Skip to main content

Many-Objective Optimization Using Taxi-Cab Surface Evolutionary Algorithm

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7811))

Abstract

Optimization of problems spanning more than three objectives, called many-objective optimization, is often hard to achieve using modern algorithm design and currently available computational resources. In this paper a multiobjective evolutionary algorithm, called the Surface Evolutionary Algorithm, is extended into many-objective optimization by utilizing, for the first time, the taxi-cab metric in the optimizer. The Surface Evolutionary Algorithm offers an alternative to multi-objective optimizers that rely on the principles of domination, hypervolume and so forth. The taxi-cab metric, or Manhattan distance, is introduced as the selection criterion and the basis for calculating attraction points in the Surface Evolutionary Algorithm. This allows for fast and efficient many-objective optimization previously not attainable using this method. The Taxi-Cab Surface Evolutionary Algorithm is evaluated on a set of well-known many-objective benchmark test problems. In problems of up to 20 dimensions, this new algorithm of low complexity is tested against several modern multi-objective evolutionary algorithms. The results reveal the Taxi- Cab Surface Evolutionary Algorithm as a conceptually simple, yet highly efficient many-objective optimizer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons Ltd., West Sussex (2001)

    MATH  Google Scholar 

  2. Knowles, J., Corne, D., Deb, K. (eds.): Multiobjective Problem Solving from Nature. From Concepts to Applications, Natural Computing Series. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Rahmat-Samii, Y., Christodoulou, C.: Special Issue, IEEE Trans. Antennas Propag. 55(3) (2007)

    Google Scholar 

  4. Hughes, E.J.: Radar Waveform Optimisation as a Many-Objective Application Benchmark. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 700–714. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Holland, J.H.: Adaption in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Inc. (1989)

    Google Scholar 

  7. Koza, J.R.: Genetic Programming. On the Programming of Computers by Means of Natural Selection. The MIT Press (1992)

    Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  9. Purshouse, R.C., Fleming, P.J.: Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 16–30. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Purshouse, R.C., Fleming, P.J.: Evolutionary many-objective optimization: An exploratory analysis. In: Proc. of IEEE CEC 2003, vol. 3, pp. 2066–2073 (2003)

    Google Scholar 

  11. Hughes, E.J.: Evolutionary many-objective optimization: Many once or one many? In: Proc. of IEEE CEC 2005, vol. 1, pp. 222–227 (2005)

    Google Scholar 

  12. Wagner, T., Beume, N., Naujoks, B.: Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  14. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report 103, ETH, Zurich, Switzerland (2001)

    Google Scholar 

  15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  16. Beume, N., Naujoks, B., Emmerich, M.: SMS- EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181, 1653–1669 (2007)

    Article  MATH  Google Scholar 

  17. Igel, C., Hansen, N., Roth, S.: Covariance Matrix Adaptation for Multi-objective Optimization. Evol. Comput. 15(1), 1–28 (2007)

    Article  Google Scholar 

  18. Beume, N., Fonseca, C.M., Lopez-Ibanez, M., Paquete, L., Vahrenhold, J.: On the Complexity of Computing the Hypervolume Indicator. IEEE Trans. Evol. Comput. 13(5), 1075–1082 (2009)

    Article  Google Scholar 

  19. Hughes, E.J.: Many-Objective Directed Evolutionary Line Search. In: Proc. of GECCO 2011, pp. 761–768. ACM (2011)

    Google Scholar 

  20. Hughes, E.J.: Multiple Single Objective Pareto Sampling. In: Proc. of IEEE CEC 2003, vol. 4, pp. 2678–2684 (2003)

    Google Scholar 

  21. Hughes, E.J.: MSOPS-II: A general-purpose Many-Objective optimizer. In: Proc. of IEEE CEC 2007, pp. 3944–3951 (2007)

    Google Scholar 

  22. Moen, H.J.F., Kristoffersen, S.: Spanning the Pareto Front of a Counter Radar Detection Problem. In: Proc. of GECCO 2011, pp. 1835–1842. ACM (2011)

    Google Scholar 

  23. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Proc. of IEEE CEC 2002, pp. 825–830 (2002)

    Google Scholar 

  24. Deb, K.: A Robust Evolutionary Framework for Multi-Objective Optimization. In: Proc. of GECCO 2008, pp. 633–640. ACM (2008)

    Google Scholar 

  25. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA. IEEE Trans. Evol. Comput. 12(3), 269–283 (2008)

    Article  Google Scholar 

  26. Adra, S.F., Fleming, P.J.: Diversity Management in Evolutionary Many-Objective Optimization. IEEE Trans. Evol. Comput. 15(2), 183–195 (2011)

    Article  Google Scholar 

  27. Hughes, E.J.: http://code.evanhughes.org

  28. Deb, K., Goyal, M.: A Combined Genetic Adaptive Search (GeneAS) for Engineering Design. Computer Science and Informatics 26(4), 30–45 (1996)

    Google Scholar 

  29. Deb, K., Agrawal, R.B.: Simulated Binary Crossover for Continuous Search Space. Complex Systems 9, 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Matlab Distributed Computing Server. The MathWorks Inc. (1994-2011)

    Google Scholar 

  31. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithm: Classifications, Analyses, and New Innovations. Ph.D. thesis, Air Force Institute of Technology (1999)

    Google Scholar 

  32. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, ETH, Zurich, Switzerland (November 1999)

    Google Scholar 

  33. Farhang-Mehr, A., Azarm, S.: Diversity Assessment of Pareto Optimal Solutions: An Entropy Approach. In: Proc. of CEC 2002, pp. 723–728 (2002)

    Google Scholar 

  34. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN V. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  35. Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. M.Sc. thesis, Cambridge, Massachusetts (1995)

    Google Scholar 

  36. Bandyopadhyay, S., Pal, S.K., Aruna, B.: Multiobjective GAs, Quantitative Indices, and Pattern Classification. IEEE Trans. Syst. Man Cybern. Syst.:B 34(5), 2088–2099 (2004)

    Article  Google Scholar 

  37. Shannon, C.E.: A Mathematical Theory of Communication. Bell Systems Technical Journal 27, 379–423, 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moen, H.J.F., Hansen, N.B., Hovland, H., Tørresen, J. (2013). Many-Objective Optimization Using Taxi-Cab Surface Evolutionary Algorithm. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds) Evolutionary Multi-Criterion Optimization. EMO 2013. Lecture Notes in Computer Science, vol 7811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37140-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37140-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37139-4

  • Online ISBN: 978-3-642-37140-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics