
u Ottawa
L'Universittf canadienne

Canada's university

FACULTE DES ETUDES SUPERIEURES
rrm

FACULTY OF GRADUATE AND
ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES

I .'University eanadienne
Canada's university

Nadia Farhanaz AZAM
AUTEUR DE LA THESE / AUTHOR OF THESIS

M.C.S.
GRADE/DEGREE

School of Information Technology and Engineering
„ „ „ _ _ _ ^

Spectral Clustering: An Explorative Study of Proximity Measures

TITRE DE LA THESE / TITLE OF THESIS

Dr. Herna Victor

EXAMINATEURS (EXAMINATRICES) DE LA THESE/THESIS EXAMINERS

Dr. Shirley Mi l ls

Dr. Eric Paguet

Dr. Nathalie Japkowicz

jGary_WJ51atCT_
Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies

Spectral Clustering: An Explorative Study

of Proximity Measures

by

Nadia Farhanaz Azam

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements

For the M.Sc. degree in

Computer Science

School of Information Technology and Engineering

Faculty of Engineering

University of Ottawa

© Nadia Farhanaz Azam, Ottawa, Canada, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-59872-6
Our file Notre reference
ISBN: 978-0-494-59872-6

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, pr§ter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Abstract

In cluster analysis, data are clustered into meaningful groups so that the objects in the

same group are very similar, and the objects residing in two different groups are different

from one another. One such cluster analysis algorithm is called the spectral clustering

algorithm, which originated from the area of graph partitioning. The input, in this case,

is a similarity matrix, constructed from the pair-wise similarity between data objects.

The algorithm uses the eigenvalues and eigenvectors of a normalized similarity matrix to

partition the data. The pair-wise similarity between the objects is calculated from the

proximity (e.g. similarity or distance) measures. In any clustering task, the proximity

measures often play a crucial role. In fact, one of the early and fundamental steps in

a clustering process is the selection of a suitable proximity measure. A number of such

measures may be used for this task. However, the success of a clustering algorithm

partially depends on the selection of the proximity measure. While, the majority of prior

research on the spectral clustering algorithm emphasizes on the algorithm-specific issues,

little research has been performed on the evaluation of the performance of the proximity

measures.

To this end, we perform a comparative and exploratory analysis on several existing

proximity measures to evaluate their performance when applying the spectral clustering

algorithm to a number of diverse data sets. To accomplish this task, we use a ten-fold

cross validation technique, and assess the clustering results using several external cluster

evaluation measures. The performances of the proximity measures are then compared

using the quantitative results from the external evaluation measures and analyzed further

to determine the probable causes that may have led to such results.

In essence, our experimental evaluation indicates that the proximity measures, in

general, yield comparable results. That is, no measure is clearly superior, or inferior, to

the others in its group. However, among the six similarity measures considered for the

binary data, one measure (Russell and Rao similarity coefficient) frequently performed

poorer than the others. For numeric data, our study shows that the distance measures

based on the relative distances (i.e. the Pearson correlation coefficient and the Angular

distance) generally performed better than the distance measures based on the absolute

distances (e.g. the Euclidean or Manhattan distance). When considering the proximity

measures for mixed data, our results indicate that the choice of distance measure for the

numeric data has the highest impact on the final outcome.

11

Acknowledgements

I would like to express my deep gratitude to my Supervisor, Dr. Herna L. Viktor for

her unconditional support and inspiration. Without her help and endless efforts to

make topics interesting and easily understandable to me, I would not have been able to

complete this thesis. Her suggestions and help with finding material on different topics

related to my work and most importantly her encouragement throughout the entire study,

will never be forgotten and always be appreciated.

I would like to thank my parents and my sister; without them I would have been lost.

Their love, advice, support and encouragement have brought me where I am today.

My warm thanks also go to my friends and colleagues who have encouraged me over

the course of this endeavour.

in

Contents

1 Introduction 1

1.1 Motivation 2

1.2 Thesis Outline 4

2 Introduction to Cluster Analysis 5

2.1 Cluster Analysis 5

2.1.1 Cluster Analysis Procedure 6

2.1.2 Limitations 8

2.2 Overview of Cluster Analysis Methods 9

2.2.1 Partitional Methods 10

2.2.2 Hierarchical Methods 14

2.2.3 Density-based Methods 17

2.2.4 Grid-based Methods 17

2.2.5 Model-based Methods 18

2.2.6 Clustering High Dimensional Data 18

2.2.7 Constraint-based Clustering 19

2.3 Introduction to Spectral Clustering 19

2.3.1 Graph Notations 21

2.3.2 Graph Cuts 23

2.3.3 Graph Laplacian 26

2.3.4 Algorithm 1: SM(NCut) 29

2.3.5 Algorithm 2: NJW(K-means) 34

2.4 Chapter Summary 44

3 Proximity Measures 45

3.1 Similarity, Dissimilarity, and Distance 46

3.2 Proximity Measures for Binary Variables 49

IV

3.2.1 Jaccard Coefficient 50

3.2.2 Czekanowski Coefficient 51

3.2.3 Sokal and Sneath Coefficient 52

3.2.4 Simple Matching Coefficient 52

3.2.5 Russell and Rao Coefficient 53

3.2.6 Rogers and Tanimoto Coefficient 54

3.2.7 Comparison of Similarity Measures 55

3.3 Proximity Measures for Mixed Variables 58

3.3.1 Gower's General Dissimilarity Coefficient 58

3.3.2 Laflin's General Coefficient 61

3.4 Proximity Measures for Numeric Variables 63

3.4.1 Euclidean Distance 64

3.4.2 Manhattan Distance 65

3.4.3 Minkowski Distance 65

3.4.4 Chebyshev Distance 66

3.4.5 Canberra Distance 67

3.4.6 Mahalanobis Distance 67

3.4.7 Angular Distance 68

3.4.8 Pearson Correlation Distance 69

3.5 Chapter Summary 72

4 Experimental Approach 73

4.1 Data Preparation 73

4.1.1 Preprocessing 74

4.1.2 Constructing the Similarity Matrix 75

4.2 Algorithm-specific Issues 80

4.2.1 Stopping Criteria for SM(NCut) Algorithm 80

4.2.2 Splitting Criteria and Grouping Algorithm 81

4.3 Experimental Methodology 83

4.3.1 Cross-Validation 83

4.3.2 Experiments 84

4.3.3 Implementation and Settings 84

4.4 Cluster Evaluation Measures 84

4.4.1 F-measure 85

4.4.2 G-means 86

v

4.4.3 Entropy 86

4.5 Statistical Significance Testing 88

4.6 Chapter Summary 89

5 Result Analysis - Binary Data 90

5.1 Binary Datasets 90

5.2 Comparison of Similarity Measures 95

5.2.1 Results from SM(NCut) Spectral Clustering Algorithm 95

5.2.2 Results from NJW(K-means) Algorithm 99

5.3 Result Evaluation 104

5.4 Comparing the Performance of Splitting Methods 110

5.5 Clustering Results 112

5.5.1 Clustering Results from the SM(NCut) Algorithm 114

5.5.2 Clustering Results from the NJW(K-means) Algorithm 117

5.6 Chapter Summary 119

6 Result Analysis - Mixed Data 121

6.1 Mixed Datasets 121

6.2 Comparison of Proximity Measures 125

6.2.1 Results from SM(NCut) Spectral Clustering Algorithm 126

6.2.2 Results from NJW(K-means) Spectral Clustering Algorithm . . . 129

6.3 Result Evaluation 131

6.4 Clustering Results 135

6.5 Chapter Summary 137

7 Result Analysis - Numeric Data 139

7.1 Numeric Datasets 139

7.2 Comparison of Distance Measures 143

7.2.1 Results from SM(NCut) Spectral Clustering Algorithm 143

7.2.2 Results from NJW(K-means) Algorithm 148

7.3 Result Evaluation 154

7.4 Clustering Results 157

7.4.1 Clustering Results from SM(NCut) Algorithm 160

7.4.2 Clustering Results from NJW(K-means) Algorithm 164

7.5 Chapter Summary 168

VI

8 Conclusion 169

8.1 Discussion 169

8.2 Future Work 171

A Acronyms and Mathematical Terms 173

A.l Acronyms 173

A.2 Mathematical Terms 174

vn

List of Tables

2.1 Pseudocode for the K-means algorithm 14

2.2 The normalized cut spectral clustering algorithm (SM(NCut)) 33

2.3 The spectral clustering algorithm with K-means (NJW(K-means)). . . . 42

3.1 Sample dataset for binary data type 50

3.2 Sample result from different similarity measures (binary variables). . . . 55

3.3 Sample dataset for mixed data type 60

3.4 Sample result from different similarity measures (mixed variable type). . 63

3.5 Sample dataset for numeric data type 64

3.6 Sample result from different distance measures (numeric variables). . . . 70

3.7 Summary of distance measures for the numeric data type 71

4.1 Example showing the behaviour of the Gaussian function 78

4.2 The F-measure and G-means scores for the external class i and cluster j 88

5.1 The true cluster distribution of the SPECT dataset 92

5.2 The true cluster distribution of the Votes dataset 92

5.3 The true cluster distribution of the Lenses dataset 92

5.4 The true cluster distribution of the Zoo dataset 93

5.5 The true cluster distribution of the Genes dataset 94

5.6 The true cluster distribution of the Balloon dataset 94

5.7 Summary of binary datasets used for our experiments 94

5.8 The F-measure scores for the binary datasets 96

5.9 The G-means scores for the binary datasets 97

5.10 The F-measure scores for the binary datasets 100

5.11 The G-means scores for the binary datasets 101

5.12 The Entropy scores for the binary datasets 102

5.13 Sample binary dataset 106

vni

5.14 The F-measure scores for the SM(NCut) and NJW (K-means) spectral

clustering algorithm for the binary datasets 112

5.15 The true cluster centroids from the original Votes dataset and the cluster

centroids from the clusters generated from the SM(NCut) algorithm. . . . 115

6.1 The true cluster distribution of the Automobile (Auto) dataset 122

6.2 The true cluster distribution of the CRX dataset 123

6.3 The true cluster distribution of the Dermatology dataset 123

6.4 The true cluster distribution of the Hepatitis dataset 124

6.5 The true cluster distribution of the Post-Operative dataset 124

6.6 The true cluster distribution of the Soybean dataset 125

6.7 Summary of the datasets with the mixed data types 125

6.8 The F-measure and G-means scores from the SM(NCut) algorithm for the

datasets with mixed variable type 127

6.9 The external evaluation scores from the NJW(K-means) algorithm for the

datasets with mixed variables 129

6.10 The F-measure scores from the SM(NCut) and NJW(K-mean) algorithm

for the mixed data 136

7.1 The true cluster distribution of the Body Measurement dataset 140

7.2 The true cluster distribution of the Ecoli dataset 140

7.3 The true cluster distribution of the Glass dataset 141

7.4 The true cluster distribution of the Iris dataset 141

7.5 The true cluster distribution of the SPECT dataset 142

7.6 The true cluster distribution of the Wine dataset 142

7.7 Summary of numeric datasets 142

7.8 The F-measure and G-means scores for the numeric datasets 145

7.9 The F-measure values for the numeric datasets 150

7.10 The G-means values for the numeric datasets 151

7.11 The Entropy values for the numeric datasets 152

7.12 The F-measure scores for the SM(NCut) and NJW(K-means) spectral

clustering algorithm for the numeric datasets 158

7.13 The cluster centroids for the Body dataset 162

ix

List of Figures

2.1 Clustering example 6

2.2 Sequential procedure of a cluster analysis process 7

2.3 Example of the K-means algorithm applied to a sample dataset 11

2.4 An example of the hierarchical clustering algorithm 16

2.5 Comparison of results from spectral clustering and the K-means algorithm. 20

2.6 An example of a simple, undirected and weighted graph 22

2.7 The weight matrix W for the graph given in Figure 2.6 23

2.8 The degree matrix D for the graph given in Figure 2.6 24

2.9 An example of graph cuts 24

2.10 The Laplacian matrix L for the graph given in Figure 2.6 27

2.11 The eigenvalues of the Laplacian matrix of the graph in Figure 2.6 33

2.12 The eigenvectors of the Laplacian matrix of the graph in Figure 2.6 . . . 34

2.13 Spectral bi-partitioning of graph in Figure 2.6 34

2.14 The eigenvalues and eigenvectors 35

2.15 The ideal case of K-means spectral clustering algorithm 40

2.16 The matrix L = D^WD^ 41

2.17 The two largest eigenvalues and their eigenvectors of matrix L 43

2.18 The matrix Y 43

2.19 The matrix X and Y 43

2.20 The cluster assignments 44

3.1 Relationship between CZE, SAS and J AC. 56

3.2 Relationship between RAT and SIM. 57

4.1 Steps of spectral clustering algorithm 74

4.2 The exponential function as given in [73] 77

4.3 Similarity matrices using various values of a 79

x

5.1 The average F-measure scores for the binary datasets 97

5.2 Results from the Friedman test for binary data 104

5.3 The spectral clustering algorithm applied on the sample data given in

Table 5.13 106

5.4 The similarity matrix for the Votes dataset 113

5.5 The similarity matrix for the SPECT dataset 114

5.6 The hierarchical tree structure of the Votes dataset 114

5.7 The hierarchical tree structure for the Zoo dataset 115

5.8 The hierarchical tree structure for the SPECT dataset 117

5.9 Cluster visualization for the Votes dataset 119

6.1 The average F-measure scores for the mixed datasets 127

6.2 The F-measure scores for the mixed datasets for NJW(K-means) algorithm. 130

6.3 Results from the Friedman test for mixed data 132

6.4 Comparison of numeric functions on Iris dataset 135

6.5 Cluster visualization for the CRX dataset 137

6.6 Cluster visualization for the Hepatitis dataset 137

7.1 The average F-measure scores for the numeric datasets from SM(NCut)

algorithm 144

7.2 Results from the Friedman test for numeric data 154

7.3 A scenario depicting the Mahalanobis (MAH) distance between three

points 155

7.4 Example of cluster assignments of the Body dataset 156

7.5 Example of cluster assignments of the Ecoli dataset 157

7.6 Similarity matrices for the Body dataset 158

7.7 Cluster visualization for the Ecoli dataset 159

7.8 Cluster visualization for the SPECT dataset 160

7.9 The hierarchical tree structure of the Body dataset 160

7.10 The hierarchical tree structure of the Iris dataset 161

7.11 The original hierarchical structure for the Glass dataset 163

X I

Chapter 1

Introduction

The amount of data collected from various sources is increasing. With the invention

of new technologies, preserving this enormous volume of data for future reference and

analysis has become more manageable. In contrast, the task of discovering underlying

patterns and hidden information from data has become more challenging and complex.

According to Witten et al. [76] - "As the volume of data increases, inexorably, the pro­

portion of it that people understand decreases, alarmingly1'. As such, we need automated

and practical tools and techniques to take full advantage of the information lying hidden

in the data. This is where Data Mining techniques come to aid.

Data Mining is defined as the process of automatic discovery of hidden, interesting,

and previously unknown patterns in data stored electronically [76]. Some of the bene­

fits of mining data are to extract previously unknown information and use it to predict

future trends, make decisions, categorize or group data to discover common characteris­

tics, amongst others. In a widely used data mining technique, called Clustering, formally

known as Cluster Analysis, data is analyzed from different perspectives and clustered

into natural groups (clusters, subsets or partitions) of objects [25]. Objects located in

the same cluster share many common characteristics. In contrast, objects located in

two different groups are very different. One of the main objectives of a cluster analysis

algorithm is to maximize the within cluster similarity and minimize the between cluster

similarity. The difference between the objects is often measured by the proximity mea­

sures, such as, similarity or distance functions. Here, similarity is a measure that is

used to determine how similar or close two objects are from one another, whereas dis­

tance is a measure that is used to determine the differences between two objects. Cluster

analysis has been successfully applied within a wide spectrum of areas, including data

1

Introduction 2

mining, statistical data analysis, machine learning, pattern recognition, image analysis,

and bioinformatics [35].

In recent years, a new family of cluster analysis algorithms, collectively known as the

Spectral Clustering algorithms, has gained much interest in research communities. The

algorithms in this category often combine well-defined steps, may be solved by standard

linear algebra, and frequently outperform traditional cluster analysis algorithms such

as K-means or Single Linkage [46]. Moreover, these algorithms have shown significant

practical successes when applied to problems regarding image segmentation [58], speech

separation [5], and cluster analysis of protein sequences [52]. One of the most important

advantages of the spectral clustering algorithm is that the algorithm may be applied to

a wide range of data types (i.e. numeric, categorical, binary, and mixed). Therefore,

the spectral clustering algorithms are not sensitive to any particular data type. These

algorithms consider the pair-wise similarity between the data objects to construct the

similarity (also known as proximity, affinity, or weight) matrix. The eigenvectors and

eigenvalues1 of the similarity matrix are used to find the clusters [58], [50], [46]. A num­

ber of algorithms from this family are discussed collectively by Luxburg [46] and Meila

et al. [66]. These algorithms mainly differ with respect to how the similarity matrix

is manipulated and/or which eigenvalue(s) and eigenvector(s) are used to partition the

objects into disjoint clusters. While significant theoretical progress has been made re­

garding the improvement of the spectral clustering algorithms as well as the proposal of

new methods, or the application in new domains, little research has been performed on

the selection of the proximity measures, which is a crucial step in constructing the simi­

larity matrix. In this study, we evaluate the performance of a number of such proximity

measures and perform an explorative study on their behaviour when applied to spectral

clustering algorithms.

In this chapter we discuss the motivation of our study. We also present the thesis

outline that briefly highlights the content of each chapter.

1.1 Motivation

Proximity measures, such as, similarity and distance functions, often play a fundamental

role in cluster analysis [35]. Early steps of the majority of cluster analysis algorithms

may require the selection of proximity measure and the construction of a similarity

definitions of several linear algebra terms and notations are provided in Appendix A.

Introduction 3

matrix (if necessary). As previously mentioned, a spectral clustering algorithm considers

a similarity matrix as an input to the algorithm. Most of the time, the similarity matrix

is constructed from an existing similarity or distance measure, or by introducing a new

measure specifically suitable for a particular domain or task. Selection of such measures,

particularly when existing measures are applied, often require careful consideration as

the success of these algorithms relies heavily on the choice of the proximity function [4],

[46], [19].

Most of the previous studies on the spectral clustering algorithm use the Euclidean

distance measure, a distance measure based on linear differences, to construct the simi­

larity matrix for numeric feature type [58], [50], [66] without explicitly stating the conse­

quences of selecting the distance measure. However, there are several different proximity

measures available for numeric variable types. The Manhattan distance and the Pearson

Correlation Coefficient2 are some examples of proximity measures. To our knowledge, no

in-depth evaluation of the performance of these proximity measures on spectral clustering

algorithms, specifically showing that the Euclidean distance measure outperforms, has

been carried out. As such, an evaluation and an exploratory study that compares and

analyzes the performance of various proximity measures may help to provide important

guidelines for researchers when selecting a proximity measure for future studies in this

area. This study endeavors to evaluate and compare the performance of these measures

and to imply the conditions under which these measures may be expected to perform

well.

Objects in a dataset are represented by attributes (also referred to as features or

variables). The attributes denote various properties and characteristics of the objects.

Variables or attributes may be of different types. The most commonly used variable

types in cluster analysis are numeric (also known as continuous or interval-scaled) and

binary variables. Apart from these two variable types, there are several other variable

types including nominal, ratio-scaled, and ordinal variables [39]. Different proximity

measures are also introduced for each of the attribute types. In this study, we focus on

the proximity functions of three types of variables. In addition to numeric and binary

variables, we consider mixed variables, which are capable of incorporating more than

one of the types of variables in their functions. Datasets with mixed variable types are

common in practical applications. There are several ways to handle mixed variables

during cluster analysis, some of them are discussed by Kaufman et al. in [39]. The

authors suggest that the most practical way to deal with mixed variables is to combine

2Chapter 3 defines the similarity and distance measures in detail.

Introduction 4

them together in one function and to perform single cluster analysis on the entire set of

variables [39]. Spectral clustering algorithms are suitable in such cases where the dataset

consists of attributes of variable types. The algorithms from this family are applied on

the similarity matrix, not directly on the dataset. Therefore, as long as the dataset

is converted into a similarity matrix, the algorithm may be able to find the clusters

regardless of the attribute types.

In this study, we compare the performance of the proximity measures for datasets with

three different variable types. There are several different algorithms available from this

family. They may either form a hierarchical tree of clusters (hierarchical method) or may

directly divide the dataset into a predefined number of clusters (partitional method). For

this study, we consider an algorithm from each method. To compare the performance of

the similarity and distance measures, we follow the fundamental steps of cluster analysis

[35], [80]. As such, we perform spectral cluster analysis with the combination of each

of the proximity measures on a number of datasets. We then evaluate the solutions

from the spectral clustering algorithms by applying several cluster evaluation measures.

The proximity measures are then compared and analyzed from the results of the cluster

evaluation measures. We also perform a manual inspection of the clusters to ensure

accuracy, verify the results, and analyze the composition of the clusters.

1.2 Thesis Outline

This thesis includes eight chapters that are organized as follows. In Chapter 2, we

provide an overview of cluster analysis methods. We also include a detailed discussion

of spectral clustering algorithms in this chapter. Chapter 3 presents an overview of

the proximity measures for numeric, binary and mixed variable types. In Chapter 4, we

present an experimental design that includes information about parameter settings as well

as the methods used, and the approach followed, to perform the experiments successfully.

The cluster evaluation measures used to assess the validity of clustering results are also

introduced in this chapter. In Chapter 5, we evaluate and examine the results of our

experiments when datasets consisting of binary variables are considered. Chapter 6

presents the result analysis of the datasets of mixed variable type. In Chapter 7, we

present the results when the experiments are performed on the numeric datasets. Finally

in Chapter 8, we conclude by providing a summary that highlights of our contributions

and provide possible directions for future research.

Chapter 2

Introduction to Cluster Analysis

Cluster Analysis is an exploratory data analysis method in which objects are clustered

into several natural groupings. This chapter presents an introductory review of cluster

analysis as well as the methods used to perform this task. The chapter begins in Section

2.1 with a background study on cluster analysis. An introduction to several cluster

analysis methods is presented in Section 2.2. Section 2.3 presents a review of spectral

clustering algorithms which is an efficient graph-based cluster analysis method. We

conclude the chapter with a summary in Section 2.4.

2.1 Cluster Analysis

The word clustering is defined as: "a grouping of a number of similar things" [65].

Here, the word similar refers to the objects present in the same group, which possess

like characteristics. In data mining, the goal of cluster analysis methods is to cluster

unlabeled data, with no or little prior information about the class labels, into groups,

such that objects in the same subgroup are very similar to one another and objects

in two different subgroups are very different [76] [32] [16]. Let D be a dataset with

n objects. When a cluster analysis algorithm is applied to this dataset D, it groups

the data in C\,C2---Ck clusters given that the total number of clusters is k. The main

objective of a cluster analysis method is to minimize the distance between the objects

located in the same cluster and to maximize the distance between the objects located

in different clusters. Figure 2.1 (a) depicts a sample dataset in a 2-dimensional space

and Figure 2.1 (b) shows the clusters marked with circles when k = 3. The results after

applying a cluster analysis algorithm show that the clusters are generated in such a way

5

Introduction to Cluster Analysis 6

(a) (b)

Figure 2.1: Clustering example: (a) input data and (b) the clusters.

so that the objects in each cluster are very close to one another. However, in the real

world, the datasets are not as simple as the one depicted above. The objects are not

always so clearly separated and the clusters are not usually as well-defined. Moreover,

the datasets may contain hundreds or even thousands of objects and the feature space

of these objects may also be very high dimensional. As a result, the task of clustering is

often more complex and challenging.

In the following subsection we discuss the fundamental steps of a typical cluster

analysis task.

2.1.1 Cluster Analysis Procedure

Cluster analysis methods usually follow a number of sequential steps [35], [80]. Figure 2.2

illustrates the basic steps of a cluster analysis procedure as discussed in [80]. According to

Xu et al. [80], the four main steps that most clustering algorithms follow are: 1) feature

selection or feature extraction, 2) design or selection of cluster analysis algorithm, 3)

cluster validation, and 4) interpretation of results. We briefly discuss each of the four

components below.

Feature Selection or Extraction: In practical applications, datasets often contain a

large number of features to represent the objects. However, not all the features

are useful for the learning process. Most of the time, there are several features

that are irrelevant or redundant to the cluster analysis process. According to

Introduction to Cluster Analysis 7

Feature
Selection or
lixwacikm

Data Samples

Knowledge

Algorithm Design
or Selection

Results Clusters

Validation

7 3 5

Clusters

Figure 2.2: Sequential procedure of a cluster analysis process [80].

Witten et al. [76] experimental studies show that, adding such features to the

cluster analysis process usually deteriorates the performance of the algorithms. As

such, techniques such as Feature Selection and Feature Extraction often prove to

be useful to carefully reduce the size of the original feature set. According to Jain

et al. [35] Feature Selection is the process of identifying the most effective subset of

features from the original feature set. In contrast, Feature Extraction is the process

of producing a new set of features by performing transformations on the original

feature set [80], [35]. Both of the processes reduce the feature size by removing the

redundant or irrelevant features and in doing so, simplify the clustering process.

For more information on feature selection we suggest [40], [82] and for feature

extraction, we refer to [24], [13].

Design or Selection of Cluster Analysis Algorithm: This step involves the selec­

tion of a proximity measure and a cluster analysis algorithm. The selection of a

proximity measure directly affects the formation of the clusters. As mentioned pre­

viously in Chapter 1, one of the commonly used distance measures is the Euclidean

distance measure. There are, however, a number of other proximity measures avail­

able in the literature which we discuss in detail in Chapter 3. In addition to the

selection of a proximity measure, the results from cluster analysis also vary de­

pending on the clustering algorithm that has been selected [35]. Several algorithms

partition the data into a predefined number of groups (i.e. K-means), whereas

other algorithms output a nested series of clusters [35]. Some of the algorithms

are suitable for large datasets, whereas other methods handle outliers better. We

discuss various cluster analysis methods in Section 2.2.

Cluster Validation: Given a dataset, a cluster analysis algorithm will always produce

clusters [35], [80]. Moreover, as we mentioned above, different algorithms and

Introduction to Cluster Analysis 8

proximity functions may produce different results. Therefore, it is necessary to

assess the results to compare, evaluate, and measure the goodness of the cluster

analysis methods. There are several evaluation and validation measures proposed

in the literature that help to perform such an assessment. According to Jain et

al. [35] and Xu et al. [80], these cluster validation measures are categorized into

three groups: 1) external measures, 2) internal measures, and 3) relative measures.

The external measures consider the prior knowledge about the data (i.e. class

labels) against the cluster analysis results for the assessments. In contrast, the

internal measures compute the assessment without any reference to the external

information; they only consider the information present in the original dataset. The

relative measures perform the evaluation by comparing the results from various

cluster analysis methods with one another.

Interpretation of Results: The ultimate goal of any cluster analysis task is to parti­

tion the data into meaningful groups. As such, in this step, domain experts often

analyze the clusters to discover the hidden patterns among the objects in a cluster

and to assign a label to the clusters based on the underlying patterns.

2.1.2 Limitations

In Chapter 1, we mentioned a number of application domains to which the cluster analysis

algorithms are often applied. The areas include data mining, machine learning, pattern

recognition, bioinformatics, image processing, and many others. Nevertheless, when the

cluster analysis techniques are applied to real-world datasets, several problems arise. In

this section, we briefly state the drawbacks of cluster analysis as addressed by Dunham

in [16].

• One of the main difficulties that arise with respect to a cluster analysis task is to

correctly and automatically determine the number of clusters k. In cluster analysis,

most of the time the prior knowledge or additional information about the data is

not available to the users. As such, the algorithms that require the number of

clusters A; as input need special consideration. Intuitively, providing an incorrect

value for k may result in unsatisfactory results. For instance, selecting a smaller

value for k may over-generalize the results as it will try to combine natural clusters

to achieve the user-specified number of clusters. In contrast, if k is set to a very

high value it may decompose the natural clusters into many smaller subsets to

Introduction to Cluster Analysis 9

achieve the desired number of clusters. Both the cases will have significant impact

on the results.

• Interpreting the clustering results or more specifically, interpreting the clusters,

is also considered to be one of the major problems in cluster analysis. As class

labels are not available during the process, it may not always be possible to cor­

rectly interpret the semantic meaning of each of the individual clusters without any

domain-specific knowledge.

• Handling outliers is another fundamental problem in cluster analysis. In a dataset,

outliers are objects that are very different from the other objects in the dataset,

and as such, they usually form their own clusters. Placing an outlier in a cluster

that contains objects that are very different from it (i.e. to achieve the desired

number of clusters), may result in the formation of poor clusters [16].

• Because dynamic data change over time, cluster membership may also change over

time and therefore requires careful consideration to accommodate the changes.

• Another problem that may be encountered during the cluster analysis process, is

that there may be no exact or correct answer to the clustering solution. Given

a dataset, different algorithms may return different sets of clusters. Moreover,

different users may also have different views and therefore may interpret the clusters

differently. These difficulties may make the decision making task more complex and

ambiguous.

• Finally, with the increasing amount of data, problems surrounding high dimension­

ality and handling of large datasets have also become a point of concern.

However, these problems also open the door to new research ideas. Various algorithms

have been proposed to solve one or more of these problems efficiently. In the next

section, we provide an overview of the cluster analysis methods and briefly address their

advantages and disadvantages.

2.2 Overview of Cluster Analysis Methods

There have been many cluster analysis algorithms proposed in the literature. A number

of these algorithms are particularly suitable for a certain type of data (e.g. numeric or

nominal). Several algorithms are also suitable for a particular purpose or the application

Introduction to Cluster Analysis 10

domain [32], [39]. We briefly present several cluster analysis methods as discussed in

[16] and [32]. We place particular emphasis on the first two methods, partitional and

hierarchical, as they are strongly related to this study. For a detailed review of cluster

analysis methods we suggest [35], [7], [16], [32],

2.2.1 Partitional Methods

The partitional (also referred to as partitioning) cluster analysis methods divide the data

into k groups, where each group contains at least one object and where an object may

reside in at most one group. Once an initial partitioning is created these algorithms

use an iterative relocation technique to move the objects to different clusters for better

partitioning result [32]. In addition, a distance function is used to measure the quality

of partitioning result so that the goal of the cluster analysis is satisfied. Recall from

Chapter 1 that the main goal of any cluster analysis task is to minimize the intra-cluster

distance and maximize the inter-cluster distance. Thus, for partitional algorithms, this

acts as an objective function that needs to be satisfied. The K-means algorithm is the

best-known algorithm from this category [32]. We discuss the algorithm in detail below.

K-means Algorithm

K-means is an iterative algorithm where a cluster is represented by the centroids (the

mean value of the objects in a cluster). Given a dataset and the number of clusters k, the

algorithm works as follows - the first step of this algorithm is to initialize the centroids.

There are a number of different ways to assign the initial values to the centroids. We

may either randomly select any k objects from the data, or select the first k objects and

assign them as the centroids of the clusters. Once the algorithm is initialized with the

centroids, the next step is to calculate the distance from each centroid to all the objects

in the dataset. A distance measure, such as the Euclidean distance, is often used to

calculate this distance. Next, the objects are assigned to the respective clusters based

on the minimum distance from the centroids. Therefore, an object will be assigned to a

cluster if the distance between its centroid and the object is minimum (compared to the

distances between the centroids of other clusters and this object). Once all the objects

are assigned to their respective clusters, we recalculate the centroids with the new cluster

assignments. The centroid, as mentioned above, is the mean value of all the objects in

a cluster. We then iterate the process a number of times until the stopping criterion is

satisfied. This is usually satisfied when the objects are no longer reallocated to different

Introduction to Cluster Analysis 11

clusters or when the maximum number of iterations is reached. The pseudocode for the

algorithm is given in Table 2.1. Figure 2.3 depicts the results of the K-means algorithm

when applied to a sample dataset with k = 3. The clusters are marked with circles for

clear visualization. Example 2.2.1 illustrates the K-means algorithm when applied to a

sample dataset.

Figure 2.3: Example of the K-means algorithm applied to a sample dataset. Each cluster

is marked with a dashed circle.

Example 2.2.1. In this example, the dataset contains 9 items:

D = {2,4,10,12, 3, 20, 30,11, 25}. Let k = 2, the desired number of clusters. We use the

Euclidean distance as the distance measure. The first step of the algorithm provided in

Table 2.1 consists in assigning any two items as the cluster centroids. These items are

either selected randomly or the first k items are selected. We used the later approach

for this example. Below we show the calculations for each phase.

Iteration 1: centroidl = 2 and centroid2 = 4

The distance between centroidl and each item in D:

{0,2,8,10,1,18,28,9,23}

The distance between centroid2 and each item in D:

{2,0,6,8,1,16,26,7,21}

According to the minimum distance between the centroids and each of the items,

the clusters are:

Cluster! = {2, 3} Since the item 3 is equally close to centroidl and centroid2, we

arbitrarily selected cluster 1.

Cluster2 = {4,10,12, 20, 30,11, 25}

Introduction to Cluster Analysis 12

Iteration 2: centroidl = *±2 = 2.5 and centroid2 = 4+10+12+20+30+11+25 = 1 6

The distance between centroidl and each item in D:

{0.5,1.5,7.5,9.5,0.5,17.5,27.5,8.5,22.5}

The distance between centroid2 and each item in D:

{14,12,6,4,13,4,14,5,9}

The clusters are:

Clusterl = {2,3,4} and Cluster"! = {10,12,20, 30,11,25}

Iteration 3: centroidl = ^ = 3 and centroid2 = 10+12+20+30+11+25 = l g

The distance between centroidl and each item in D:

{1,1,7,9,0,17,27,8,22}

The distance between centroid2 and each item in D:

{16,14,8,6,15,2,12,7,7}

The clusters are:

Clusterl = {2,3,4,10} and Cluster! = {12,20, 30,11,25}

Iteration 4: centroidl = 2+3+4+1° = 4.75 and centroid2 - 12+20+3
5

0+11+25 = 19.6

The distance between centroidl and each item in D:

{2.75,0.75,5.25, 7.25,1.75,15.25,25.25,6.75,20.25}

The distance between centroid2 and each item in D:

{17.6,15.6,9.6,7.6,16.6, 0.4,11.4,8.6,5.4}

The clusters are:

Clusterl = {2,3,4,10,11,12} and Cluster! = {20,30,25}

Iteration 5: centroidl = 2+3+4+10+11+12 = ? a n d c e n t r o i d 2 = 20+30+25 = 2 5
0 A

The distance between centroidl and each item in D:

{5,3,3,5,4,13,23,6,18}

The distance between centroid2 and each item in D:

{23,21,15,13,22,5,5,14,0}

The clusters are:

Clusterl = {!, 3,4,10,11,12} and Cluster! = {20,30,25}

Since none of the items were relocated in iteration 5 (iteration 4 and 5 are identi­

cal), the algorithm terminates at this point. The result for this example, which is

Introduction to Cluster Analysis 13

returned at the end of the process is: Clusterl = {2,3,4,10,11,12} and Cluster2

= {20,30,25}.

Advantages of the K-means Algorithm

According to Han et al. [32], the K-means algorithm works well for compact clusters in

which the clusters are well separated from one another. Moreover, the algorithm also

works well for large datasets, since the computational complexity of the algorithm is

O(n), where n is the number of objects present in the dataset [35], [32].

Limitations of the K-means Algorithm

One of the disadvantages of the K-means algorithm is that it only considers numeric

attribute types and is therefore not applicable to datasets with nominal or categorical

attributes. However, the K-modes algorithm, a variation of the K-means algorithm, has

been proposed to deal with this shortcoming [32]. Unlike the K-means algorithm, which

uses the means to compute the cluster centroids, the K-modes algorithm as the name

suggests, uses the modes of the cluster centroids. There is another issue with the K-

means algorithm with regard to the number of clusters. We have previously discussed

the consequences of incorrectly selecting the number of clusters. The performance of the

K-means algorithm depends in part on the initial values selected as the cluster centroids

in the initialization stage that may later affect the quality of the clusters. Dunham

[32] also states that, the K-means algorithm is very sensitive to outliers. Moreover,

the clusters produced by this algorithm are usually convex shaped and as such, the K-

means algorithm usually fails to discover clusters of arbitrary shapes (Figure 2.5 (b)) [2].

Other Partitional-based Algorithms

The K-medoids algorithm [32] is another partitional-based algorithm in which a cluster is

represented by one of the real objects, located close to the center point. The center point,

commonly known as the medoids, leads its name to the algorithm. As opposed to the

K-means algorithm, the K-medoids algorithms are less sensitive to the outliers [7]. The

most well-known K-medoids algorithms are PAM (Partitioning Around Medoids) [39],

CLARA (Clustering LARge Applications) [39], and CLARANS (Clustering Large Ap­

plications based upon RANdomized Search) [51]. The PAM algorithm works best when

the dataset is small, whereas CLARA and CLARANS both deal with larger datasets.

The PAM algorithm performs a search over the entire dataset to find k medoids, whereas

CLARA performs the search over a fixed sample of the dataset [32]. Therefore, CLARA

may not provide a good solution, as the results considering the samples may not nee-

Introduction to Cluster Analysis 14

The K-means Algorithm

Input:

Data objects and k (number of clusters)

Output:

K (the set of clusters)

Algorithm:

1. Initialize the algorithm with k objects which will the act as

the centroids for the first run.

2. For each object calculate the distance (i.e. Euclidean Dis­

tance) from centroid and assign the object to the cluster with

closest centroid.

3. Recalculate the centroid once all the objects are assigned into

one of the k clusters.

4. Repeat step 2 and 3 till the stopping criterion is satisfied.

The stopping criteria may be: when the maximum number

of iteration is reached or when no objects are assigned to

different clusters.

Table 2.1: Pseudocode for the K-means algorithm.

essarily represent a good solution for the entire dataset. The CLARANS algorithm, on

the other hand, is an improvement to the CLARA algorithm. The CLARANS algorithm

selects the sample with some randomness in which every object is regarded as a potential

candidate. One of the drawbacks of the CLARANS algorithm is the computational com­

plexity, which is 0(n2) (where n is the number of objects in a given dataset). According

to Han et al. [32], practical experiments show that the CLARANS algorithm performs

better than both the PAM and CLARA algorithms.

2.2.2 Hierarchical Methods

In this section, we discuss another type of cluster analysis method known as the Hierar­

chical Clustering methods. A hierarchical method builds a hierarchy or a tree of clusters.

Introduction to Cluster Analysis 15

The tree is also commonly referred to as a dendrogram [16]. The root of a tree often

contains all the data objects in one cluster, whereas the leaves of the tree usually contain

each object in a single cluster. There are two variations of this method discussed in

the literature: agglomerative or bottom-up approach and divisive or top-down approach

[32], [35]. In the first approach, the algorithm starts from the bottom of the tree where

each object has its own unique cluster. It gradually groups these clusters by recursively

merging two or more similar clusters together. This process is continued until all the

clusters are merged into a single cluster (the root) or a given termination criterion is

satisfied. The divisive hierarchical approach, on the other hand, initially holds all the

objects in one single cluster. It then gradually splits them into smaller clusters until all

the objects belong to their own individual clusters or a termination criterion is satisfied.

The merging and splitting is performed depending on the distance associated with each

level of the hierarchical tree, which is given in the form of a distance matrix as an input

to the algorithm [16]. Two clusters are merged when the distance is low and a cluster

is split into smaller clusters when the distance is large (when the elements are not close

enough).

Example 2.2.2. Figure 2.4 depicts a simple example of a hierarchical clustering algo­

rithm, performed on a dataset consisting of six objects [16]. In this example, when the

agglomerative approach is used, {B} and {D} are grouped together to form the cluster

{B,D}, whereas {E} and {F} are merged together to form the cluster {E,F}. Next

{A} and {B,D} are merged to create the cluster {A,B,D} which is then merged with

{C} to create the cluster {A,B,D,C}. In the very last step {A,B,D,C} and {E, F)

are grouped together and the root cluster {A,B,C,D,E,F} is created. The divisive

approach, as discussed earlier works in a similar way, but in the reversed order. It starts

from the root {̂ 4, B, C, D, E, F} and in each step splits the cluster into two smaller sets

until all the elements have formed their own individual cluster.

Advantages of the Hierarchical Clustering Methods

Hierarchical methods are suitable for datasets that possess natural nesting relationships

between the clusters. Examples of such datasets include datasets from biology and an­

imal taxonomies [16]. Moreover, since the distance or similarity is presented through a

matrix to these algorithms, the algorithms are able to handle different attribute types [7].

Limitations of the Hierarchical Clustering Methods

One of the weaknesses of the hierarchical methods is that, once a cluster is formed, the

Introduction to Cluster Analysis 16

a a @ 0 a m

Figure 2.4: An example of the hierarchical clustering algorithm applied to a sample data:

(Left) representation of the result as a nested subset, (Right) representation of the result

as a dendrogram.

objects in the clusters may not be relocated to improve the results. As such, unlike the

K-means algorithm where objects are iteratively relocated to improve the result, the hier­

archical algorithms lack such possibility. The algorithms are also sensitive to outliers [80].

Dunham [16] also noted that, due to the time and space complexity (which is 0(n2) for

a dataset with n objects) of these algorithms, they may not be suitable for large datasets.

Variations of Hierarchical Algorithms

A variety of hierarchical cluster analysis algorithms are available in literature. For in­

stance, AGNES (AGglomerative NESting) is an agglomerative clustering approach and

DIANA (Divisive ANAlysis) is an example of divisive hierarchical approach. The ROCK

(RObust Clustering using linKs) algorithm [29], another example of agglomerative hi­

erarchical algorithm, is suitable for datasets with categorical attributes. The BIRCH

(Balanced Iterative Reducing and Clustering using Hierarchies) algorithm [83] handles

both large datasets and outliers well and also has the ability to perform incremental or dy­

namic cluster analysis by accommodating dataset updates [32]. The CURE (Clustering

Using REpresentatives) algorithm [28] integrates hierarchical and partitional methods

together in one algorithm. The algorithm is suitable for large datasets, handles out­

liers and has the ability to discover arbitrary-shaped clusters. CHAMELEON [38] is

another example of the agglomerative hierarchical algorithm which is also suitable for

large datasets and has the ability to discover arbitrary shaped clusters. An excellent and

detailed review of these algorithms is presented in [32].

Apart from the hierarchical and partitional methods, there are a number of other

Introduction to Cluster Analysis 17

methods that are frequently mentioned in the literature. We briefly discuss these methods

in the subsequent sections to keep the readers informed about the wide variety of possible

approaches from the family of cluster analysis methods.

2.2.3 Density-based Methods

Unlike the hierarchical and partitional cluster analysis algorithms, which consider the

distance or similarity between the objects to find the clusters, density-based methods are

based on the notion of density. According to Dunham [16], the term density is defined

as the minimum number of objects located within a certain distance of one another.

