Skip to main content

Evolutionary Multiobjective Optimization and Uncertainty

(Abstract of Invited Talk)

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7811))

Included in the following conference series:

  • 3878 Accesses

Abstract

This talk will look at various aspects of uncertainty and how they can be addressed by evolutionary multiobjective optimization.

If there is uncertainty about the user preferences, evolutionary multiobjective optimization is traditionally used to generate a representative set of Pareto-optimal solutions that caters for all potential user preferences. However, it is also possible to take into account a distribution over possible utility functions to obtain a distribution of Pareto optimal solutions that better reflects the decision maker’s likely preferences. And furthermore, it may be possible to elicit and learn the decision maker’s preferences by interacting with the decision maker during the optimization process.

If there is a trade-off between a solution’s quality and associated risk or reliability, evolutionary multiobjective optimization can simply regard the problem as a two-objective problem and provide a set of alternatives with different quality/risk trade-offs.

If the objective functions of the multi-objective problem are noisy and an accurate evaluation is not possible, for example because the evaluation is done by means of a stochastic simulation, it is no longer possible to decide with certainty whether one solution dominates another. One might calculate the probability of one solution dominating the other, and use this for selection. Still, this is based on noisy observations, and does not allow to make a confident decision about which solutions to keep in an elitist algorithm, because the solution observed as better may only have been lucky in the evaluation process. In order to improve the accuracy of the fitness estimates, it is usually possible to average fitness values over a number of evaluations. However, this is time consuming, and so it raises the question how often each solution should be evaluated such that the algorithm can progress, but at the same time computational effort is minimized. Finally, if the goal is to optimize a quantile or even the worst case, it is not obvious how to even define such a concept in a multi-objective setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Branke, J. (2013). Evolutionary Multiobjective Optimization and Uncertainty. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds) Evolutionary Multi-Criterion Optimization. EMO 2013. Lecture Notes in Computer Science, vol 7811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37140-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37140-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37139-4

  • Online ISBN: 978-3-642-37140-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics