Skip to main content

Top-Down Approach for Protein Binding Sites Prediction Based on Fuzzy Pattern Trees

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 207))

Abstract

The understanding of the relation between the protein structure and protein functions is one of the main research topics in bioinformatics nowadays. Due to the complexity of the methods for determining protein functions, there are many proteins with unknown functions. Hence, many researchers investigate various computational methods for determining protein functions. We focus on investigating methods for predicting the protein binding sites, and afterwards their characteristics could be used for annotating protein structures. In order to overcome the problem of sensitivity on data changes, we already introduced the fuzzy theory for protein biding sites prediction. In this paper we introduce an approach for detecting protein binding sites using a top-down induction of fuzzy pattern trees. This approach outperforms the existing bottom-up approach for inducing fuzzy pattern trees, and also most of the examined approaches which are based on classical classification algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirac, M., Ozsoyoglul, G., Yang, J.: Annotating proteins by mining protein interaction networks. Bioinformatics 22(14), e260–e270 (2006)

    Article  Google Scholar 

  2. Todd, A.E., Orengo, C.A., Thornton, J.M.: Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307(4), 1113–1143 (2001)

    Article  Google Scholar 

  3. Panchenko, A.R., Kondrashov, F., Bryant, S.: Prediction of functional sites by analysis of sequence and structure conservation. Protein Science 13(4), 884–892 (2004)

    Article  Google Scholar 

  4. Tuncbag, N., Kar, G., Keskin, O., Gursoy, A., Nussinov, R.: A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. Briefings in Bioinformatics 10(3), 217–232 (2009)

    Article  Google Scholar 

  5. Shrake, A., Rupley, J.A.: Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79(2), 351–371 (1973)

    Article  Google Scholar 

  6. Pintar, A., Carugo, O., Pongor, S.: DPX: for the analysis of the protein core. Bioinformatics 19(2), 313–314 (2003)

    Article  Google Scholar 

  7. Pintar, A., Carugo, O., Pongor, S.: CX, an algorithm that identifies protruding atoms in proteins. Bioinformatics 18(7), 980–984 (2002)

    Article  Google Scholar 

  8. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982)

    Article  Google Scholar 

  9. Aytuna, A.S., Gursoy, A., Keskin, O.: Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics 21(12), 2850–2855 (2005)

    Article  Google Scholar 

  10. Neuvirth, H., Raz, R., Schreiber, G.: ProMate: a structure based prediction program to identify the location of protein-protein binding sites. J. Mol. Biol. 338(1), 181–199 (2004)

    Article  Google Scholar 

  11. Bradford, J.R., Westhead, D.R.: Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21(8), 1487–1494 (2005)

    Article  Google Scholar 

  12. Ogmen, U., Keskin, O., Aytuna, A.S., Nussinov, R., Gursoy, A.: PRISM: protein interactions by structural matching. Nucleic Acids Res. 33(2), W331–W336 (2005)

    Article  Google Scholar 

  13. Jones, S., Thornton, J.M.: Prediction of protein-protein interaction sites using patch analysis. J. Mol. Biol. 272(1), 133–143 (1997)

    Article  Google Scholar 

  14. Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Transactions on Systems, Man, and Cybernetics 28(1), 1–14 (1998)

    Google Scholar 

  15. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets and Systems 138(2), 221–254 (2003)

    Article  MathSciNet  Google Scholar 

  16. Suárez, A., Lutsko, J.F.: Globally optimal fuzzy decision trees for classification and regression. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1297–1311 (1999)

    Article  Google Scholar 

  17. Wang, X., Chen, B., Olan, G., Ye, F.: On the optimization of fuzzy decision trees. Fuzzy Sets and Systems 112(1), 117–125 (2000)

    Article  MathSciNet  Google Scholar 

  18. Chen, Y.-L., Wang, T., Wang, B.-S., Li, Z.–J.: A Survey of Fuzzy Decision Tree Classifier. Fuzzy Information and Engineering 1(2), 149–159 (2009)

    Article  MathSciNet  Google Scholar 

  19. Mirceva, G., Naumoski, A., Stojkovik, V., Temelkovski, D., Davcev, D.: Method for Protein Active Sites Detection Based on Fuzzy Decision Trees. In: Kim, T.-H., Adeli, H., Cuzzocrea, A., Arslan, T., Zhang, Y., Ma, J., Chung, K.-I., Mariyam, S., Song, X. (eds.) DTA/BSBT 2011. CCIS, vol. 258, pp. 143–150. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Huang, Z.H., Gedeon, T.D., Nikravesh, M.: Pattern trees induction: a new machine learning method. IEEE Transaction on Fuzzy Systems 16(3), 958–970 (2008)

    Article  Google Scholar 

  21. Mirceva, G., Kulakov, A.: Fuzzy pattern trees for predicting the protein binding sites. In: The 9th Conference for Informatics and Information Technology, CIIT 2012 (2012)

    Google Scholar 

  22. Senge, R., Hüllermeier, E.: Top-Down Induction of Fuzzy Pattern Trees. IEEE Transactions on Fuzzy Systems 19(2), 241–252 (2011)

    Article  Google Scholar 

  23. Lee, B., Richards, F.M.: The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 55(3), 379–400 (1971)

    Article  Google Scholar 

  24. Chothia, C.: The Nature of the Accessible and Buried Surfaces in Proteins. J. Mol. Biol. 105(1), 1–12 (1976)

    Article  Google Scholar 

  25. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F., Pawson, T., Hogue, C.W.: BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 29(1), 242–245 (2001)

    Article  Google Scholar 

  27. Chandonia, J.–M., Hon, G., Walker, N.S., Conte, L.L., Koehl, P., Levitt, M., Brenner, S.E.: The ASTRAL Compendium in 2004. Nucleic Acids Res. 32, D189–D192 (2004)

    Article  Google Scholar 

  28. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  29. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Sixteenth International Conference on Machine Learning, pp. 124–133 (1999)

    Google Scholar 

  30. Holmes, G., Pfahringer, B., Kirkby, R., Frank, E., Hall, M.: Multiclass alternating decision trees. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, p. 161. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  31. Kohavi, R.: Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In: Second International Conference on Knowledge Discovery and Data Mining, pp. 202–207 (1996)

    Google Scholar 

  32. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  33. John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  34. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  35. Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington DC (1961)

    Google Scholar 

  36. Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal least squares learning algorithms for radial basis function networks. IEEE Transactions on Neural Networks 2, 302–309 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgina Mirceva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mirceva, G., Kulakov, A. (2013). Top-Down Approach for Protein Binding Sites Prediction Based on Fuzzy Pattern Trees. In: Markovski, S., Gusev, M. (eds) ICT Innovations 2012. ICT Innovations 2012. Advances in Intelligent Systems and Computing, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37169-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37169-1_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37168-4

  • Online ISBN: 978-3-642-37169-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics