
RESource: A Framework for Online Matching of
Assembly with Open Source Code

Ashkan Rahimian†, Philippe Charland‡, Stere Preda†, and Mourad Debbabi†

† Computer Security Laboratory, CIISE
Concordia University, Montreal, Quebec, Canada

{a_rahimi,s_preda,debbabi}@encs.concordia.ca

‡ Mission Critical Cyber Security Section,
Defence R&D Canada - Valcartier, Quebec, Canada

philippe.charland@drdc-rddc.gc.ca

Abstract. Software reverse engineering is a fastidious task demanding
a strong expertise in assembly coding. Various existing tools may help
analyze the functionality of a binary file without executing it and an
interesting step would naturally be the search for the original source files.
Our tool called RESource considers the extraction of some features in
the assembly code so that queries can be triggered to a source repository
in a reliable way: either (1) the result is a set of references to the original
project files provided they are hosted on the repository or (2) at least
some functionalities of the binary file are unleashed. Such an approach
is very promising given its proved performances in real assembly code
applications.

Keywords: reverse engineering; assembly code; source repository.

1 Introduction

Software reverse engineering consists in studying and understanding the process
by which a machine-generated assembly language program has been created
by working backward [3]. If manually writing assembly ASM code involves spe-
cific programming skills, a compiler automatically converts a high-level language
such as C into machine code. The ASM analysis becomes extremely challenging,
especially if the compiler adds certain optimizations by rearranging the compu-
tations, changing or replacing some operations.

Common reverse engineering practices suggest two approaches – dynamic
and static – with the binary file as the starting point. By dynamic approach
(e.g., [11]) we mean isolating the binary file in an application specific environment
to model its behavior by execution. Since this does not necessarily reveal all
execution flows, debugging tools (e.g., WinDbg [18], Gdb [5], Valgrind [17]) are
often associated with this method. As long as only the functionality is targeted,
the dynamic approach is acceptable. In other situations, static analysis yields
better results and does not compromise the security requirements of the analysis
environment.

2 Rahimian, A., Charland, P., Preda, S., Debbabi, M.

The first step of the static analysis of a binary file is the disassembly phase.
The disassembler (e.g., objdump [6] in Linux) is a program considered of in-
valuable help since it generates the ASM code of the binary file. At this level,
mastering the ASM program representation seldom leads to fully understanding
the program functionalities. More advanced disassemblers such as IDA Pro [9] are
meant to simplify the analysis by offering a rich GUI with the program divided
into basic blocks in a program flow graph (PFG). A challenging further step
is then to obtain a correct higher-level program representation, i.e., the source
files. A decompiler (e.g., Hex-rays [14] or TyDec [16]) could help a lot but since
there is not always a 1:1 correlation between the ASM and the source objects,
the automatically generated sources may be difficult to follow. For example, it
is not simple to detect the definition of object structures in ASM.

Our current purpose is a tool – RESource – to help enforce the mapping
between the machine and the source code. For that we draw inspiration from the
RE-Google project [10]. RE-Google was designed on top of the GData framework
and Google Code Search APIs [7] which were officially deprecated. Our tool
provides a functionality similar to RE-Google and introduces new ones. The
approach is the following: with the principle of code reuse in mind, our tool
will exploit some features that exist at both the source and the assembly file
levels. The tool is thus able to trigger queries based on these features on certain
repositories used by the developers’ community. If there are no query results, the
tool is still able to give us some information about the functionality of a portion
of the ASM file using an Offline Analyzer module. The information returned
by this module are related to the function stack frame, prototype, arguments,
local variables and low-level system calls. It has a built-in dictionary of common
user and kernel level API functions that are used by malware to interact with
the Windows operating system for performing tasks such as file I/O, network
communications, registry modification, working with services, etc.

The reminder of the paper is structured as follows: first we shall introduce
the motivation of our work and related background. In Section 3 we present our
methodology followed by implementation details. Two experimental scenarios
are described in Section 4, followed by the conclusion in Section 5.

2 Motivation and related work

The current work pertains to the domain of static analysis of ASM code and more
precisely, in the mapping of ASM to source files. Though a decompiler seems to
be the program which best fits our goals, we consider that an attempt of mapping
the ASM to existing source code should come first. Applications such as malware
analysis can grasp the benefits of a tool able to give reliable information about
the standard and open source files used by a malicious developer. Decompilers,
methods and tools to analyze malware code already exist. They can be used by
expert reverse engineers who seek to understand the origins and the creation
process of the malware.

RESource: Matching Open Source Code with ASM 3

IDA Pro allows disassembling a binary file and its rich GUI simplifies the
analysis of the ASM code. It is widely used thanks to its multiple features,
such as the possibility of integrating a debugger like WinDbg (which became
the de facto Microsoft debugger since Softice stopped being maintained) and
more interesting, plugins such as the Hex-Rays decompiler - “the most advanced
decompiler ever built!” [14]. Although there have been a few attempts to design
generic debuggers to work on heterogeneous platforms (e.g., GenDbg [4]), IDA
Pro proves to be one of the most complete tool in reverse engineering.

The ASM code follows rather regular patterns. Consequently, the decom-
piler is able to do a mapping between registers or memory locations, abstract
variables, and thus extract for example, a C-like program from the ASM file
(indeed, most of the decompilers are not generic). Other basic C constructs
(e.g., loops) are more difficult to extract and some decompilers fail to solve
them (e.g., Boomerang [2]). Another challenging problem is reconstructing the
abstract types (e.g., structures). TyDec [15] tries to tackle the problem but is
limited to an experimental level. In this case, the best practice remains the hu-
man expertise, i.e., the definition of a structure which is guessed after a first
decompilation is manually introduced and the C program is then rewritten.

Our approach is rather different in that our RESource tool is meant to inform
the reverse engineer about the standard and open source components that might
have been used by the creator of the binary file. To our knowledge, a similar
functionality is ensured only by the IDA Pro RE-Google plugin [10].

RE-Google, written in Python, relies on the IDA API and the Google Code
Search API [7]. It takes the disassembled binary code as input and creates a
query submitted to Google Code Search based on the constants, strings, and
function names. The response from the search engine is the potential source
excerpt that contains similar code. Although it supports a limited set of fea-
tures to create a query, RE-Google may confine the search to certain languages.
Additionally, it can be configured to search for a specific function within the dis-
assembly, skip certain functions, or perform a search for all available functions.
Also, the interval between two subsequent searches can be defined. Optionally,
user credentials could be supplied as part of the query to the code search en-
gine. Furthermore, there is an option for restricting (blacklisting) certain string
patterns in the result. Similarly, a constant filter function checks the immediate
values and removes flags and small values form the query if they are not relevant
for the search. The response from the search engine is parsed and the top results
are added to the code as comments.

Our goal is to design RESource as an IDA Pro plugin too, making use of
code search engines for open source software. In addition, we want to have the
capability to search in newsgroups and user-defined code repositories, taking
thus into account a larger panel of search engines than RE-Google. RESource
does not only provide extended queries by adding new features. It also allows to
reveal parts of the code functionalities whenever the query results are null. In
the next section, we describe the methodology and the concrete implementation
details of our RESource tool.

4 Rahimian, A., Charland, P., Preda, S., Debbabi, M.

3 Methodology

The input to our process is the ASM file resulting from the disassembly of a
target binary in IDA Pro. The specific representation of the ASM, together with
its PFG, lead us to consider the partitioning of the ASM code in blocks, each
one corresponding to begin proc / end proc, where proc stands for procedure.
Here is an example of a simple code in C.

int sum(int a, int b){

return a + b;

}

The corresponding ASM code contains a procedure that we can easily identify by
its name “sum” (IDA Pro encloses it with the begin proc and end proc keywords).
sum :

push %ebp

mov %esp,%ebp

mov 0xc(%ebp),%eax

add 0x8(%ebp),%eax

pop %ebp

ret

We thus consider an ASM file as a set of procedures that are to be individually
analyzed by our tool. Each procedure may contain some interesting features (see
Section 3.2) that our tool is able to extract and exploit in order to submit queries
to a source repository. The result is (1) either a set of links to pertaining source
files referencing the same features and which are inserted as comments in the
original ASM file or (2) the insertion of a comment about the functionality of
the current procedure after its local offline analysis (cf. Section 3.2).

Fig. 1. Algorithm Decomposition.

RESource: Matching Open Source Code with ASM 5

3.1 Algorithm

We adopt a B-Method like notation [1] to describe the algorithm implemented by
our RESource tool. Fig. 1 captures the RESource algorithm decomposition in B-
like components. The algorithm has five modules: (1) ASM Process root machine
which provides the interface with the user. It imports the (2) Procedure Process
machine responsible for processing each ASM procedure. It calls the operations
of the (3) Query module in order to submit queries to a set of code repositories.
The (4) Offline Analysis module is in charge of a local analysis to extract the
program functionality and also the operations of the (5) Commenting module
which adds the pertaining comments to the original file.

ASM Process module

MACHINE ASM Process
IMPORTS Procedure Process
SETS

PROCEDURES
CONSTANTS

ASM Original file
PROPERTIES

ASM Original file ∈ P(PROCEDURES)
VARIABLES

Some Procedures
INVARIANTS

Some Procedures ⊆ ASM Original file
INITIALISATION

Some Procedures := ∅
OPERATIONS

try read procedures(procs) = PRE procs ̸= ∅ ∧ procs ⊆ ASM Original file
THEN Some Procedures := procs

END;
process = PRE Some Procedures ̸= ∅ THEN

VAR F1, F2, p IN
WHILE Some Procedures ̸= ∅ DO

ANY p WHERE p ∈ Some Procedures THEN
F1, F2 ← read features(p); /*from Procedure Process */

query(F1); /*op. in Procedure Process */

analyse locally(F2); /*op. in Procedure Process */

update(p); /*op. in Procedure Process */

Some Procedures := Some Procedures \ {p};
END

END
END
END

END/*ASM Process*/

Fig. 2. ASM Process module.

6 Rahimian, A., Charland, P., Preda, S., Debbabi, M.

Any ASM file is a SET of PROCEDURES. As we can easily depict from Fig. 2,
we take as input to our algorithm the ASM Original file. It is of type PRO-
CEDURES and remains CONSTANT. These assumptions are captured by the
CONSTANT and PROPERTIES clauses. The only variable we introduce is a
set of SOME PROCEDURES among those presented by IDA Pro that the user
chooses to analyze. This variable may be modified by the OPERATIONS which
must always satisfy the INVARIANT. Here, the INVARIANT states that the
procedures to be analyzed are part of the original ASM file.

Procedure Process module

MACHINE Procedure Process
IMPORTS Query, Offline Analysis, Commenting
SETS

FEATURES
VARIABLES

OnFeat, OffFeat, queried, analysed, updated
INVARIANTS

OnFeat ⊆ FEATURES ∧ OffFeat ⊆ FEATURES ∧ queried ∈ BOOL ∧
analysed ∈ BOOL ∧ updated ∈ BOOL

INITIALISATION
OnFeat, OffFeat, queried, analysed, updated := ∅, ∅, false, false, false

OPERATIONS
F1, F2 ← read features(p) = PRE p ̸= ∅ THEN

/*features extraction from p : to refine*/
F1:=OnFeat; /*features for online analysis*/
F2:=OffFeat; /*features for local analysis*/
queried, analysed, updated := false, false, false;

END;
query(f) = PRE f ⊆ OnFeat ∧ queried = false THEN

IF f ̸= ∅ THEN
submit query(f); /*operation in Query machine*/

END
queried := true;
END;

analyse locally(f) = PRE f ⊆ OffFeat ∧ queried = true ∧ analysed = false
THEN /*local analysis for functionality extraction */

/*based on operations in Offline Analysis machine*/

analysed := true; append to log(f); /*displaying results*/
END;

update(p) = PRE queried = true ∧ analysed = true ∧ updated = false THEN
/*updates after the online query and the local analysis*/

/*based on operations in Commenting machine*/

updated := true;
END;

END/*Procedure Process*/

Fig. 3. Procedure Process module.

RESource: Matching Open Source Code with ASM 7

For each procedure, there is a phase of ASM features extraction, followed by the
submission of queries to source repositories and a local analysis.

We explain these steps in the process operation of Fig. 2. The Procedure Process
module uses respectively the services of the Query and the Offline Analysis mod-
ules for the specific query and analyse locally operations (Fig. 3). These opera-
tions are to be carefully implemented since their abstract representation cannot
contain too many details. The module states only the permitted order in which
these operations are called via the PRE-condition clause.

The process operation of Fig. 2 considers a last phase of updating. The orig-
inal ASM file remains the same, i.e., constant, except for the ASM comments
part which gathers the query results and the local analysis. Therefore, the result
of the entire process is the original file updated with comments as we shall see
in Section 3.2.

Query module

MACHINE Query
CONSTANTS

n, SEQ REPS
DEFINITIONS

Repositories == 1..n
PROPERTIES

n ∈ NAT1 ∧ SEQ REPS ∈ Repositories → Repositories
VARIABLES

Queryable Reps
INVARIANTS

Queryable Reps ∈ Repositories → BOOL
INITIALISATION

ran(Queryables Reps) := true
/* all repositories should be queryable at the beginning*/

OPERATIONS
submit query(F) = ANY r WHERE Queryable Reps(r) = true THEN

/*submit query*/

Queryable Reps(SEQ REPS(r)) := true;
END

END/*Query*/

Fig. 4. Query module.

Based on the extracted features in a procedure, the role of the Query module
is to construct and submit queries to a set of source repositories which are
previously known. We could use an instantiated SET of repositories to capture
this information, but for the sake of simplicity, we choose to identify each source
repository with a natural number in the set 1..n, where n is the number of
repositories.

8 Rahimian, A., Charland, P., Preda, S., Debbabi, M.

Moreover, we also express the following requirement: a real source repository
may not be queried too frequently (e.g., wait a few seconds between each query).
Consequently there should be a mechanism to launch the query to a different
queryable repository so that the process does not stop. The straightforward
way is to introduce a CONSTANT function SEQ REPS which gives the next
source repository to query. Implementing this is based on the observation of
some query interval slots for each real repository and by thus defining an order
of passing from one repository to another. Queryable Reps(r) = true therefore
means that the r repository can accept a query. This variable is modified in the
implementation of the submit query operation.

We do not give the B notation of the Offline Analysis and Commenting mod-
ules because their operations proved to be more challenging to implement at low
level. The append to log() operation is meant to save the execution steps in a
log file at runtime.

3.2 Implementation Details

If a B-like algorithm description is useful to examine the possible flows and
to define the operations preconditions and the invariants they have to meet,
the validity of the low level implementation is generally asserted using normal
techniques such as testing and peer code reviewing.

RESource program implements the algorithm as a Python IDA Pro plug-in.
It is worth mentioning that, unlike the RE-Google plugin [10], our extended
version does not rely on the GData framework [8], nor does it utilize Google
Code [7] as the only search engine for accessing code repositories. Instead, it
possesses a built-in query processing engine and parsing mechanism for han-
dling request/response messages. Furthermore, it supports multiple search en-
gines and it provides a framework for adding new code repositories with only a
few lines of code. Also, the program makes use of an interleaving time optimiza-
tion technique for managing multiple search engines. Despite the large number
of request/response messages, it honors the required time delays between conse-
quent messages without wasting processing time.

In terms of extracted interesting features from the ASM code, RESource is
able to get four types of features for online analysis and query building: (1)
immediate values of operands, (2) imported libraries and function calls, (3) ex-
ported functions in DLLs, and (4) strings values. In addition, it considers eight
features for offline analysis. For each function, we extract information about
its stack frame: (1) number of instructions; (2) size and number of local vari-
ables; (3) size and number of arguments; (4) size of saved registers; (5) func-
tion flags; (6) function addresses (begin, end, return); (7) function prototype
(type of input and output and calling convention); (8) calls to low level system
functions (malware dictionary). Moreover, variable scopes (local/stack-based or
global/memory-based) and simple data structures (single variables or structs)
are also highlighted for the reverse engineer.

RESource: Matching Open Source Code with ASM 9

Fig. 5. Execution Flow

Moreover, the program adds better result handling techniques than RE-
Google and an offline functionality analysis engine. In many situations, online
results may not be available due to the lack of extracted features, obfuscated or
hard-coded procedure, use of complex and non-standard algorithms, etc. There-
fore, the offline analyzer is of great benefit for revealing the overall functionality
of a portion of assembly code. It has an extendable dictionary of common func-
tions in Windows API along with a programmer-friendly description of each
function.