Thus, the clusters are represented by the dense areas of the data objects and are usually

separated by the areas with low density. In this approach, the clusters may take any

arbitrary shape and grow in any direction, as long as the density in the neighboring area

exceeds a certain threshold [32]. Examples of algorithms from this family are: DBSCAN

(Density-Based Spatial Clustering Algorithm with Noise) [18] and DENCLUE (DENsity-

based CLUstEring) [34]. As the name implies, the DBSCAN algorithm is suitable for

spatial datasets with noise. The algorithm also discovers clusters of arbitrary shape [32].

However, this algorithm is very sensitive to the choice of user-defined parameters (e.g.

the radius of the neighborhood) [32]. The DENCLUE algorithm is suitable for high

dimensional datasets. Similar to the DBSCAN algorithm, this algorithm also discovers

arbitrary shaped clusters and handles datasets with large amount of noise [32].

2.2.4 Grid-based Methods

In the Grid-based cluster analysis [32] methods, the entire data space is first divided into

a finite number of cells that form a grid structure. The cluster analysis is then performed

on this grid data, instead of the original data points. Since the number of cells in the grid

data is usually much less than the number of original data points, the computation and

processing time of this algorithm are relatively faster than many other cluster analysis

algorithms. The algorithms from this family are mostly suitable for spatial datasets.

STING (STatistical INformation Grid) [68], WaveCluster [57], and CLIQUE [1] are an

example of algorithms based on this method. The STING algorithm manipulates the

statistical information (e.g. count, maximum, minimum, and standard deviation) of the

grid cells to process the queries. The algorithm is query-independent as the statistical

information regarding the attributes are pre-computed and stored in each cell. STING is

also very efficient. Moreover, when a given dataset is updated, this algorithm is able to

Introduction to Cluster Analysis 18

perform incremental updates without re-computing all the statistical information [32].

However, the user-specific parameters (e.g. the number of grids and number of layers)

need to be provided by the users and therefore the selection of parameters may have

impact on the end result. The WaveCluster algorithm, in contrast, applies a signal

processing technique called wavelet transform, to find the clusters. More information

regarding wavelet transform and WaveCluster are presented in [57], [32]. The algorithm

is not sensitive to outliers, discovers clusters of arbitrary shapes, and performs well for

large datasets. However, one of the drawbacks of this algorithm is that it may only be

applied to low-dimensional datasets. On the other hand, the CLIQUE algorithm, which

integrates density-based and grid-based algorithms together, is suitable for large, highly

dimensional datasets.

2.2.5 Model-based Methods

Model-based approaches assume that all the data is generated by a mixture of underlying

statistical distributions. For example, the EM (Expectation-Maximization) algorithm is

a popular model-based approach that performs expectation-maximization analysis based

on statistical modeling [32]. The COBWEB and SOM (Self-Organized Map) algorithms

also fall into this category, where the former is a conceptual learning algorithm and the

later is a neural network-based algorithm. A detailed discussion of these algorithms is

presented in [32].

2.2.6 Clustering High Dimensional Data

Highly dimensional datasets consist of several hundreds or even thousands of attributes.

For instance, objects in a text dataset are usually regarded as a collection of documents

and each document consists of hundreds or even thousands of words and terms. Thus,

the attributes for this type of datasets are the collection of these words and terms gath­

ered from the documents. In such cases, the previously discussed clustering algorithms

may not work well as the data become very sparse with the increase of the number of

dimensions. As a result, when the similarity between the data points is calculated, the

result is usually a very small value which may not contribute to the computation. More­

over, as Han and Kamber [32] noted, the average density of these points is also likely

to be very low. Therefore, new or modified algorithms that handle the problem of high

dimensionality are necessary. Two such methods for clustering high-dimensional datasets

are Subspace Clustering and Frequent Pattern-based Clustering. The subspace clustering

Introduction to Cluster Analysis 19

algorithms such as CLIQUE and PROCLUS, tend to find the clusters from a subset of di­

mensions of the original set of attributes. On the other hand, the frequent pattern-based

clustering algorithms search for frequently occurring patterns from the dataset and use

these patterns to find the clusters [32]. With a growing number of domains containing

high dimensional data, performing cluster analysis on highly dimensional datasets has

become challenging. Therefore, special care is needed to successfully perform cluster

analysis on this type of datasets.

2.2.7 Constraint-based Clustering

The Constraint-based methods consist of cluster analysis algorithms that heavily rely on

user guidance. Users provide various constraints and information to the algorithms so

that the clusters may be generated based on the preferences given by the users. Yin

et al. [81] proposed one such user-guided clustering algorithm called CrossClus. The

algorithm is suitable for multi-relational datasets. The algorithm starts with selecting a

set of relevant features from multiple relations to construct a single object type, based on

the user interest and domain specific knowledge. Next, the K-medoids based algorithm,

CLARANS is applied to the selected features to find the clusters.

In the next section, we introduce the Spectral Clustering algorithms, a graph-based

clustering algorithm.

2.3 Introduction to Spectral Clustering

In the previous section, we discussed cluster analysis algorithms based on the concepts

of distance, density, grids, and statistical models. Recently, another family of cluster

analysis method has gained much interest in the research community. The algorithms

from this group originated from the area of graph partitioning and are collectively known

as the Spectral clustering algorithms [58], [46], [50], [48], [37]. The spectral methods

manipulate the eigenvector(s) and eigenvalue(s) of a similarity matrix to find the clusters.

There are several advantages to applying the spectral clustering algorithms as stated

in [46]. One of the advantages is that the spectral clustering algorithms do not make

any assumptions on the shape of the clusters. For instance, algorithms such as K-means,

usually form convex shaped clusters. Aiello et al. in their work in [2] provided an example

illustrating this difference as given in Figure 2.5 when applied on a sample dataset. Figure

2.5(a) shows the ring clusters obtained from the spectral clustering algorithm and Figure

Introduction to Cluster Analysis 20

2.5(b) depicts the results from the K-means algorithm when applied on the same sample

dataset. Fischer et al. [22] presented more illustrations and examples of various forms

of clusters that are achievable by the spectral clustering algorithms. The algorithms

(a) Spectral Gustering (b) K-ineans

Figure 2.5: Comparison of results from spectral clustering and the K-means algorithm,

(a) Results from the spectral clustering algorithm, (b) Results from the K-means algo­

rithm.

based on the spectral method also do not suffer from local minima [46]. Therefore, it

may not be necessary to restart the algorithms with various initializations. The spectral

clustering algorithms also work very well for large datasets. According to Luxburg [46],

"spectral clustering can be implemented efficiently even for large data sets, as long as we

make sure that the similarity graph is sparse". Moreover, the algorithms may be solved

efficiently with standard linear algebra methods [46]. The algorithms are also more

stable than some algorithms in terms of initializing the user-specific parameters (i.e. the

number of clusters). The user-specific parameters may often be estimated accurately

with the help of theories related to the algorithms. As mentioned previously in Chapter

1, the spectral clustering algorithms often outperform traditional algorithms such as K-

means and Single Linkage [46]. Prior studies also show that the algorithms have had

significant practical success in the areas including, image segmentation [58], [67], speech

separation [5], biological sequence datasets [52], social network analysis [42], [70], and

high-dimensional spaces [8], amongst others. Finally, the algorithms from this family are

able to handle different types of data (i.e. numeric, nominal, binary, or mixed), since one

needs to convert the dataset into a similarity matrix to be able to apply this algorithm

on a given dataset.

Even though these algorithms are new to the world of cluster analysis, the notion

behind it was already a well-established research topic in the literature. As mentioned,

Introduction to Cluster Analysis 21

these algorithms are closely related to the area called Graph Partitioning Theory [58]

[50]. A graph consists of a set of nodes or vertices and the set of edges that connects the

nodes. Therefore, partitioning the graph denotes dividing the graph into several disjoint

subsets. This began in the early 1970s when Fielder [20] discovered that the graph bi-

partitioning problem is correlated with the eigenvectors of a matrix called the Laplacian

matrix. The Laplacian matrix is a matrix representation of a given graph which will be

discussed in detail later in the chapter. Given a n x n matrix A, then A is an eigenvalue of

A if there exists a non-zero vector x such that, Ax = Xx. Here, x is called an eigenvector

of A corresponding to eigenvalue A [9]. Fielder noticed that the eigenvector associated

with the second smallest eigenvalue of the Laplacian matrix contains useful information

about the connectivity of a given graph. As such, this vector is often referred to as the

Fielder Vector in literature [46], [20]. The techniques associated with graph partitioning

and the exploitation of eigenvalues and eigenvectors of the Laplacian matrix are equally

applicable to the cluster analysis problem [48]. Therefore, the spectral cluster analysis

algorithms also use the eigenvalues and eigenvectors of the Laplacian matrix (which is

constructed from the similarity matrix) to find the partitions. In graph theory, the

eigenvalues and eigenvectors of the Laplacian matrix or the adjacency matrix for a given

graph, are known as the graph spectrum or the spectrum of the graph. As such, the

algorithms in this group are called the Spectral Clustering algorithms.

The algorithms in this family require many theories and properties from graph theory

and linear algebra. In fact, an area called Spectral Graph Theory [11] is fully dedicated

to the study of graph connectivity and graph spectrum. As a result, even though the

algorithm seems less complex and efficient to solve, it requires good understanding of

various graph and eigenvector related topics (i.e. graph spectrum, graph partitioning,

graph cut, random walk, and linear algebra). In the subsequent sections, we discuss sev­

eral notations from graph theory that are later applied to explain the spectral clustering

algorithms. A brief summary of several linear algebra terms and notations related to our

discussion are presented in Appendix A.

2.3.1 Graph Notations

Let G be a weighted, undirected graph denoted as G = (V,E). Here, V is the set of

vertices such that V = vi,V2----vn, assuming that the graph G has n = |V| nodes or

vertices. Let E be the set of edges connecting the vertices in graph G. It is not necessary

that every two vertices in the graph should be connected through an edge. Since G is a

Introduction to Cluster Analysis 22

weighted graph, we may also assume that if two vertices are connected through an edge

then there will be a positive value assigned to that edge. In graph theory, this is known

as the edge weight. Therefore, if vt and Vj have an edge connecting them, then the weight

is denoted as Wij and Wij > 0. Let W be a n x n matrix, known as the adjacency matrix

of the graph G. Each entry of W contains the edge weight of any two vertices connected

to one another. Since G is an undirected graph, the adjacency matrix W is a symmetric

matrix, where for all pair of vertices Vi and Vj, Wij = Wjj. If the vertices Vi and Vj are

not connected through an edge then witj = Wjti = 0.

Figure 2.6: An example of a simple, undirected and weighted graph.

The degree of a vertex t>j is the sum of the total edge weight from vertex Uj to all

other vertices that are connected to i>j. Thus, for vertex v^, it is same as the sum of

the elements of row i in the adjacency matrix W. Mathematically, this is defined as

Equation 2.1.

n

3=1

Let D be another n x n diagonal matrix called the degree matrix with elements of d on

its diagonal. The matrix D is also symmetric.

The volume of a subset of vertices is denoted as Equation 2.2, where A is a subset of

V. Volume is often used to measure the size of a subset of vertices V.
Vol(A) = ^2di (2.2)

ieA

Example 2.3.1. Figure 2.6 depicts a simple graph with 10 vertices.

V = {1,2,3,4,5,6,7,8,9,10} and

E = { {1,2},{1,3},{1,4},{1,5},{2,1},{2,3},{2,4},{3,1},{3,2},{3,4},{3,6},{4,1},{4,2},{4,3},

{4,8},{5,1},{5,6},{5,7},{5,9},{6,3},{6,5},{6,7},{6,8},{7,5},{7,6},{7,8},{7,9},{7,10},{8,4},

Introduction to Cluster Analysis 23

We arbitrarily assigned edge weights between several vertices based on the visual distance

between the vertices, for explanation purpose. The edge weights are high when the ver­

tices are relatively close to one another, whereas the weights are small when the vertices

are located relatively far from one another. Then, according to the above notations, the

matrix W and D will have entries as given in Figure 2.7 and Figure 2.8, respectively.

For instance, the edge weight between vertex v\ and V2 is wi^ — 0.8 — W2,i, vertex vz

and v6 is io3)6 = 0.25 = w§$, and vertex v\ and v& is w\fi = 0 = u>6,i (since there is no

edge present in between vertex v\ and VQ).

W =

f °
as
0.7
0.6

0.2
0

0

0
0

L 0

0,$
fj

0,0
0.8

0
0

0

0
0
0

0.7
0.0
0

0.6

0
0.25

0

0
0

0

O.fi
0.8
0,6
0

0
0
0

0.1
0
0

0.2
0

0
0

0

o.s
0.8

0

0.3
0

0
0

0.25

0

as
0

0.8

0.7
0
0

0
0
0
0

o.a
0.8
0

O.fl

0.9
0,9

0
0

0
0.1
0

0.7

0.0

0
0

0.0

0
0

0
0

0,8
0

0.0

0
0

0,7

0
0
0

0
0
0

0.0

0.0
0.7
0

Figure 2.7: The weight matrix W for the graph given in Figure 2.6.

The degree matrix D is given as the sum of each row of matrix W on its main diagonal.

For instance, the degree of vertex v\ is: 0.8 + 0.7 + 0.6 + 0.2 = 2.3. The matrix D for

the graph G is given in Figure 2.8.

To calculate the volume of a subset A, assume that A contains vertices {1,2,3,4}.

Then according to the definition of volume, the volume of subset A is calculated as:

Vol(A) = 2.3 + 2.5 + 2.45 + 2.1 = 9.35

In the next subsection we will define a term, called Graph Cuts which is one of the key

terms in graph partitioning and is used as the objective function for spectral clustering

algorithms.

2.3.2 Graph Cuts

The Graph Cuts, or simply the Cuts, partition a graph into two sets. In graph theory,

graph cuts tend to find partitions such that the total edge weights in between the parti-

Introduction to Cluster Analysis 24

D:

f 2.3
0

0

0

0

0

0

0

0

\ o

0

2.v>

0

0

0
0

0

0

0

0

0

0

2.45

0

0

CI

0
0

0
0

0

0

0

2,1

0
0

0

0

0

0

0

0

0

0
2.$

0

0

0

0

0

0

0

0

0
0

2.tW

A

0

0
0

0

0

0

0

0

0

4-3

0

0
0

0

0

0

0

0

0

0

2,6

0
0

0

0

0

0
0

0

0

0

14
0

0 \

0

0

0

0

0

0

0

0

2.1 i

Figure 2.8: The degree matrix D for the graph given in Figure 2.6.

tions have a very small value and the total edge weights within the each partition have

a high value [46]. For graph G, a cut will partition the set of vertices V into sets A and

B such that A U B — V and AC\B = <j> [58]. This is achieved by removing the set of

edges that connect the two partitions A and B. This set of edges between the partition

A and B are called the edge cut. In graph theory, a cut is denoted as Equation 2.3.

cut(A,B)= Yl wtJ (2-3)
ieAjeB

An example of a graph cut is depicted in Figure 2.9. The dashed line in the figure shows

where the cut is performed so that the cut value between the two partition is minimum.

However, there may be a number of different possible solutions to bi-partition a graph.

Figure 2.9: An example of graph cuts.

For this reason, in graph theory the optimum solution to this bi-partitioning problem is

Introduction to Cluster Analysis 25

the one that minimizes the cut value among all the possible pairs of partitions. This cut

method is often referred to as the minimum cut problem. However, as Wu and Leahy

[77] noticed, a common problem with the minimum cut method is that it tends to cut

small sets of isolated objects in the graph. Notice that the cut value increases with the

number of edges crossing the partitions. Therefore, when the two sets are balanced they

will have a higher cut value. On the other hand, if one of the sets contains isolated

points then the cut value in between this set and the rest will be the lowest, as there

will be fewer edges crossing the partitions. To overcome this problem, Shi and Malik [58]

proposed a new cut method called the Normalized Cut or NCut method. The formula

for NCut is denoted in Equation 2.4.

In this case also, one may achieve the desired partitions by minimizing the NCut value.

Unlike the minimum cut method, the normalized cut method will usually have a high

value when the partitions are imbalanced (when one of the partitions contains small sets

of isolated nodes). Moreover, minimizing the NCut value means finding a cut that will

have a relatively small weight in between the partitions while maintaining high internal

edge weights within each partition [58]. Therefore, it satisfies the goal of graph cuts.

Another version of the graph cut method is known as the ratio-cut method [58] [46].

The ratio-cut is similar to the normalized cut method. However, as opposed to the

normalized cut method that takes the volume of the subsets to measure the cut weight,

ratio-cut considers the size of the partitions as denoted by the total number of vertices

present in the subsets.

Example 2.3.2. This example uses the graph given in Figure 2.6. We consider two

cases: Case 1 computes the normalized cut for the cut position depicted in Figure 2.9

and Case 2 computes the NCut when the partitions are not balanced.

Case 1: In this case we will assume that the partitions are: A = {1,2,3,4} and B =

{5,6,7,8,9}

Vol(A) = 2.3 + 2.5 + 2.45 + 2.1 = 9.35

Vol(B) = 2.6 + 2.55 + 4.3 + 2.6 + 2.4 + 2.5 = 16.95

Cut{A, B) = 0.2 + 0.25 + 0.1 = 0.55

NCut(A, B) = | f + £ § = 0.6204

Case 2: In this case we will assume that the partitions are: A — {4} and B =

{1,2,3,5,6,7,8,9}

Introduction to Cluster Analysis 26

Vol{A) = 2.1

Vol(B) = 2.5 + 2.45 + 2.1 + 2.6 + 2.55 + 4.3 + 2.6 + 2.4 + 2.5 = 24.0

Cut{A, B) = 0.6 + 0.8 + 0.6 + 0.1 = 2.1

NCut{A, B) = | i + | | = 1.0875

The NCut value for Case 1 where the partition is balanced is 0.6204. The NCut value

for an unbalanced partition is 1.0875. Since Case 1 gives the minimum NCut value, this

partition will be the solution to the bi-partitioning problem for the graph depicted in

Figure 2.9.

The spectral methods manipulate the eigenvalues and eigenvectors of the graph Lapla-

cian to find the partition. In the next subsection, we define the graph Laplacians and

discuss their properties.

2.3.3 Graph Laplacian

Let W be the similarity matrix constructed from a given dataset. We build the degree

matrix D from W by using Equation 2.1. Then the Laplacian matrix is defined as

Equation 2.5.

L = D-W (2.5)

The Laplacian matrix L for the graph depicted in Figure 2.6 is given in Figure 2.10.

Notice that the main diagonal of the Laplacian matrix is always non-negative and the

row sum for each row i is 0. This is true for all the Laplacian matrices and from this a

number of important properties arise as discussed shortly.

Recall that the spectral clustering algorithm is usually performed on this Laplacian

matrix and not directly on the similarity matrix. The eigenvectors and eigenvalues of the

Laplacian matrix possess many important properties [11], [20] that ultimately help to

find the partitions. The use of eigenvectors of the Laplacian matrix for partitioning the

graph is not new to the area of graph partitioning. In early 1970's Fielder [20], Donath

and Hoffman [15], and a number of other researchers discovered that the eigenvectors

of the adjacency matrix or the Laplacian matrix, possess many interesting properties

which lead to the solution of the problem of partitioning a given graph. According to

Donath and Hoffman, it was the eigenvectors of the adjacency matrix that partitions

the graph. In contrast, according to Fielder, the eigenvector associated with the second

smallest eigenvalue of the Laplacian matrix gives the partitions. Since then, there have

been numerous publications on this topic where various authors have proposed different

Introduction to Cluster Analysis 27

1 =

f 2.3

-U

-0.7

-0.6

-02
d
Ci
CI
Ci

i 0

-0.8

2.5

-0.9

-0..8

0
0
0

0
0

0

-0.?

-0.9

2,11

-0,6

i)

-0.2J

i)

0
%

9

-0.8

-0.8

-CfJ

2.1
0
(l

Ci

-0.1

0

0

-0.2

0
0

0
2.1
-U

-0.8

0
-0.8

0

f?

0
-0.25

0

-0.8

m
~e,s
-o.-
ft

i

0
0
0
0

-0L8

-0.8

4.3
-0.9

-#.9

-0.9

0
0
ft

-1.1

0
-II.?

-0.9

2.6

0

-e

0
0
0
0

-0.8

0

-0,9

0

n
-0.7

0

0
0
0

0
0

-0,9

-0.9
-0,7

2,5

Figure 2.10: The Laplacian matrix L for the graph given in Figure 2.6.

combinations of these matrices (Laplacian/adjacency) and eigenvectors to bi-partition

the graph. An excellent review on graph Laplacian and their spectral theories is given

by Chung in [11].

In Chapter 1, we mentioned that there are several different variations of spectral

clustering algorithms available in the literature. These algorithms mostly differ on the

choice of graph Laplacian and the associated eigenvalues and eigenvectors. However,

Luxburg [46] also noted that there are a number of matrices present in the literature

that are also referred to as the graph Laplacians. These matrices are commonly known

as the Normalized Laplacian matrices. The two variants of the normalized Laplacian are

given in Equation 2.6 and Equation 2.7 [46].

L = D=r{D- W)D^ (2.6)

L=D^WD^ (2.7)

The matrix in Equation 2.6 is used by Shi and Malik in [58], where they discovered

that the second smallest eigenvector is the solution to the partitioning problem. This

method is similar to the one given by Fielder [20]. One of the differences with Fielder's

method and Shi and Malik's work, is that Fielder used the original Laplacian matrix,

whereas Shi and Malik used the normalized Laplacian matrix to find the eigenvector.

Ng, Jordan and Weiss [50], used the matrix in Equation 2.7 to define their version of

spectral clustering algorithm and used the k largest eigenvectors to find the clusters.

The eigenvectors of the graph Laplacians contain important information about the clus-

Introduction to Cluster Analysis 28

ter assignments. They are the characteristic vector of a matrix and the components

of this vector indicate the cluster assignments. Thus, the points that are similar will

usually have similar eigenvector components and by thresholding the eigenvector (s) we

discover the clusters. There are several properties of the Laplacian matrix that are often

addressed to explain the spectral methods theoretically and are presented below.

Properties of the Laplacian matrix [11], [46]:

Property 2.3.1. Laplacian matrices are symmetric real matrices. This follows directly

from the definition of D and W.

Property 2.3.2. The matrix is positive semi-definite. A real valued matrix M is positive

semi-definite if, for all f G $ln,f'Mf > 0. The mathematical proof of this property is

given in [46].

Property 2.3.3. L has n non-negative, real valued eigenvalues such that 0 = Ao <

Ai < A2... < A„. This follows from the definition of the Laplacian matrix (a real sym­

metric matrix will have exactly n real eigenvalues) and the properties of the positive

semi-definite functions (the eigenvalues of the positive semi-definite functions are always

non-negative).

Property 2.3.4. The smallest eigenvalue is 0 and the eigenvector corresponding to the

smallest eigenvalue is a constant vector containing all 1 's. If eigenvalue A — 0 then we

need to find an eigenvector v such that (D — W)v = Ov — 0. Recall, that the row sum

for each row i of matrix D — W is 0 which follows directly from the definition of D and

W. Thus (D — W)v = 0 only when v is a vector with all 1 's.

Property 2.3.5. The eigenvectors and eigenvalues provide important information about

the graph connectivity [20]. The multiplicity k of the eigenvalue 0 gives the number of

connected components in the graph [46].

The spectral clustering algorithms are often divided into two types: 1) recursive

algorithms and 2) multi-way algorithms [66], The algorithms in the first group, as the

name suggest, recursively bi-partition the data at each step until a stopping criterion

is satisfied. The most widely used algorithm from this group is, the Normalized Cut

Spectral Clustering (SM(NCut)) by Shi and Malik [58], [66], [46]. In contrast, multi-way

spectral clustering algorithms directly partition the data into k groups. The best-known

algorithms from this group are: 1) the Ng, Jordan and Weiss algorithm [50] and 2) the

Introduction to Cluster Analysis 29

Meila - Shi algorithm [48]. In this study, to evaluate the performance of the proximity

measures on the spectral clustering algorithms, we consider two algorithms, one from each

group. Prom the first group, we select the normalized cut spectral clustering algorithm

as this algorithm proved to have had several practical successes in a variety of fields.

We refer to this algorithm as SM(NCut) in the rest of the thesis. The Ng, Jordan and

Weiss algorithm is an improvement to the algorithm proposed by Meila and Shi [50].

The algorithm proposed by Meila and Shi normalizes the rows of the weight matrix and

uses its eigenvectors to find the clusters. In contrast, the algorithm proposed by Ng,

Jordan and Weiss uses the eigenvectors of the Laplacian matrix and normalizes the rows

of the eigenvectors to unit length. The authors suggest that the former method might not

produce good clustering solutions in situations when the between cluster degree varies

substantially across the clusters [50]. Thus, we select Ng, Jordan and Weiss algorithm

from the second group for this study. We will refer to this algorithm as the NJW(K-

means) from now on.

In the next two subsections we present these two algorithms in detail.

2.3.4 Algorithm 1: SM(NCut)

The SM(NCut) spectral clustering algorithm is one of the most widely used recursive

spectral clustering algorithm, which manipulates the eigenvectors to find the clusters.

The algorithm was proposed by Shi and Malik [58] for image segmentation tasks. The

main intuition behind this algorithm is the optimization of an objective function called

the Normalized Cut, or NCut, as discussed in Section 2.3.2. The authors introduced

this new graph cut method and showed that, by minimizing this objective function, one

achieve good partitions of the data. They also provided necessary mathematical proofs to

show that the NCut is optimized by solving a generalized eigenvalue problem, and then

use the eigenvector of this generalized eigenvalue system to find the underlying clusters.

The algorithm is discussed in detail below.

The normalized cut is defined in Equation 2.4 (the definition of the terms (e.g. Vol(A),

Cut(A,B)) are given in Section 2.3.1 and Section 2.3.2). Minimizing the NCut is the same

as finding a cut such that the total connection in between two groups is weak, whereas

the total connection within each group is strong. The authors found that minimizing

the NCut in this way is a NP-complete problem. A proof for this claim is given in [58].

Thus, they proposed a different strategy that minimizes the NCut but uses a generalized

eigenvalue problem to solve this. The mathematical proof for how this NCut problem

Introduction to Cluster Analysis 30

is transformed into a generalized eigenvalue problem is also given in [58]. We continue

with the algorithm, assuming that the NCut problem is transformed into a generalized

eigenvalue problem by using the proof given by Shi and Malik. At this point, we will

introduce several terms, to help us clarify the algorithm proposed in [58].

Let A and B be the two partitions and x be an n dimensional (where n is the number

of objects) indicator vector with a;* = 1 if object i € A and Xi — — 1 when object i G B.

(The terms W, D and di are defined in Section 2.3.1). Then minimizing the NCut

problem is equivalent to minimizing the following expression with two constraints:

yT(D - W)y
minxNCut(x) = miny

J—~rzz—— . (2.8)
yTDy

The constraints are y{ 6 {1, —b} and yTDl — 0. In the above expression, y has a similar

meaning as the indicator vector x. However, it represents the information in a slightly

different way as y = (1 + x) — 6(1 — x). Here, b — y *'. <°0d' - Recall, X{ > 0 w Xj = 1

(according to the definition of x) which represents the objects in group A and Y^x >o d% ~

(1 + x) D l denotes the total connection from nodes in A to all other nodes. Similarly,

Xi < 0 w Xi = — 1 which represents the objects in group B and Ylx <o^i ~ (̂ — x) D l

denotes the total connection from B to all other nodes. Thus, b is the ratio of the two

groups A and B as measured by their degree d.

The constraints, as discussed above, are the direct consequences of the condition that

the vector x may only take two discrete values, as defined by the indicator vector x.

Below we show that the second constraint also holds.

Proof. yTDl

= [(l + x) - 6 (l - x)] D l

- (1 + x) D l - 6(1 - x) D l = E x i > 0 di ~ 6£*,<o di = 0 •

However, the authors proposed that if y is relaxed to take real, continuous values, then

Equation 2.8 may be minimized by solving a generalized eigenvalue system as given in

Equation 2.9.

{D - W)y = XDy (2.9)

Moreover, they also suggested to transform this generalized eigenvalue system into a

standard eigenvalue system. By doing so, the authors showed that the constraints on y

are satisfied by this standard eigenvalue problem, which in turn, satisfy the constraints

of generalized eigenvalue system automatically. The generalized eigenvalue system given

in Equation 2.9 is transformed into a standard eigenvalue system as follows [58]:

Introduction to Cluster Analysis 31

Proof. (D - W)y = XDy

= > (D-W)y = \D-2D2y

= > D^(D-W)y = \D*y
=>D^(D-W)D=21D12y = \D2y D

Let z = D^y, then the above equation is equivalent to:

D=r{D- W)D=ikz = Xz (2.10)

Equation 2.10 is the standard eigenvalue system of the generalized system 2.9. Here z is

the eigenvector of matrix D~(D — W)D~ and A is the eigenvalue.

