words for the Fibonacci
word suggest that it is possible, but we do not have a spedfigcture.
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