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Abstract. This paper presents a hypervolume-based multi-objective path relink-
ing algorithm for approximating the Pareto optimal set of multi-objective combi-
natorial optimization problems. We focus on integrating path relinking techniques
within a multi-objective local search as an initialization function. Then, we carry
out a range of experiments on bi-objective flow shop problem and bi-objective
quadratic assignment problem. Experimental results and a statistical comparison
are reported in the paper. In comparison with the other algorithms, one version of
our proposed algorithm is very competitive. Some directions for future research
are highlighted.

Keywords: multi-objective optimization, hypervolume contribution, path relink-
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1 Introduction

Local search is an effective search strategy for both single objective optimization and
multi-objective optimization. Particularly, local search requires a method to generate
initial solutions. However, how to set the initialization methods still remains an open
question in many cases, especially in multi-objective optimization. In this paper, we
investigate path relinking [8] as an initialization method for hypervolume-based multi-
objective local search (HBMOLS) [3].

The HBMOLS algorithm aims to generate a Pareto approximation set by improving
an initial population. In this work, we use path relinking to construct paths and then
select from each path a set of solutions to initialize a new population for HBMOLS.
In order to evaluate the effectiveness of our proposed method, we show experimental
results on the bi-objective flow shop problem and bi-objective quadratic assignment
problem, and we compare them with the HBMOLS algorithm which initializes a new
population using random mutations or crossover operator.

The remainder of this paper is organized as follows. In Section 2, we present some
basic notations and definitions related to multi-objective optimization. Then, in Sec-
tion 3, we briefly review the literature using the path relinking techniques to solve multi-
objective optimization problems. Afterwards, in Section 4, we describe the hypervolume-
based multi-objective path relinking algorithm. Section 5 reports the computational re-
sults and analyzes the behavior of the proposed algorithm. Finally, the conclusions and
perspectives are given in the last section.
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2 Multi-Objective Optimization

In this section, we recall some useful notations and definitions of multi-objective opti-
mization. Let X denote the search space of the optimization problem under consider-
ation and Z the corresponding objective space. Without loss of generality, we assume
that Z = �n and all n objectives are to be minimized. Each x ∈ X is assigned exactly
one objective vector z ∈ Z on the basis of a vector function f : X → Z with z = f(x).
The mapping f defines the evaluation of a solution x ∈ X , and often one is interested
in those solutions that are Pareto optimal with respect to f . The relation x1 � x2 means
that the solution x1 is preferable to x2. The dominance relation between two solutions
x1 and x2 is usually defined as follows:

Definition 1. A decision vector x1 is said to dominate another decision vector x2 (writ-
ten as x1 � x2), if fi(x1) ≤ fi(x2) for all i ∈ {1, . . . , n} and fj(x1) < fj(x2) for at
least one j ∈ {1, . . . , n}.

Definition 2. x ∈ S (S ⊂ X) is said to be non-dominated if and only if there does not
exist another solution x

′ ∈ S such that x
′

dominates x. When S ≡ X , x is said to be
Pareto optimal.

Definition 3. S is said to be a non-dominated set if and only if S is composed of non-
dominated solutions. When S is composed of all the Pareto optimal solutions, S is said
to be a Pareto optimal set.

In multi-objective optimization, there usually does not exist one optimal but a set of
Pareto optimal solutions, which keeps the best compromise among all the objectives.
Nevertheless, in most cases, it is not possible to compute the Pareto optimal set in a
reasonable time. Then, we are interested in computing a non-dominated set, which is
as close to the Pareto optimal set as possible. Therefore, the goal is often to identify a
good Pareto approximation set.

3 Related Works

Path Relinking (PR) was initially proposed by Glover [8] as an effective search strat-
egy, which has proved its efficiency in single objective optimization [8]. Its objective
is to explore the search space by creating paths within a given set of high-quality solu-
tions. In the following paragraphs, we focus on the studies dealing with multi-objective
optimization problems.

Basseur et al. [2] propose a multi-objective approach to integrate PR techniques into
an adaptive genetic algorithm, which is dedicated to obtaining a first well diversified
Pareto approximation set. Based on this set, two solutions are randomly selected to
generate a path. According to the distance measure defined in [2], there are many in-
termediate solutions which can be generated at each step of the PR procedure. Then,
the authors apply a random aggregation of the objectives to determine which solution is
selected from the possible eligible solutions. After linking these two solutions, a Pareto
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local search is applied in order to improve the quality of the non-dominated set gener-
ated by the PR algorithm. Experimental results on bi-objective flow shop problem show
that this PR approach is very promising and efficient.

In [13], Pasia et al. present three PR approaches for solving a bi-objective flow shop
problem. By using a straightforward implementation of the ant colony system, they
first generate two pools of initial solutions, where one pool contains solutions that are
good with respect to the makespan and the other one contains solutions that are good
with respect to the total tardiness. Based on random insertion, all the solutions in both
pools are improved by local search in order to obtain a non-dominated set. Then, the
authors randomly select two solutions from this non-dominated set to construct a path.
Along the path, some of the solutions are submitted for improvements. The authors
propose three different strategies to define the heuristic bounds. Each strategy allows the
solutions to undergo local search under the conditions based on the local nadir points.
Computational results demonstrate that their proposed approaches are competitive.

In addition, two different versions of iterated Pareto local search (IPLS) algorithms,
which are path-guided IPLS (pIPLS) and a combination of IPLS and pIPLS named
rIPLS, are presented in [6]. The authors propose a path-guided mutation that generates
solutions on the path linking two local optimal individuals. This mutation generates in-
dividuals at a certain distance from the initial solution to the guiding solution. Then,
Pareto local search is restarted from the individual generated on the path. Experiments
on bi-objective quadratic assignment problem show that pIPLS and rIPLS both outper-
form the multi-restart Pareto local search algorithm.

4 Hypervolume-Based Multi-Objective Path Relinking Algorithm

This section describes the hypervolume-based multi-objective path relinking algorithm,
which is a combination of the Hypervolume-Based Multi-Objective Local Search al-
gorithm (HBMOLS) and the Multi-Objective Path Relinking algorithm (MOPR). The
outline of the proposed algorithm is illustrated in Algorithm 1 and depicted in Fig. 1.

In this algorithm, all the solutions in an initial population are randomly generated.
Then, each solution in the population is optimized by the HBMOLS algorithm [3],
which is based on the Hypervolume Contribution Selection illustrated in Algorithm 2.
The HBMOLS algorithm achieves the fitness assignment by using the hypervolume
contribution indicator HC(x, P ) defined in [3]. Afterwards, we randomly choose two
solutions (an initial solution and a guiding solution) from the Pareto approximation
set generated by HBMOLS, and we define a distance between these two solutions to
construct a path. At each step, we generate only one new solution and make sure the
distance between the new solution and the guiding solution decreases by 1.

After the path generation, a subset of solutions in the path are selected and used to
initialize a new population P for HBMOLS. These solutions are potentially inserted
into P , according to their corresponding hypervolume contribution. Actually, we pro-
pose four mechanisms to select a set of solutions from the generated path. These mech-
anisms are illustrated in Fig. 2 and described in detail below.

All: All the solutions in the path are selected to be inserted into the population P
(solutions represented both in circle and in square in Fig. 2).
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Algorithm 1. Hypervolume-Based Multi-Objective Path Relinking Algorithm
Input: N (Population size)
Output: A (Pareto approximation set)
Initialization: P ← N randomly generated solutions

A← Non dominated solutions of P
while Running time is not reached do

Local Search (HBMOLS):
1) Fitness Assignment: Calculate a fitness value for each x ∈ P , i.e., Fit(x) = HC(x,P )
2) For each x ∈ P do:

repeat
a) x∗ ← one randomly chosen unexplored neighbors of x
b) Progress← Hypervolume Contribution Selection (P, x∗)

until all neighbors are explored or Progress = True
3) A← Non dominated solutions of A

⋃
P . If A does change, back to step 2

Path Relinking (MOPR):
1) P

′ ← N randomly generated solutions
2) randomly choose an initial solution xi and a guiding solution xj from A
3) compute the distance dij between xi and xj

4) generate a set of solutions: T = {t1, t2, · · · , tdij−1} along a path linking xi to xj

5) select npr solutions: T
′
= {y1, y2, · · · , ynpr} from the set T

6) for i← 1, . . . , npr do
Hypervolume Contribution Selection (P

′
, yi)

end for
end while
Return A

Best: The solutions in the path are divided into two sets, according to their Pareto
dominance relations. The solutions belonging to the non-dominated set are selected.
In Fig. 2, the solutions represented in square are selected, since they belong to the
non-dominated set.

Middle: The solutions located at the beginning or at the end of the path are similar
to the initial solution or the guiding solution. These solutions could not be very
useful, since HBMOLS will search the explored areas alike. One way to avoid this
problem is to select a single solution, which is located in the middle of the path
(solution represented in black circle in Fig. 2). In fact, this mechanism can be seen
as a kind of crossover operator.

K-Middle: Here, we also aim to avoid the problem of proximity of intermediate so-
lutions to the initial solution and the guiding solution. Then, we propose to select
a set of solutions located in the middle of the path. The number NKM of these so-
lutions is defined according to the length of generated path. We define this number
by using the formula NKM =

√
NAll, where NAll being the number of the solu-

tions in the path, and NKM is the greatest integer that is not bigger than
√
NAll

(solutions located in the dashed circle in Fig. 2).
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Algorithm 2. Hypervolume Contribution Selection
Step:

1) P ← P
⋃

x∗

2) compute x∗ fitness: HC(x∗, P ), then update all z ∈ P fitness values:
Fit(z) = HC(z, P )

3) w ← worst individual in P
4) P ← P\{w}, then update all z ∈ P fitness values: Fit(z) = HC(z, P\{w})
5) if w �= x∗, return True

  (Random
population)

(Pareto set approximation)

(Selected solutions from the path)

    Random
Initialization

HBMOLS ( P ) MOPR ( A )

P

A

P

Fig. 1. A random population is initialized and provided as an entry to to HBMOLS, which gen-
erates a Pareto approximation set by improving the initial population. Then, MOPR generates a
path between two solutions belonging to the Pareto approximation set provided by HBMOLS. A
subset of solutions in the path is selected to initiate a new HBMOLS execution.

5 Computational Results

In order to evaluate the efficiency of our proposed algorithms, we carry out experiments
on the bi-objective flow shop problem and bi-objective quadratic assignment problem.
We compare four versions of hypervolume-based multi-objective path relinking algo-
rithm (named PR A, PR B, PR M and PR KM) with two versions of HBMOLS (named
RM and CO), which use random mutation and crossover operator as the initialization
functions [1]. All the algorithms are programmed in C and compiled using Dev-C++ on
a PC running Windows XP with Pentium 2.61 GHz CPU and 2 GB RAM.

5.1 Performance Assessment Protocol

We evaluate the effectiveness of multi-objective optimization algorithms by using a test
procedure that has been undertaken with the performance assessment package provided
by Zitzler et al.1

The quality assessment protocol works as follows: we first create a set of 20 runs
with different initial populations for each algorithm and each benchmark instance. Af-
terwards, we calculate the set PO∗ in order to determine the quality of k different sets

1 http://www.tik.ee.ethz.ch/pisa/assessment.html
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f 2

f 1

  Initial 
Solution

Guiding 
Solution

Objective Space

:  Middle

:  Best

:  K-Middle

:  All

Fig. 2. The mechanisms of subset selection

A0 . . . Ak−1 of non-dominated solutions (The set PO∗ is generated by removing the
dominated solutions from the union of k different sets, more details can be found in
[19]). Furthermore, we define a reference point z = [w1, w2], where w1 and w2 repre-
sent the worst values for each objective function in A0∪· · ·∪Ak−1. Then, the evaluation
of a set Ai of solutions can be determined by finding the hypervolume difference be-
tween Ai and PO∗ [19], which has to be as close to zero as possible.

For each algorithm, we compute 20 hypervolume differences corresponding to 20
runs, and perform the Mann-Whitney statistical test on the sets of hypervolume differ-
ence. In our experiments, we say that an algorithm A outperforms an algorithm B if the
Mann-Whitney test provides a confidence level greater than 95%. The computational re-
sults are summarized in Tables 2and 4 respectively. In these two tables, each line contains
at least a value in grey for each instance, which corresponds to the best average hyper-
volume difference obtained by the corresponding algorithm. The values both in italic
and bold mean that the corresponding algorithms are not statistically outperformed by
the algorithm which obtains the best result (with a confidence level greater than 95%).

5.2 Application to Bi-objective Flow Shop Problem

The Flow Shop Problem (FSP) is one of the most thoroughly studied machine schedul-
ing problems, which schedules a set of jobs on a set of machines according to a specific
order. In this paper, we focus on optimizing two objectives: total completion time and
total tardiness.

5.2.1 Bi-objective Flow Shop Problem
Generally, the FSP deals with n jobs {J1, J2, ..., Jn} and m machines
{M1,M2, ..., Mm}, where each job has to be processed on all the machines in the
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same machine sequence. Each machine could only process one job at a time, and the
machines can not be interrupted once they start processing a job. As soon as the opera-
tion is finished, the machines become available.

Specifically, each job Ji is composed ofm consecutive tasks {ti1, ti2, ..., tim}, where
tij represents the jth task of the job Ji requiring the machine mj . Each task tij is as-
sociated with a processing time pij , which is scheduled at the time sij and should be
achieved before the due date dj . Actually, we aim to minimize two objective func-
tions: total completion time Cmax and total tardiness T , which are formally defined as
follows:

f1 = Cmax = max
i∈[1...n]

{sim + pim} (1)

f2 = T =

n∑

i=1

[max(0, sim + pim − di)] (2)

Both of them have been proven to be NP -hard [9,7]. In addition, all the FSP instances
used in this paper are taken from Taillard benchmark instances and extended into bi-
objective case [17]2.

5.2.2 Path Generation
A candidate solution to FSP can be encoded as a permutation P composed of
{0, . . . , n −1} values, such that P(i) denotes the job to be executed at the ith position.
As proved in [15], the insertion operator, which inserts a selected job to a designated
position, is more effective than other operators in solving FSP. Moreover, the authors in
[4] show the insertion operator is also very efficient in solving multi-objective FSPs.

Therefore, we decide to define our distance measure directly related to the insertion
operator. This property allows us to to compute the minimum number of moves, which
have to be applied on an initial solution to reach a guiding solution. As suggested in [2],
we use the Longest Common Subsequence (LCS) between two solutions as a distance
measure for path generation. The LCS can be calculated in O(n2) by a dynamic pro-
gramming algorithm, which is similar to the well known Needleman-Wunsch algorithm
[5,14]. Then, the distance between two solutions is defined as the length of permutation
minus the length of LCS.

After the distance computation, we generate a path in a random way. In this method,
we randomly select a candidate job, and insert this job into a randomly selected position.
In fact, this method consists of four main steps:

Step 1: We randomly select a candidate job from an initial solution. For example, in
Fig. 3, the longest common subsequence between an initial solution and a guiding
solution is colored in black, the remaining jobs are candidate jobs. In this example,
the candidate job 15 is randomly selected.

2 Benchmarks available at
http://www.lifl.fr/ liefooga/benchmarks/index.html
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Initial Solution

Guiding Solution

New Solution

Distance before insertion: 9

Distance after insertion: 8

16 14 7 18 13 0 1 5 8 6 3 11 9 12 15 10 4 2 17 19

14 1 5 17 2 15 7 11 16 6 4 9 133 10 12 190 818

14 1 5 17 2 157 11 16 6 4 9 133 10 12 190 818

Randomly selected candidate jobStep 1

Predecessor job Successor job Step 2

Possible insertion points  

21
Step 3

Step 4

Fig. 3. Path generation for flow shop problem

Step 2: We find the position of the selected candidate job in the LCS of the guiding
solution. In Fig. 3, the candidate job 15 is located between two jobs 9 and 10.

Step 3: We find the insertion position for the selected candidate job in the LCS of the
initial solution. As shown in Fig. 3, there are two possible insertion positions for
the job 15: (9 13) and (13 10).

Step 4: We insert the selected candidate job into a randomly selected insertion posi-
tion to generate a new solution in the path. As illustrated in Fig. 3, we insert the job
15 into the randomly selected insertion position (9 13) to obtain a new solution.
We continue the process in this manner until the distance between the new solution
and the guiding solution equals to 0.

5.2.3 Parameters Settings
The proposed algorithms require to set a few parameters, we mainly discuss two impor-
tant ones: running time and population size.

Running time: The running time T is a key parameter in the experiments. We define
the time T for each instance by Equation 3, in which NJob and NMac represent the
number of jobs and the number of machines of one instance, NObj represents the
number of objectives (see Table 1).

T =
NJob

2 ×NMac ×NObj

100
sec (3)

T is defined according to the ”difficulty” of instance. Indeed, NJob defines the size
of search space, which is NJob!. Moreover, the roughness of landscape is strongly
related with NMac. Then, we use this formula to obtain a good balance between
the problem difficulty and the time allowed.

Population size: According to the results obtained in [1], the experiments realized
previously on the IBMOLS algorithm showed that the best results are achieved with
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a small population size N . We set this size from 10 to 40 individuals by Equation
4, relative to the size of tested instance (see Table 1).

|N | =

⎧
⎪⎪⎨

⎪⎪⎩

10 : 0 < |NJob ×NMac| < 500
20 : 500 ≤ |NJob ×NMac| < 1000
30 : 1000 ≤ |NJob ×NMac| < 2000
40 : 2000 ≤ |NJob ×NMac| < 3000

(4)

Table 1. Parameter values used for bi-objective FSP instances (i j k represents the kth bi-
objective FSP instance with i jobs and j machines): population size (N ) and running time (T )

Instance Dim N T Instance Dim N T

20 05 01 ta001 20 × 5 10 40” 50 15 01 50 × 15 20 12’30”

20 10 01 ta011 20 × 10 10 80” 50 20 01 ta051 50 × 20 30 16’40”

20 15 01 20 × 15 10 2’ 70 05 01 70 × 5 10 8’10”

20 20 01 ta021 20 × 20 10 2’40” 70 10 01 70 × 10 20 16’20”

30 05 01 30 × 5 10 1’30” 70 15 01 70 × 15 30 24’30”

30 10 01 30 × 10 10 3’ 70 20 01 70 × 20 30 32’40”

30 15 01 30 × 15 10 4’30” 100 05 01 ta061 100 × 5 20 16’40”

30 20 01 30 × 20 20 6’ 100 10 01 ta071 100 × 10 30 33’20”

50 05 01 ta031 50 × 5 10 4’10” 100 15 01 100 × 15 30 50’

50 10 01 ta041 50 × 10 20 8’20” 100 20 01 ta081 100 × 20 40 66’40”

5.2.4 Experimental Results
The computational results are summarized in Table 2. In this table, we observe that RM
has a good performance on the first eight instances from 20 5 01 to 30 20 01. It ob-
tains the best average hypervolume differences on these instances. On the other hand,
PR KM outperforms the other algorithms on the remaining instances from 50 5 01 to
100 20 01, where almost all the best results are obtained by this algorithm. Addition-
ally, CO is less effective in comparison with RM and PR KM.

From Table 2, we can see the path relinking techniques have a limited contribution
on the small instances from 20 5 01 to 30 20 01. We suppose that, when the instance
size is small, the length of the path is so short that it is difficult to find a set of solutions
far enough from the initial and guiding solutions to initialize a new population. In this
case, it is more useful to perform random moves in the search space as done in RM.
When we consider the instances with more than 30 jobs, the length of the path is longer,
which means we have more possibilities to explore new high quality areas in the search
space. Therefore, PR KM has a good performance on the large instances from 50 5 01
to 100 20 01.
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Table 2. Comparison of four versions of hypervolume-based multi-objective path relinking al-
gorithm (PR A, PR B, PR M and PR KM) with two versions of HBMOLS (RM and CO) on
20 bi-objective FSP instances from 20 5 01 to 100 20 01. Each value in the table represents an
average hypervolume difference.

AlgorithmInstance
PR A PR B PR M PR KM RM CO

20 05 01 ta001 0.050496 0.076627 0.093801 0.067028 0.000260 0.005152
20 10 01 ta011 0.023355 0.055498 0.048349 0.034595 0.000739 0.027353

20 15 01 0.032433 0.073174 0.070448 0.037654 0.002330 0.037131
20 20 01 ta021 0.009737 0.034508 0.024761 0.010079 0.000077 0.044826

30 05 01 0.049260 0.081154 0.099705 0.040607 0.011844 0.062030
30 10 01 0.100098 0.200979 0.176367 0.088794 0.041814 0.116553
30 15 01 0.052479 0.096203 0.105293 0.048227 0.028186 0.054050
30 20 01 0.048423 0.064844 0.071167 0.040580 0.035835 0.051028

50 05 01 ta031 0.031220 0.083466 0.090345 0.022628 0.041017 0.056559
50 10 01 ta041 0.103891 0.149919 0.132192 0.079505 0.089703 0.116051

50 15 01 0.131563 0.173639 0.156972 0.091552 0.114880 0.131505
50 20 01 ta051 0.129671 0.176523 0.146388 0.093540 0.117150 0.141695

70 05 01 0.110650 0.191452 0.152058 0.096111 0.084047 0.146741
70 10 01 0.131195 0.177933 0.157369 0.119054 0.146445 0.172327
70 15 01 0.149831 0.174514 0.164179 0.134607 0.156965 0.178769
70 20 01 0.139377 0.183869 0.147617 0.102067 0.135491 0.137697

100 05 01 ta061 0.199309 0.359023 0.236139 0.157834 0.169815 0.175162
100 10 01 ta071 0.093883 0.121682 0.104086 0.071063 0.080287 0.086577

100 15 01 0.187296 0.205879 0.175943 0.128876 0.163312 0.174849
100 20 01 ta081 0.205930 0.220908 0.187275 0.131843 0.137246 0.180406

Compared with other versions of hypervolume-based multi-objective path relinking
algorithms, the advantages of PR KM are very clear. As NKM is smaller than NAll, in
most cases, PR KM saves a lot of time during the initializing process, then it performs
more effectively than PR A, especially on the large instances. Considering PR B, we
select a set of non-dominated solutions from the path. However, these solutions are often
close to the initial solution and the guiding solution. The similar search areas have little
contribution in initializing a new population, which decreases the global effectiveness of
PR B. For PR M, only one intermediate solution is selected from the path at each step,
which means this algorithm spends a little time in the initializing process. Then, it is not
very helpful to reinforce the population’s diversity. For this reason, the effectiveness of
PR M is affected.

5.3 Application to Bi-objective Quadratic Assignment Problem

The quadratic assignment problem (QAP) is a classical combinatorial optimization
problem both in theory and in practice. As one of the most difficult problems in the
NP -hard class, it models many real-life problems in many areas such as the facility
location, parallel and distribute computing, and combinatorial data analysis [11]. In our
case, we concentrate on bi-objective quadratic assignment problem.
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5.3.1 Bi-objective Quadratic Assignment Problem
The quadratic assignment problem can be described as the problem of assigning a set of
facilities to a set of locations with given distances between the locations and given flows
between the facilities [12]. Given n facilities and n locations, three n×n matrices D, F1

and F2, where dij is the distance between location i and j, and f1
rs and f2

rs are two flows
between two facilities r and s. The goal is to minimize the sum of the product between
flows and distances. The objective of the QAP can then be formulated as follows:

min
φ∈Φ

n∑

i=1

n∑

j=1

dijf
k
φiφj

, k ∈ {1, 2} (5)

where Φ is the set of all permutations of {1, . . . , n}, and φi gives the location of item i
in a solution φ ∈ Φ.

In this paper, all the tested instances of QAP are provided by R. E. Burkard et al.3 In
our case, a bi-objective QAP instance is generated by keeping the distance matrix of the
first instance and using two different flow matrices. Moreover, we denote a bi-objective
instance as N i ab (N represents the name of instance such as ”esc”) with a matrix of
size i respectively. For example, esc 32 ab denotes a bi-objective instance named ”esc”,
which is generated by two single-objective instances esc 32 a and esc 32 b.

5.3.2 Path Generation
A candidate solution to QAP can be encoded as a permutation P composed of {1, . . . ,
n} values, such that P(i) denotes the facility to be assigned at the ith location. As
proved in [16], the swap operator, which exchanges two facilities in a permutation, is
very effective for solving QAP. Then, we define the distance between two solutions
directly related to the swap operator.

For QAP, we use the permutation distance and the cycle distance [18,14] as the dis-
tance measure. Actually, the distance between two solutions is defined as the permu-
tation distance minus the cycle distance. Afterwards, we construct a path by randomly
selecting an element from one cycle in a permutation and applying the swap operator to
this element to obtain a new solution.

An example of path generation for QAP is illustrated in Fig. 4. In this example,
there is one integer element (11) located at the same position in an initial solution and a
guiding solution, then the permutation distance is 10. On the other hand, there are three
cycles ({3, 1, 2, 7, 8}, {4, 5, 6} and {10, 9}) between these two permutations, so the
cycle distance is 3. Therefore, the distance between the initial solution and the guiding
solution is equal to 7.

Furthermore, there are 7 steps starting from the initial solution Px to the guiding
solution Py , which allows us to generate 6 solutions on the path. For instance, we first
randomly select a facility 2 from one cycle {3, 1, 2, 7, 8} in Px, and we can observe the
facility 2 is located at the second position in Py . Then, we apply the swap operator to

3 Benchmarks available at http://www.seas.upenn.edu/qaplib/inst.html
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P

P
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Fig. 4. Path generation for quadratic assignment problem

two facilities 1 and 2 in Px in order to generate a new solution. We continue this process
until the distance between the new solution Pi and the guiding solution Py is equal to 0.

5.3.3 Parameters Settings
Similar to the parameter settings in FSP, we consider two important parameters: running
time and population size.

– Running time: We define the running time T for each instance by Equation 6,
in which NDis, NFlow and NObj represent respectively the size of the distance
matrix, the size of the flow matrix and the number of objectives in an instance (see
Table 3).

T = NDis ×NFlow ×NObj sec (6)

– Population size: Here, we set this size from 10 to 30 individuals according to
Equation 7, relatively to the size of the tested instance (see table 3).

|N | =

⎧
⎪⎪⎨

⎪⎪⎩

10 : 0 < |NDis ×NFlow| < 500
20 : 500 ≤ |NDis ×NFlow| < 1000
30 : 1000 ≤ |NDis ×NFlow| < 2000
40 : 2000 ≤ |NDis ×NFlow| < 3000

(7)
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Table 3. The instances of bi-objective quadratic assignment problem (Parameters: population size
N , running time T )

Inst 1 Inst 2 Dim N T

chr 12 a chr 12 b 12 × 12 10 4’48”

chr 15 a chr 15 b 15 × 15 10 7’30”

chr 20 a chr 20 b 20 × 20 10 13’20”

esc 16 a esc 16 b 16 × 16 10 8’32”

esc 32 a esc 32 b 32 × 32 30 16’20”

Lipa 30 a Lipa 30 b 30 × 30 20 15’

Ste 36 a Ste 36 b 36 × 36 30 21’36”

tai 40 a tai 40 b 40 × 40 30 26’40”

tai 50 a tai 50 b 50 × 50 40 41’40”

5.3.4 Experimental Results
The computational results for the bi-objective QAP are presented in Table 4. From this
table, we can see RM has a good performance almost on all the instances. Particu-
larly, it obtains the best average hypervolume differences on five instances. Moreover,
PR KM also obtains very competitive results on all the instances, especially on the large
instances, such as Lipa 30 ab, tai 40 ab and tai 50 ab. However, CO is statistically out-
performed by RM and PR KM on most of the instances.

Table 4. Comparison of four versions of hypervolume-based multi-objective path relinking al-
gorithm (PR A, PR B, PR M and PR KM) with two versions of HBMOLS (RM and CO) on 9
bi-objective QAP instances. Each value in the table represents an average hypervolume differ-
ence.

AlgorithmInstance
PR A PR B PR M PR KM RM CO

chr 12 ab 0.000000 0.000000 0.000000 0.000000 0.000000 0.013407
chr 15 ab 0.002988 0.010994 0.000000 0.002271 0.000000 0.026494
chr 20 ab 0.014042 0.025258 0.004827 0.005560 0.001899 0.017890
esc 16 ab 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
esc 32 ab 0.006312 0.008839 0.002594 0.003003 0.002433 0.007948

Lipa 30 ab 0.001956 0.002159 0.001369 0.001347 0.001433 0.003047
Ste 36 ab 0.304087 0.356747 0.669592 0.364021 0.215314 0.203776
tai 40 ab 0.037541 0.041880 0.031969 0.027092 0.046076 0.080534
tai 50 ab 0.038647 0.030516 0.040565 0.027077 0.048410 0.046201

According to the experimental results in table 4, RM has a better performance than
PR KM on the first four instances. Since these instances are small and relatively easy
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to solve, the PR KM and RM algorithms achieve the best results on three instances
(chr 12 ab, chr 15 ab and esc 16 ab), where the average hypervolume differences are
equal to 0. Furthermore, on these small instances, it is not easy for PR KM to construct
a long path to find enough diversified solutions for initializing a new population. Then
it is better to perform random moves in the search space or to select only one solution
from the generated path as done in PR M. When the size of instance becomes larger, we
can construct a longer path and select more useful solutions from the path, which means
we have more chances to explore high quality areas in the objective space. Therefore,
PR KM obtains the best value on the large instances such as tai 50 ab and a competitive
value on the instance esc 32 ab. However, the instance Ste 36 ab is an exception, CO
obtains the best value on this instance. In fact, only several non-dominated solutions are
found in the population. We suppose that the search procedure is often trapped in some
local optimums, then using crossover operator is a better way to be out of these traps.

6 Conclusions and Perspectives

In this paper, we present a hypervolume-based multi-objective path relinking algorithm,
which is applied to the bi-objective flow shop problem and bi-objective quadratic as-
signment problem. This algorithm integrates the path relinking techniques into hypervol
-umebased multi-objective local search as an initialization function, in order to find a
Pareto approximation set. Actually, we provide a general scheme of path relinking al-
gorithm, which can be used to deal with other multi-objective optimization problems.

Experimental results indicate one version of our proposed algorithms is very com-
petitive in comparison with other algorithms. The performance analysis gives us a few
directions for future research. The first possibility is to generate more intermediate so-
lutions at each step, then one can construct several different paths simultaneously. Es-
pecially, for each path, it could give birth to another path in reverse direction. Second, it
is worth proposing other mechanisms of subset selection. The new mechanisms could
have the potential to obtain a better Pareto approximation set.

On the other hand, it should be very interesting to integrate MOPR into other meta-
heuristics such as tabu search, in order to evaluate its overall effectiveness. The cooper-
ation of MOPR with exact methods can be also a promising search area. For instance,
MOPR could be used to link Pareto optimal solutions found by an exact approach.
Several approaches between MOPR and exact approaches could be defined, as those
described in the taxonomy of Jourdan et al. [10].
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