Properties of the matrix D^~(D - W)D^~ (from Equation 2.10):

Property 2.3.6. ZQ — D^l (where 1 is a vector of all ones) is an eigenvector of this

matrix with eigenvalue 0. We may verify this as follows.

Proof. D^(D-W)D^z0

= D^(D - W)D^Dh = D^(D - W)l = 0

Recall from previous discussion that the term (D — W) is known as the Laplacian matrix.

According to the Property 2.3.4 of the Laplacian matrix (D — W)l = 0. Thus, the

te rm£>i r (£>- W)l = 0. •

Property 2.3.7. The expression D^~(D — W)D^~ is symmetric positive semi-definite.

This again follows from the properties of the Laplacian matrix (Property 2.3.1 and

Property 2.3.2), symmetric matrix and positive semi-definiteness.

Property 2.3.8. The eigenvalues are all real and non-negative. z0 *s the smallest eigen­

vector of this matrix all the eigenvectors are perpendicular to one another. This follows

directly from, the properties of positive semi-definiteness.

Having summarized the properties of the eigenvalue problem given in Equation 2.10,

we now use these properties to find the solution to the original generalized eigensystem

given in Equation 2.9. We will also show how the constraints placed on y are satis­

fied through these properties. Notice that the smallest eigenvalue of the generalized

eigenvalue system is 0 and the eigenvector associated with this eigenvalue is 1. The

proof is similar to the one for the standard eigenvalue system in Equation 2.10. Next,

0 = ZJ'ZQ — yjDl (j/i is the second smallest eigenvector). Recall from Property 2.3.8

file:///D-2D2y

Introduction to Cluster Analysis 32

of the matrix given in Equation 2.10 (Page 31) that all the eigenvectors of this matrix are

perpendicular to one another. Therefore, if ZQ and z\ are two eigenvectors of that matrix

and if they are perpendicular to one another then their inner product is 0 (according to

the properties of perpendicular vectors) and thus z\ZQ = 0. Also recall that z = D?y.

Then, z\ = D?yi and ZQ — D^l. Replacing them back to zfzo, we get

zJzQ = D\y[D\\ = y{Dl = 0.

Therefore, the constraints are satisfied by the eigenvectors of the generalized eigen­

value system. However, we still need to find which eigenvector actually minimizes the

normalized cut problem. The authors noted that the expression miny
y ^T~D is known

as the Rayleigh quotient [27] and found that according to the properties of this quotient,

the second smallest eigenvector of the generalized eigenvalue system is the real valued

solution to their Normalized Cut problem. The partitions are found by thresholding

this eigenvector. There are a number of ways this grouping may be performed. One

may use a particular point (i.e. zero, mean, median) as the splitting criteria or may use

any existing algorithms such as the K-means for this purpose. Components with similar

values usually reside in the same cluster. Since, this algorithm bi-partition the data,

we get two disjoint clusters. To find more clusters we need to re-partition the segments

by recursively applying the algorithm on each of the partitions. The summary of the

SM(NCut) algorithm is given in Table 2.2.

Example 2.3.3. We use the same graph as illustrated in Figure 2.6 to show how this

algorithm works. We assume that the nodes in this graph are the objects from a datasets

and the edge weights represent the similarity in between the objects. Table 2.2 contains

the steps of the normalized cut spectral clustering algorithm. According to step 1 and

step 2, we need to construct the matrix W, D and L, as we have done for calculations

in previous sections. We continue from step 3 by solving the eigensystem. The first

few eigenvalues and their corresponding eigenvectors are given in Figure 2.11 and Figure

2.12. We used MATLAB® to calculate the eigenvectors and eigenvalues.

Notice that the eigenvalues are sorted in increasing order (Figure 2.11). The smallest

eigenvalue is 0 and the eigenvector associated with this eigenvalue is a constant vector

of all ones. In this example it is the first vector with all 0.1950's and is similar to the

vector 0.1950*eueci where evec\ is a vector of all ones. The second smallest eigenvalue is

0.0842 as marked with a circle in the Figure 2.11 and the corresponding eigenvector is the

second column from left and is marked with a square box in Figure 2.12. According to

the algorithm, this eigenvector contains the information about the cluster assignments.

Figure 2.14 plots the components of the eigenvectors associated with the smallest and the

Introduction to Cluster Analysis 33

Normalized Cut Spectral Clustering Algorithm

(SM(NCut))

Input:

The Dataset of N objects

Algorithm:

1. Form the N x N symmetric weight matrix W and degree

matrix D.

2. Construct the Laplacian matrix D — W.

3. Solve the eigensystem (D — W)x = XDx for eigenvectors with

smallest eigenvalues.

4. Find the second smallest eigenvalue and use the eigenvector

associated with this eigenvalue to bipartition the dataset.

5. Recursively repartition the partitions if necessary.

Table 2.2: The normalized cut spectral clustering algorithm (SM(NCut)).

-o.oooo o o o o o
o <^o7oi42^) o o o o
0 0 0.7646 0 0 0

0 0 0 0.842 6 0 0

0 0 0 0 1.2544 0
CD O 0 O 0 1.273 6

Figure 2.11: The eigenvalues of the Laplacian matrix of the graph in Figure 2.6. The

second smallest eigenvalue is marked with a circle.

second smallest eigenvalues, respectively. To find the clusters we now map the original

objects to the corresponding components of this eigenvector. The objects are mapped

according to their order in matrix W. We then split this eigenvector at 0 to find the

clusters. This is depicted in Figure 2.13. This algorithm found two clusters where

Clusterl contains objects {1,2,3,4} and Cluster2 contains objects {5,6,7,8,9,10}. In

the original graph, also, the objects in the first cluster are located very close to one

another and so do the objects in Cluster2.

Introduction to Cluster Analysis 34

0

0

0

0

0

0

0

0

0

0

1950
1950

1950
1950

1950

1950

1950

1950
1950

1950

0

0

0

0

- 0

- 0

- 0

- 0

- 0

- 0

2526

2788
2492

2 6 5 1
1225

1114

1552

1432

1612
1666

- 0

0

- 0

0

- 0

- 0

0

0

- 0

0

0379

0272
0016
0597

3850

1386

0059

3149

1523
3094

0

0

- 0

0

- 0

- 0

0

- 0

0

0

0428

0403
0455

0282
0 0 9 1

4030
0077

2133
3799

2056

0

- 0

- 0

0

0

- 0

0

0

- 0

- 0

. 0007
0 2 1 1

4197
4 8 8 1

0865

0516

0212

0746

0413
0 9 0 1

0

- 0

- 0

- 0

0

- 0

- 0

0

- 0

0

5401

1013
1929

2365
0902

0628

0505

0861

1020
0575

Figure 2.12: The eigenvectors of the Laplacian matrix of the graph in Figure 2.6. The

eigenvector associated with the second smallest eigenvalue is marked with a square box.

1

2
3

4

S
6
7

8

9
10

0 . 2 5 2 6

0 . 2 7 8 8
0 . 2 4 9 2
0 . 2 651 Thresho ld at 0

•
- 0 . 1 2 2 5
- 0 . 1 1 1 4

- 0 . 1 4 3 2
- 0 . 1 6 1 2

- 0 . 1 6 6 6

1

2

3

4

S
6
7
8
9

to

0.2526
0.2788
0.2492
0.2651

- 0 . 1 2 2 5
- 0 . 1 1 1 4
- 0 . 1 S S 2
- 0 . 1 4 3 2
- 0 . 1 6 1 2
- 0 . 1 6 6 6

Figure 2.13: Spectral bi-partitioning of graph in Figure 2.6. On the left we first map the

original objects to their corresponding components in the eigenvector. Next we partition

them at position 0 to find the clusters.

2.3.5 Algorithm 2: NJW(K-means)

This section explains the algorithm proposed by Ng, Jordan and Weiss [50]. Unlike

the SM(NCut) algorithm that minimizes the NCut objective function and recursively

bi-partitions the data, this algorithm directly partitions the data into k groups. The

algorithm manipulates the normalized Laplacian matrix given in Equation 2.7 to find

the clusters. As mentioned in Section 2.3.3, the algorithm is an improvement to the

prior work performed by Shi and Meila in [48]. Shi and Meila proposed an algorithm

called the MNCut algorithm that relates the theories from Markov Random Walk to

the eigenvectors and the eigenvalues of the normalized Laplacian matrix. We present

the algorithm from the perspective of the Random Walk Theory [56] and show their

Introduction to Cluster Analysis 35

6.1SS

' • » • « *

8.1JS

9.18S

Figure 2.14: The eigenvalues and eigenvectors. (Left) The components of eigenvector

associated with the smallest eigenvalue 0. (Right) The components of the eigenvector

associated with the second smallest eigenvalue.

relationship with the normalized Laplacian matrix [48], [52]. Then together with the

theories of random walk as well as the properties of the normalized Laplacian matrix we

find the perturbed matrix which serve as the solution to the partitioning problem. This

matrix is then solved using the theories from Matrix Perturbation Theory [50], [46].

Assume that the graph G represents a random walk problem. The nodes are the

states and the edges are considered as the path that connects two states. Also, assume

that we have placed some particles on the nodes and they have the liberty to move around

and jump from one node to another. At any particular time the particles are more likely

to jump to a node where the edge weight is high (when nodes are very similar to one

another). The particles are also likely to stay within the nodes in which the similarity

values of the neighboring nodes are high and are unlikely to jump to a node where the

edge weight is low (when nodes are very dissimilar). The main idea behind the spectral

partitioning from the random walk point of view is to separate the clusters such that the

group of nodes where the particles stay for a longer period are separated from the group

of nodes where the particles are unlikely to travel. We relate both the random walk and

the spectral theory together to explain the algorithm [48], [52].

Let the probability of jumping from node i to node j be Py. As mentioned above,

the probability P^ depends on the edge weights from node i to node j and thus depends

on the similarity between the nodes denoted as Wij previously.

„ the edqe weiqht from node i to node j
Pa = — (2.11)

total edge weights from, node i to all other nodes

Pi j — ",',J = ^ - [from the definitions of w and d]

Then, according to the definitions of W and D, the Markov Transition Matrix P is

Introduction to Cluster Analysis 36

defined as:
W

P= — = D~lW (2.12)

All the entries of this matrix are positive. The row sum for each row i is 1.

Properties of the Markov matrix [62]:

Property 2.3.9. The largest eigenvalue of this matrix is Ai = 1.

Property 2.3.10. All other eigenvalues for i = [2...n] satisfy A, < 1.

Next, according to the properties of random walk [56], if we start at node i$ then,

after 1 step we will be at i\ and the probability = P%Qix

after 2 steps we will be at i<i and the probability = Yli PiohPiw — (-P2)io«2

after 3 steps we will be at i$ and the probability = J^i2 ^ w i ^ i ^ A ^ s ~ (•f>3)»o»3

and after n steps we will be at in and the probability = (Pn)iQin

Therefore, Pn is the probability distribution of a particle after n steps. According to

[52], for an undirected, non-negative and connected graph, any particle that starts at

a particular state will reach the same stationary distribution after an infinite number

of steps. Stationary distribution is defined as n°° = y ^ and PTTT°° = n00. Thus, as

time evolves and progresses toward infinity, the probability of being at a particular state

becomes more independent of the initial state and as it reaches the stationary distribution

the information about the initial state will be completely lost. The stationary distribution

in this case will give us little information about the areas in which the particle has already

traveled, which in turn will not be able to give us information about the areas in the

graph where the nodes are closely connected. However, the authors also noted that during

the Markov Relax process a particle will spend longer time at this closely connected area

before reaching the stationary distribution. Thus, we are looking for those nodes in which

the particle spends the most time before jumping to a different location. By analyzing

the eigenvalues and eigenvectors of the matrix given in Equation 2.12, one may find the

nodes where the particle spends the most time and in turn find the partitions where the

similarity in between the objects are high.

Recall that the original algorithm as given in [50] uses the normalized Laplacian

matrix L = D^~WD^~ to find the partitions, whereas, we started our discussion with

the Markov Transition Matrix P = D~1W. The matrices are, however, similar [52]. This

is proved as below:

Introduction to Cluster Analysis 37

Proof. D~1Wv = Xv

= > D*D~1Wv = \Div

=> D^Wv = XD^v

= > D 2 WD 2 x — XD^D 2 x [by letting, v = D 2 x)

= > D T T W D T T a ; = A.r D

Notice that, both the matrices D~1W and D~i~WD~2~ have the same eigenvalues and

the eigenvectors corresponding to these eigenvalues are v and x — D^v, respectively.

Therefore, the matrices are similar. Moreover, the matrix D~?~WD~^ is symmetric and

has several interesting properties that will help us to find our solution. As such, we will

use this matrix from now on rather than the Markov matrix.

One of the interesting properties of a real symmetric matrix is that it is often decom­

posed and re-written as the sum of its eigenvalue and eigenvector pairs [62]. Let Abe a

real symmetric matrix and the eigenvalues of this matrix are Aj and the eigenvectors are

ej. Then according to this property, A is re-written as the equation given in Equation

2.13.
fc

i=\

As the matrix D~WD~?~ is also symmetric, let the eigenvalues and eigenvectors of this

matrix be Aj and Z{ respectively with Ai > A2 > > Af. We may re-write this as

Equation 2.14 or Equation 2.15:

k

D^WD^ =^XizizJ (2.14)

D^WD^ = Aizizf + X2z2zl + + XtztzJ (2.15)

Moreover, the eigenvectors of the symmetric matrices are also orthogonal to one another.

Thus, zfzj = 0 for i ^ j .

As such, we have showed that the Markov transition matrix D_1W is similar to

the symmetric matrix D^WD~^. Recall, we also showed that Pn is the probability

distribution of a particle after n finite steps. Since P = D~XW, this is re-written as

Equation 2.16.

p = D^WD^r (2.16)

Then,

P " = (D^WD^)n (2.17)

Introduction to Cluster Analysis 38

Since DP = W (from Equation 2.12),

(D^WD^Y = (D^WD^) (D"rWD^)

= (D^DPD^) (D^DPD^)

= (DiPD^r) (D'PD^)

= (DliPnD^)

(D^WD^Y = (£>2P"Dir)

= > D^iD^WD^Y = Dzr{D^PnD^)

=> D^(D^WD^Y = PnD^
Thus,

pn = D^(D^WD^YD* (2.18)

Recall D~WD~ = XiZizf + \2z2z^ + + \ztzj and by replacing it in the Equation

2.18 we get,

pn = D^{D^WD^YDl*

= D^(\izizl + \2Z2zl + + \tztz[)nD*

= D^(Xn
lZlzl + \n

2z2z
T

2 + + \n
tztzJ)D*

As such,
t

Pn = Y, D^XfzizfD' (2.19)

t = i

As mentioned earlier, Pn gives the dynamics of the particle after n finite steps. Thus,

Pn is also the dynamics before we reach the stationary distribution. During this time

the particle will stay for a longer period within the cluster before jumping to any other

location [52]. When n = 00, F°° becomes the distribution after an infinite steps and is

thus called the stationary distribution.

t

P°° = J2 D^XfzizfD' (2.20)
1=1

Recall from the properties of Markov matrix (Property 2.3.9), that the largest eigen­

value Ai is always 1. We already showed that (Page(36)) this matrix and the normalized

Laplacian matrix are similar and they have the same eigenvalues. Also, from the Prop­

erty 2.3.10 of the Markov matrix all the other eigenvalues are less or equal to one. We

file:///ztzj
file:///2Z2zl

Introduction to Cluster Analysis 39

have X^zizf = z\z\ and X^z^z^ + + X^ztzJ « 0 and A°° « 0. Incorporating all the

information in Equation 2.20 we get:

t

p°° = ^D^X^ZizfD^

i = i

= D^(\™z1zl + \?z2zZ + + \™ztz'[)D^

= D^ziz[D*

Prom Equation 2.19 we have,

t

Pn = ^D^XfzizfD*
t= i

t

i=2
t

t=2

Therefore we have:

p°° = D^z^lD^ (2.21)

and
t

F n = poo + J^ D^X^ZizfD' (2.22)
i=2

In this case, the first term P°° in Equation 2.22, is the distribution where the particle

will end up after an infinite number of steps. From the definition of this term, we

know that this manipulates the largest eigenvector of the normalized Laplacian matrix.

On the other hand, the second term tells us about the probability distribution of the

particle after n finite steps. This term manipulates the leading eigenvectors associated

with the eigenvalues A € [2...n] of the normalized Laplacian matrix. This term is called

the perturbation to the stationary distribution [52]. As of now, we showed why the

algorithm uses the normalized Laplacian matrix as given in Equation 2.7. We explained

the main idea behind using this matrix, relating the problem to the Markov Random

Walk problem. However, the matrix that ultimately gives the partition is a perturbed

matrix and need to be solved by applying the properties of matrix perturbation theory.

According to [46], [50], perturbation theory studies how the eigenvalues and eigen­

vectors of a matrix A change when a little perturbation H is added, resulting a perturb

Introduction to Cluster Analysis 40

matrix A such that A — A + H. The perturbation theory is often applied to solve prob­

lems which may not be solved exactly, by first solving a related problem for which the

exact solution is known. As given above, the equation Pn — P°° + YLi=2 D~*~ \™ ZizJ D*

also falls into this category if we take, A = Pn, A = P°° and H — Yli=2 D~*~ \™ ZizJ D*.

According to [50], A, in this case, is the ideal solution to the problem in which all the

objects in different clusters are located infinitely far apart and between cluster similarity

is 0. Proof for this claim is given in [50].

We will use an example to illustrate how the clusters may be found by using this

method. Figure 2.15 shows a similarity matrix and the first three eigenvectors of its

Laplacian matrix. Objects {1,2,3} belong to cluster 1, similarly, objects {4,5,6} and

{7,8,9} belong to cluster 2 and cluster 3 respectively. We assume the similarity between

the objects in a cluster are all the same (in this case 1). The entries with 0 in the

similarity matrix represents the between cluster similarity. According to Luxburg [46],

1
1
1
0
0
0
0
0
0

1
1
1
0
0
0
0
0
0

1
1
1
0
0

0
0
0
0

0
0
0
1
1
1
0
0
0

0
0
0
1
1

1
0
0
0

0
0
0
1
1

1
0
0
0

0
0
0
0
0

0
1
1
1

0
0
0
0
0
0
1
1
1

0
0
0
0
0

0
1
1
1

0.5774

0.5774

0.5774

0
0
0
0

0
0

0

0

0

0.5774

0.5774

0.5774

0

0
0

0

0

0

0
0
0

0.5774

0.5774

0.5774

Similarity Matrix y] V2 y3

Figure 2.15: The ideal case of K-means spectral clustering algorithm.

the object Vi £ Kfc will have the form (0,0,0.-1,0,0...) where 1 represents the cluster

where the object belongs to and k is the number of clusters. In our example, when

k = 3 the object v\ = (1,0,0) (since all the non zero entries for the eigenvectors in

the figure have the same value 0.5774, we may use 1 instead of 0.5774). Thus, all the

objects that belong to the same cluster will have the same value for v. For example,

vi = V2 — i>3 = (1,0,0) as they all reside in cluster 1. This also holds for cluster 2

and cluster 3. The K-means algorithm is applied to this set of objects v^ to find the

correct partitions [50], [46]. This will be the case for a perfectly ideal situation. In a

nearly ideal case when the between cluster similarity is not necessarily 0, the normalized

Laplacians are considered as the perturbed version of the ideal case [46] [50]. Thus, by

Introduction to Cluster Analysis 41

solving Yll=2 D~XfzizfD?, as discussed above one may find the clusters. This is due to

the fact that the perturbation theory suggests that the eigenvectors of this matrix should

be very close to the ideal case, if not the same, and the K-means or any other clustering

algorithm should be able to find the clusters. A more detailed explanation is presented

in [46]. The algorithm is given in Table 2.3,

Example 2.3.4. In this section, we provide an example (similar to the one given for the

SM(NCut) algorithm) to show how the algorithm works. In this case also, the weight

matrix (W), and the degree matrix (D) will be same as the one calculated previously

(step 1-3 in the algorithm). However, matrix L in step 4 will be different than the one we

calculated earlier. According to step 4 of this algorithm, L is defined as: L = D~WD~.

This will give us the matrix L as depicted in Figure 2.16. To keep this example as close as

3 SMi 0.2S4S U7-5C 3.031s 0 0 3 3 0
Mitt 0 0,3*3* P.MW 0 0 0 0 3 0
tm o..Hn o tm o urn o s D a
t r » SUM um o n o o i.m J o
S.3S13 0 0 e 5 OMf} 0.EJS3 S C. 3203 0

3 5 O.303C C D.3W* 0 G.JteS D.HiS 3 0
3 0 0 5 MSB o i « i o c.ieii urn um

3 0 0 0.8SS Q 3.i*:§ O.HSi 3 :3 B.3SM
5 0 C C 5.3203 0 0 . 3 B 1 3 0.J6SS
0 0 0 C 0 0 O.JT45 0.JS8 CMSS 0

Figure 2.16: The matrix L = D^~WD^~.

the one we provided for the Normalized cut algorithm, we assume that k = 2. Then, the

two largest eigenvalues and their associated eigenvectors are (step 5) given in Figure 2.17

(the upper part contains the eigenvalues and the lower part contains the eigenvectors).

The matrix X, as given in step 6, is same as the lower part of the Figure 2.17. Next in

step 7, we construct the matrix Y by renormalizing the rows of X. Figure 2.19 plots the

components of matrix X and matrix Y.

Finally, in step 8, we run the K-means algorithm with k = 2 on the matrix Y. The

cluster assignments are given in Figure 2.20, where the column on the left contains the

object ids and the column on the right shows the cluster assignments.

The first cluster contains objects {1,2,3,4} and the second cluster contains objects

{5,6,7,8,9}.

Introduction to Cluster Analysis

Algorithm: Spectral Clustering with K-means (NJW(K-

means))

Input:

The Dataset of N objects

k the number of clusters

Algorithm:

1. Form the N xN symmetric weight matrix W from the dataset

of size N. Here W(i, j) — ufy, the similarity between object

i and j .

2. Let d be a N x 1 matrix with d = V • Wij (the total similar­

ity value from object i to all other object or the sum of the

elements of W's ith row).

3. Let D be another N x N diagonal matrix with d on its diag­

onal.

4. Construct the N x N matrix L = D^WD^r.

5. Find the k (same as the number of clusters) eigenvectors as­

sociated with k largest eigenvalues, let these eigenvectors be

x l i x 2 , •••••, x k

6. Form the N xk matrix X = [xiX2....Xfe] by stacking the eigen­

vectors in columns.

7. Form another N x k matrix Y from X by normalizing each

row of X so that it has a unit length. This may be done by

ij calculating Yy = "— r for each row of X.

8. Use K-means on Y to find k clusters, by treating each row of

Y as a point in k-dimensions.

9. Assign the original points back to the clusters formed from

Y such that if a point i from Y belongs to j cluster then

the original point i from the input dataset will also belong to

cluster j .

Table 2.3: The spectral clustering algorithm with K-means (NJW(K-means

Introduction to Cluster Analysis 43

1.0000 0

0.

0.

0.

0.

0,

0,

0.

0.

0.

0,

0

.2957

.3083

.3052

.2826

.3144

.3114

,4043

.3144

.3021

.3083

0.

-0.

-0,

-0,

-0

0,

0,

0,

0,

0.

0,

9158

.3831

,4409

.3900

.3842

.1975

.1778

.3217

.2309

.2497

.2634

Figure 2.17: The two largest eigenvalues and their eigenvectors of matrix L.

1,

1,

1,

1,

1.

1.

1.

1,

1,

1,

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

-0,

-0,

-0,

-0,

0.

0.

0.

0.

0,

0,

.7916

,8195

,7875

,8055

.5319

.4960

.6226

.5920

,6371

.6495

Figure 2.18: The matrix Y.

X Y

Figure 2.19: (Left) The matrix X. (Right) The matrix Y after renormalizing the rows of

the matrix X.

Introduction to Cluster Analysis 44

1
2
3
4
S
6
7
8
9

10

2
2
2
2
1
1
1
1
1
I

Figure 2.20: The cluster assignments.

2.4 Chapter Summary

In this chapter, we provided an overview of one of the exploratory data mining tech­

niques, called Cluster Analysis. The vast amount of data collected, processed, stored

and preserved electronically, needs automated processes so that they may be explored

and analyzed. The cluster analysis algorithms have proved to be a very useful method

to perform this task. In this chapter, we discussed various cluster analysis methods that

are present in the literature.

We focused our discussion on a graph-based cluster analysis method that considers

the pair-wise similarity between the objects. The algorithms, known as the Spectral

Clustering Algorithms often perform better than several traditional cluster analysis al­

gorithms [46]. The spectral methods are unique, in that they manipulate the eigenvalues

and eigenvectors of the similarity matrix to partition the data into groups. Moreover,

they are not sensitive to the attribute type. They may be applied to datasets with nu­

meric, nominal, binary, or mixed variables as long as the dataset is convertible into a

similarity matrix. In this chapter, we presented two well-known algorithms from this

category and discussed the theories associated with each of the algorithms, in detail.

Recall from our discussion that the proximity measures, such as the similarity and

distance functions, play an important role in cluster analysis. Therefore, we present a

detailed discussion of similarity, dissimilarity, and distance measures in the next chapter.

Chapter 3

Proximity Measures

Similarity, dissimilarity, and distance measures are crucial concepts in cluster analysis.

In essence, they are also known as the proximity measures that quantify the distance

or closeness between two data objects. As Everitt [19] says, "the majority of clustering

techniques begin with the calculation of a matrix of similarities and distances between

entities, and therefore careful consideration is needed of the possible ways of defining

these quantities.". In Chapter 2, we presented the fundamental steps of a cluster analysis

process (Figure 2.2). As discussed, one of the early steps of a cluster analysis method is

the selection of proximity measure. However, in spectral clustering, the first step (after

preprocessing the data) is not only to select a proximity measure, but also to construct

a similarity matrix from the objects present in a given dataset. The similarity matrix is

often created from the proximity measure. In this chapter, we present and discuss the

proximity measures used in our experiments. We define the functions and present their

properties. Therefore, the chapter begins in Section 3.1 with the theoretical definitions

of the terms, namely, similarity, dissimilarity, and distance. The subsequent sections are

devoted to the measures suitable for a specific data type (binary, mixed, and numeric

type). The proximity measures for binary data are introduced in Section 3.2. Recall from

Chapter 1, datasets may also contain attributes of mixed variable types. As such, the

proximity measures for mixed variable types are introduced in Section 3.3. In Section 3.4,

the discussion focuses on defining the proximity measures for numeric variable types. We

conclude the chapter with a brief summary in Section 3.5.

45

Proximity Measures 46

3.1 Similarity, Dissimilarity, and Distance

In data mining, particularly in cluster analysis, similarity, dissimilarity, and distance

measures play an important role to calculate the proximity between data objects. As for

the spectral clustering algorithm, the entire dataset is first converted into a similarity

matrix (also called the affinity matrix). The similarity matrix is constructed from the

proximity measure. According to Everitt [19], the results from a cluster analysis task

depend heavily on the choice of proximity measures. Therefore, different measures,

when applied on the same dataset as well as the same algorithm, may provide different

solutions. Moreover, the measures also impose different requirements on the same cluster

analysis algorithm. There are many different measures available in the literature to

calculate the proximity between data objects. One of the reasons for this variety is that

these measures differ on the data type of the objects present in a given dataset. For

instance, it follows that the proximity measures that are suitable for numeric variables

may not be suitable for nominal data, as the attribute values from these two data types

are represented differently. Therefore, a different set of measures is required to handle

binary or nominal data. Moreover, the measures also differ on the properties they exhibit.

Several measures consider the correlation between the variables under consideration,

whereas several others discover clusters of a particular shape. In the subsequent sections

we define the similarity and distance measures and discuss their properties.