Execution Flow
As illustrated in Fig. 5, there are five main modules in the Python program for
handling tasks related to Features, Queries, Repositories, Parsing and Comment-
ing. Except for the Code Search Engine (3), these modules have a counterpart
in the algorithm blocks of Fig. 1. The RESource program interacts with the IDA
Pro API for getting a list of available procedures in the disassembly, getting
function addresses and names, as well as adding comments to the file.

The execution flow starts in the main function of the script where the initial-
ization of variables and execution time calculation is done (Initialize(RESrc Vars)).
Then, the script checks a variable (flag) to determine whether the search should
be performed on a specific function or on all the extracted functions from the
disassembly (RESrc(asm function list)). In the first case, the user highlights a
specific function for search and in the second case, all the functions are taken
into account.

In the next step, the RESrc function counts the total number of available
procedures and prepares a loop for analyzing each item. Then, a function will be

10 Rahimian, A., Charland, P., Preda, S., Debbabi, M.

called for extracting four types of features, namely constants, imported libraries,
exported libraries and string values from the disassembly. The output of the
Extract QFeatures() function is a potential list of features that could be used
for building a general query. This list will be refined several times before building
a specific query. Next, the features for offline analysis are extracted using the
Extract OAFeatures() function :

feature qlist ← Extract QFeatures(asm function)

feature oalist ← Extract OAFeatures(asm function)

// OA for Offline Analysis

feature listfunc i = [fi1, fi2, ..., fin]

refined qlist ← Refine GQuery(feature qlist)

The purpose of the Offline Analysis (OA) module is to compare a function
with a list of known Windows API functions in order to get a simple statement
about the functionality and prototype of the procedure under analysis. Also,
this module assists the reverse engineer by highlighting the variables and their
scope.

The purpose of the Refine GQuery() function in the refining process is to
filter out certain characters from the feature list to prevent problems with search
engines queries. For instance, the search engines may not allow characters such
as “%, ‘, ‘ ”’ as part of query string to prevent SQL injection. Therefore, the
output query is safe for submission into code search engines. However, the user
can define what characters are blacklisted by adding ‘badkey’: ‘value’ pairs into
the “BlackDict” dictionary. For instance, the keys in the following dictionary are
simply replaced with the ‘’ character which is equivalent to removing them from
the search string.

BlackDict = {‘%d’:‘’, ‘%s’:‘’, ‘\\’:‘’, ‘%1’:‘’, ‘%2’:‘’, ...}

Also, this function encodes and prepares the list for the next steps of specific
query building:

base query ← Generate Query(refined qlist)

At this step, we have a base query that can be further encoded for particular
search engines. Search engine-specific prefix and suffix will be added to each base
query to build a standard query. The following functions are examples of query
building functions for three major code search engines.

final queryKoders ← Build Koders Query(base query)

final queryGCS ← Build GCS Query(base query)

final queryKrugle ← Build Krugle Query(base query)

The next step is to submit the query and get the response for each respective
search engine. The order of query submission and response extraction is impor-
tant for time optimization. Usually there must be a time delay between two

RESource: Matching Open Source Code with ASM 11

Fig. 6. Timing Interleaving.

subsequent requests to a search engine (SE). The program uses an interleaving
technique for managing the query submission and for saving processing time (as
shown for example in Fig. 6).

For each query, a request is made and the response page is received in HTML.

html pagej ← Fetch Response(final queryj)

After getting the page, a call to the local parsing function will be made to extract
relevant information based on a predefined regular expression statement for each
search engine. Then, the matching Filenames and URLs are extracted and stored
in a dictionary.

dictionary list ← Refine Results(Parse Page(html page))

The results are processed and duplicate results are removed from the list.
Also, based on the search engine rankings, the best matches are selected and
given a priority. Lastly, the comments are updated to reflect the online search
results.

function comment ← Update Commentfunction k(refined dictionary list)

In the next section, we present a practical application of our RESource pro-
gram on an open source software.

4 Experimental Results

We have adopted the PreciseCalc Project [12] given that both the sources and
binary files are available on SourceForge and Koders (http://www.koders.com)
as a code search engine. As an input to our RESource IDA Pro plugin, we use
the ASM file resulting from disassembling the PreciseCalc binary. There are 533
ASM procedures and we choose to analyse all of them.

The Extract QFeatures() function is able to extract features from 67 pro-
cedures. If there are at least two elements in the Imports list or the joint set of
Constants and String List is non-empty, then the script would try to find an ex-
act match by concatenating all the elements. This is an ideal situation where the

12 Rahimian, A., Charland, P., Preda, S., Debbabi, M.

Fig. 7. Feature Extraction (excerpt from the log file).

query would be expressive enough in terms of number and the type of elements.
If no exact match is found, then the search would be based on the strings inside
the binary. If the length of String List is larger than one, then the search query
will be built by concatenating the String elements. Finally, if there is at least
one element in the Constants List but the results set is empty, the script will
perform the search by building a query based on the concatenation of constant
elements.

The conditional rules for defining each case can be altered based on the
application under analysis and the number of available elements in the extracted
lists. Generally, there are more elements in each list when the application makes
use of Standard Windows Libraries.

Fig. 7 shows a few examples of interesting features extracted by the Extract
QFeatures() function. In the first one, the search is merely performed based on
the constants. Example 2 shows a situation in which only string information
is available. No import lists are detected for the first two cases. Conversely, in
examples 3 and 4, sets of imported function names are included in the search.
The original PreciseCalc project can be accurately identified by submitting a
query containing portions of the strings in example 3. Even if an exact match
is not found, the RESource program will try to find a close or a rough match
based on a combination of features.

RESource: Matching Open Source Code with ASM 13

Table 1. Identified Source Codes.

Func. no. Function ID @ Address Source Code Reference Match

70 [sub 406800] @ [0x406800] complex.cpp 100%

146 [sub 409620] @ [0x409620] lang.cpp 100%

159 [sub 40A1E0] @ [0x40a1e0] matrix.cpp 100%

261 [sub 4119B0] @ [0x4119b0] parser.cpp 100%

334 [sub 417B20] @ [0x417b20] preccalc.cpp 100%

RESource was able to detect several references to each source file in the origi-
nal project. PreciseCalc application includes functions that handle Text Editing,
GUI Processing, Timing and Registry Modification, alongside the Arithmetic,
Statistical, Geometrical and other math-related functions.

Table 1 shows sample results of the identified C++ source code. The identified
links and filenames are inserted directly in the assembly file. There are several
references to the main “preccalc.cpp” file. For instance, the functions at addresses
0x417b20, 0x41b2d0, 0x4190c0, 0x419ab0, 0x41a2b0, 0x41b4a0, 0x41be70 and
0x41c1f0 were referencing the main C++ file in the project. Fig. 8 shows one of
these references.

RESource has detected several math-related functions in the disassembly.
The script has generated a comprehensive execution log that is self-explanatory
and describes the analysis process. Even though the current version of RESource
does not include heuristic query processing techniques, it is able to detect more
than 70% of the original source files with an accuracy of 100%. Also, the script
is useful for gaining insight into the functionality of the ASM file.

Concerning the Offline Analysis module, the current implementation includes
a dictionary of common Windows APIs alongside with a brief description of each
one. This dictionary was built with malware analysis in mind. Therefore, it in-
cludes about 200 of the most common kernel and user level functions known to
be used by existing malware [13].

Fig. 8. Identified “precalc.cpp” file @ 0x41B2D0.

14 Rahimian, A., Charland, P., Preda, S., Debbabi, M.

In our second scenario, we run RESource on several malware disassemblies.
The Offline analyser helps the reverse engineers to understand network connec-
tivity and data gathering functionalities of malware by adding relevant com-
ments.

In Fig. 9 there are several routines of malware performing file I/O operations
and communication with a remote command and control server. In cases where
RESource returns results from both the online code repositories and the Offline
analyzer, an emergent consistency is observed. As an example, Fig. 9(e) depicts
a portion of assembly code that is capturing the screen and saves it to a file to
be remotely transmitted. As can be seen, RESource gives reliable information
in both Offline and Online comment sections. Such rich informal expression of a
comment may really be beneficial for the hectic job of a reverse engineer.

Discussion
A side by side comparison between the outputs of RE-Google and RESource was
not possible because the underlying search framework of RE-Google was dep-
recated. In other words, RE-Google is not functional anymore. RESource takes
an intra-procedural approach to extract features and build queries. It could be
argued that an inter-procedural approach could improve the accuracy of the
Online analysis. However, the search engines provide limited commands for exe-
cuting logic-based queries and some of them do not provide direct APIs to their
repositories. Adopting a heuristic query building algorithm that tries different
elements in the query string and selects the best match could improve the accu-
racy of the identified online projects. As to the accuracy of the Offline analysis,
it clearly depends on the number and selection of the functions defined in the
dictionary. In a situation where we have results from both the online and of-
fline analyzers, the reverse engineer would have the maximum information. This
happens when programs make use of standard libraries such as VCL or MFC.
In other cases, there might be no results from the online module. This happens
when malware authors use non-standard components or they use certain wrap-
pers around standard system calls. Also, they might use non-standard low level
kernel functions for performing simple I/O operations.

5 Conclusions

Software reverse engineering is a complex task. Applications like malware analy-
sis can grasp the benefits of a tool able to automatically give reliable information
about the matching between open source and assembly code.

In this paper, we established a framework to develop such a tool – RESource
– that exploits some features existing at both the source and the assembly file
levels. Based on these features, queries are triggered on certain online repositories
used by the developers’ community. If there is no query result, the tool is still
able to provide some information about the functionality of a portion of the
ASM file by a local offline analysis. The reverse engineer’s task is thus greatly
simplified.

RESource: Matching Open Source Code with ASM 15

(a) Routine involving file I/O

(b) References to some networking services

(c) Offline analysis only

(d) References to system services

(e) Routine revealing screen capture functionality

Fig. 9. Examples of the final outcome.

16 Rahimian, A., Charland, P., Preda, S., Debbabi, M.

References

1. Abrial, J. R.: The B Book - Assigning Programs to Meanings. Cambridge University
Press, ISBN 052149619-5 (1996).

2. Boomerang: a general, open source, retargetable decompiler of machine code pro-
grams. [On-line]. http://boomerang.sourceforge.net/.

3. Bryant, R. E., O’Hallaron, D. R.: Computer Systems – A programmer’s Perspective,
2nd Edition. Addison Wesley, ISBN 0136108040 (2010).

4. Eymery, D., Eymery, O., Borello, J-M., Fraygefond, J-M., Bion, P.: GenDbg : un
débogueur générique. In: Symposium sur la sécurité des technologies de l’information
et des communications SSTIC’08, France (2008).

5. GDB: The GNU Project Debugger. [On-line].
http://www.gnu.org/software/gdb/documentation/.

6. GNU Binutils. [On-line]. http://www.gnu.org/software/binutils/.
7. Google Code. [On-line]. http://code.google.com/.
8. Google Data APIs. [On-line]. http://code.google.com/p/gdata-objectivec-client/.
9. IDA Pro multi-processor disassembler and debugger. [On-line]. http://www.hex-

rays.com/products/ida/index.shtml.
10. IDA Pro Re-Google Plugin. [On-line]. http://regoogle.carnivore.it/.
11. Lagadec, P.: Dynamic Malware Analysis for Dummies. In: Symposium sur la

sécurité des technologies de l’information et des communications SSTIC’08, France
(2008).

12. Precise Calculator Project. [On-line]. http://sourceforge.net/projects/preccalc/.
13. Sikorski, M., Honig, A.: Practical Malware Analysis: The Hands-On Guide to Dis-

secting Malicious Software. No Starch Press, ISBN 1593272901 (2012).
14. The Hex-Rays Decompiler. [On-line]. http://www.hex-rays.com/.
15. Troshina, K., Chernov, A., Derevenets, Y.: C Decompilation: Is It Possible?. In:

Proceedings of International Workshop on Program Understanding, pp. 18–27, Altai
Mountains, Russia (2009).

16. Troshina, K., Derevenets, Y., Chernov, A.: Reconstruction of Composite Types
for Decompilation. In: Proceedings of the 2010 10th IEEE Working Conference on
Source Code Analysis and Manipulation, SCAM ’10, pp. 179–188, Timisoara, Ro-
mania (2010).

17. Valgrind – a suite of tools for debugging and profiling. [On-line].
http://valgrind.org/.

18. WinDbg debugger for Microsoft Windows. [On-line]. http://www.windbg.org/.