Similarity is a numerical measure that represents the similarity (i.e. how alike the

objects are) between two objects. The objects are represented as a collection of various

features and attributes. This measure usually returns a non-negative value that falls in

between 0 and 1. However, in some cases similarity may also range from —1 to +1 . The

Pearson Coefficient Correlation and the Angular Separation, as discussed later in the

chapter, are two examples where the similarity may take a negative value. When the

similarity takes a value zero (0), it means that there is no similarity between the objects

and the objects are very different from one another. In contrast, one (1) denotes complete

similarity, emphasizing that the objects are identical and possess the same attribute

values. In homogeneous datasets (where all the objects are of identical type), measuring

the similarity between two objects is less complex. We may use the feature vectors of

the objects for calculating the similarity score. Most of the measures discussed here are

designed for homogeneous objects. As for heterogeneous objects (e.g. in multi-relational

dataset where the objects may be of different types), these similarity measures need

special care and may need to be re-defined or modified to incorporate all the information

Proximity Measures 47

from various object types. Our work, however, considers datasets with homogeneous

objects and calculates the similarity value directly from the attribute values.

In contrast to the similarity measure, the dissimilarity measure [69], [32] is also a

numerical measure, which represents the discrepancy or the difference between a pair

objects. If two objects are very similar then the dissimilarity measure will have a lower

value, whereas if the objects are very different from one another, this measure will return

a higher numeric value. Therefore, the measure is reversely related to the similarity

measure. As such, when the similarity between two objects is high, the dissimilarity will

be low and vise versa. As with the similarity score, the dissimilarity value also fall into

the interval [0,1], but it may also take values ranging from —1 to + 1 .

The term distance, which is also commonly used as a synonym for the dissimilarity

measure [47], computes the distance between two data points in a multi-dimensional

space. Unlike dissimilarity metrics, which usually have a value in between 0 and 1 (but

sometimes ranges from —1 to +1), the distance measures always take a positive value

between 0 and oo. The distance measures also satisfy the following four properties [32],

[44]:

1. d(x,y) = d(y,x), for all points x and y. For instance, the distance from point x to

point y is same as the distance from point y to point x.

2. d(x, y) — 0, if x = y. Distance is only 0 when both the coordinates are same.

3. d(x, y) > 0, for all points x and y. The distance is always non-negative.

4. d(x,y) < d(x,z) + d(z,y), for all points x, y and z. This is also known as the

Triangle Inequality. This implies that introducing a third point may never shorten

the distance between the two other points [44].

Similarity and distance are, in a sense, inversely related to one another. When the

distance in between two objects is large (meaning that the objects are different from one

another), the similarity will be low. Conversely, when the distance is low the similarity

will be high. Since it is inversely related, a common way to transform a distance measure

to a similarity measure is by using the equation s(i,j) — ^7py, where i and j are two

objects. However, one of the problems with this equation is that the similarity value will

not always fall into the range [0,1]. For instance, if the distance between two objects

is very small, such as 0.25, then the similarity value for these two objects will be 4

(ol>5 = 4)- There are various other ways to transform a distance or dissimilarity measure

Proximity Measures 48

to a similarity measure such that the values for similarity measure ranges from 0 to 1.

We will refer to these functions as the external or secondary functions to distinguish

them from the functions discussed in this study.

If dissimilarity scores fall in between 0 and 1 then similarity is calculated using the

following formula:

similarity = 1 — dissimilarity (3.1)

However, if the value for a distance measure is greater than 1, then there are different

ways to transform a distance measure into a similarity measure. One such adaptation

that has been used in this study, is the function given in Equation 3.2. One of the reasons

for selecting this function, is that the function monotonously falls with the increasing

distance, which later simplifies the analysis of eigenvalues [58]. Recall from Chapter

2, eigenvalues and eigenvectors are the two important concepts in spectral clustering

algorithm. We discuss the properties of this function in detail in Chapter 4. This

function is also known as the Gaussian function.

8{x,y) = eKPC*{*'f) (3.2)

In the above equation,

s(x,y) = similarity between points x and y

d(x, y) = distance between points x and y

a = a user specified scaling variable

There are several other ways to convert a distance measure into a similarity measure,

as stated below:

s(x, y) = l - d{x, y)(d(x, y) G [0,1]) (3.5)

As mentioned previously, the distance and similarity measures vary on the type of

data. In the next section, we discuss the proximity measures suitable for the datasets

with binary attributes.

Proximity Measures 49

3.2 Proximity Measures for Binary Variables

Binary variables take only two values, such as: 0 (negative) and 1 (positive), yes (pos­

itive) and no (negative), or agree and disagree. These variables are usually categorized

into two types: 1) symmetric binary variables where both the positive and the negative

values carry equal weight and 2) asymmetric binary variables where the positive and the

negative values do not carry equal weight, and one (usually the positive value) carries

more weight than the other. Let x and y be two binary data points. Each proximity

measure for binary data is represented by four variables (a, b, c, d):

a = number of occurrences of Xi = 1 and y, = 1 (positive matches),

b = number of occurrences of x, = 0 and j/i = 1 (disagreement),

c = number of occurrences of xt = 1 and yt — 0 (disagreement),

d = number of occurrences of x, = 0 and y, = 0 (negative matches),

and a + b + c + d — p (total number of attributes in x and y).

The similarity coefficients used for the binary variables mostly originated from the

area of numerical taxonomy. According to Sokal and Sneath [59], numerical taxonomy is

"the numerical evaluation of the affinity or similarity between taxonomic units and the

ordering of these units into taxa on the basis of there affinities.". Therefore, numerous

similarity coefficients were proposed by various researchers to calculate the proximities,

which are also equally applicable to fields including data mining and statistics. A number

of such coefficients give equal weight to the positive and negative values, whereas several

coefficients ignore the negative matches. As such, for the same set of data, different

coefficients may give different similarity values [19]. According to Everitt [19], "The

number of proposed association coefficients is large, mainly because of the uncertainty

over how to incorporate negative matches into the coefficients". The coefficients differ

mostly on the preference given by the researchers regarding issues related to the weights

given on the positive and negative values as well as the degree of weight given to each of

the four variables. In this study, we present the coefficients that are suitable for clustering

binary data, according to the discussion presented in [39],[69],[19]. All the coefficients in

this study ranges from 0 to 1. We use the sample dataset given in Table 3.1 to compute

the coefficients.

Proximity Measures 50

Object 1

Object 2

Object 3

0
1
1

Object ID Attribute 1 Attribute 2 Attribute 3 Attribute 4

I i i
l l l

o o o

Table 3.1: Sample dataset for binary data type.

3.2.1 Jaccard Coefficient

The Jaccard coefficient does not consider the negative matches. In terms of the four

variables defined above, the Jaccard similarity coefficient is defined by Equation 3.7.

Recall that, a denotes the number of positive matches whereas, b and c denote the total

number of disagreements.
b + c

diSjaccard = —— (3.6)
a + b + c

Simjaccard = —7— (3.7)

a + b + c

The values range from 0 to 1. The maximum similarity is achieved when b = c = 0 and

the minimum similarity is achieved when there are no positive matches (when a = 0).

The above equation does not contain d, which represents the negative matches. The

argument behind not including d in the measurement is that, if the negative values

are not important, then counting the occurrences where x, = 0 and y, = 0 may not

have meaningful contribution toward the calculation of similarity measure [64], [55]. For

the asymmetric binary variables where either positive or negative matches are given

more preference, the Jaccard coefficient may perform best. This is because, most of

the time positive values are given more weight, whereas negative values are considered

unimportant [32]. However, for the symmetric binary variables, where the positive and

the negative matches carry equal weight, the Jaccard coefficient may not give correct

result. Moreover, the Jaccard coefficient is very sensitive to the direction of coding which

implies that interchanging the meaning of 1 and 0 may affect the similarity between the

objects [55].

Example 3.2.1. The dissimilarity and the similarity between Object 1 and Object 2:

1 + 0 1
" i S i 2 = -x : r = T = 0.25

' 3 + 1 + 0 4
simU2 = 1 - 0.25 = 0.75

Proximity Measures 51

The dissimilarity and the similarity between Object 1 and Object 3:

A-
 1 + 3 4

 i n

dis\ 3 = - — = - = 1.0

' 0 + 1 + 3 4

sim\fi = 1 — 1 = 0

3.2.2 Czekanowski Coefficient

The Czekanowski similarity coefficient is also known as the Dice or Sorenson coefficient.

The function is given in Equation 3.9. Recall that, a denotes the total number of positive

matches. The total numbers of disagreements are denoted with the variables b and c.

b + c

la + o + c

The equation may be modified to represent similarity as follows:

2a
SlV(l czekanowski — ~ ; ; \ \ " - " /

2a + o + c
The coefficient is similar to the Jaccard coefficient. However, double weight is given to

the variable a which denotes the total number of occurrences of the positive matches. By

giving twice the weight to a, the function gives more emphasis to the positive matches.

Variable d (when x = 0 and y — 0) is not present in this measure. The Czekanowski

coefficient is also suitable for the asymmetric binary variables for the similar reasons as

the Jaccard coefficient. Interchanging the meaning of positive and negative values may

also affect the score.

Example 3.2.2. The dissimilarity and the similarity between Object 1 and Object 2:

disx 2 = n 0
1 +„° n = \ = 0.1429

' 2 * 3 + 1 + 0 7

simifl = 1 - 0.1429 = 0.8571

The dissimilarity and the similarity between Object 1 and Object 3:

A- 1 + 3 4
disi 3 = = - = 1.0

' 2 * 0 + 1 + 3 4
sirni 3 = 1 — 1 = 0

Proximity Measures 52

3.2.3 Sokal and Sneath Coefficient

Sokal and Sneath proposed a similarity coefficient that is similar to the ones proposed

by Jaccard and Czekanowski. This measure is defined as:

b + c
diSSokalandSneath = a , L , (3.10)

2 + 0 + C

a

2 a

SimsokalandSneath — „ , , , = , n / , , T (3.11)

| + 6 + c a + 2(b + c)
However, in contrast to the Czekanowski coefficient which gives double weight to the

positive matches (a), the Sokal and Sneath coefficient gives double weight to the dis­

agreements in the denominator. The disagreements are represented by the variables b

and c as denoted earlier. Thus, the Sokal and Sneath coefficient gives twice the weight on

the combined disagreements denoted by b + c. By doing so, the coefficient actually gives

slightly less weight to the positive matches compared to the Jaccard and Czekanowski

coefficients. Similar to the Jaccard and Czekanowski coefficients, this coefficient is also

suitable for the asymmetric binary variables and is also sensitive to the direction of

coding.

Example 3.2.3. The dissimilarity and the similarity between Object 1 and Object 2:

1 + 0 2 n ,
dis\ 2 = —; = - = 0.4

'2 1/2*3 + 1 + 0 5

simh2 = 1 - 0.4 = 0.6

The dissimilarity and the similarity between Object 1 and Object 3:
A- 1 + 3 4
dlS\ •) = ; — - = 1.0

'3 1/2*0 + 1 + 3 4

simii3 = 1 — 1 = 0

3.2.4 Simple Matching Coefficient
The Simple matching coefficient [69], also known as the Hamming distance, denotes the

proportion of variables for which two variables have the same value [69]. As mentioned

earlier, the variables a and d denote the total number of positive and negative matches,

respectively. The variables b and c denote the total number of disagreement.

- b + c

™>IS SimpleMatchingCoefficient — , , \'^-'-^')

Proximity Measures 53

SlTUsimpleMatchingCoef fident — . . , ? ^o.loj

The Simple Matching Coefficient considers both, the positive matches (a) and the neg­

ative matches (d). Moreover, it gives equal weight to the positive and negative matches.

Therefore, the Simple Matching Coefficient is suitable for datasets with symmetric bi­

nary attribute values where both the positive and the negative matches posses equal

weight. Unlike the Jaccard, Czekanowski, and Sokal and Sneath coefficients, which are

sensitive when the meanings of positive and negative values are interchanged, the Simple

Matching Coefficient is not sensitive to such a situation as it gives equal weigh to both

the values. The coefficient achieves the maximum similarity value when b = c = 0 and

minimum similarity score when a = d — 0.

Example 3.2.4. The dissimilarity and the similarity between Object 1 and Object 2:

disi 2 = — - = 0.25
' 3 + 1 + 0 + 0 4

simh2 = 1 - 0.25 = 0.75

The dissimilarity and the similarity between Object 1 and Object 3:

A- 1 + 3 4
aisi 3 = = - = 1.0

' 0 + 1 + 3 + 0 4
szra13 = 1 — 1 = 0

3.2.5 Russell and Rao Coefficient

The Russell and Rao similarity coefficient is sometimes known as the Positive matching

coefficient [69]. The similarity function is defined in Equation 3.15.

b + c + d
dlSRussettandRao — — T - —7 (3 - 1 4)

a + b + c + d

SimjiussellandRao = —T~ " 3 (3 . 1 5)

a + b + c + a

Unlike the Simple Matching Coefficient, which gives the proportion of both the pos­

itive (a) and the negative matches (d), the Russell and Rao coefficient gives the pro­

portion of the positive matches against the total number of variables (including the

negative matches). The coefficient is also sensitive to the meaning of positive and neg­

ative values. If the values are interchanged, then it will represent the proportion of the

Proximity Measures 54

negative matches. The Russell and Rao coefficient achieves the maximum similarity when

b = c = d = 0 (when there are only positive matches present) and scores the minimum

when a = 0 (when there are no positive matches).

Example 3.2.5. The dissimilarity and the similarity between Object 1 and Object 2:

1 + 0 + 0 1
dis\ o = = - = 0.25

• 0 + 3 + 1 + 0 4

sim1>2 = 1 - 0.25 = 0.75

The dissimilarity and the similarity between Object 1 and Object 3:
1 + 3 + 0 4

disi 3 = - — — - = - = 1.0
' 0 + 1 + 3 + 0 4

simifi = 1 — 1 = 0

3.2.6 Rogers and Tanimoto Coefficient

The coefficient proposed by Rogers and Tanimoto is defined in Equation 3.17.

b + c

+ b + c
(LI'S RogersandTanimoto (a+d) 1 \o.iu)

2

^ a + d
simRogersandTanmoto = (_a^1

2
+b + c = (a + d) + 2 (6 + c) (3 '17)

The Rogers and Tanimoto coefficient is similar to the Simple Matching Coefficient. In

this case also, the similarity coefficient considers both the positive and negative matches

in the equation and gives equal weight to them. However, in contrast to the Simple

Matching Coefficient, the Rogers and Tanimoto coefficient gives double weight to the

variables that represent the disagreements in the denominator (i.e. the variable b and

c). Therefore, the Rogers and Tanimoto coefficient always scores less than the Simple

Matching Coefficient, except when b + c = 0 [59].

Example 3.2.6. The dissimilarity and the similarity between Object 1 and Object 2:

j- 1 + 0 2 HA

dtSi 2 = —; : : = - = 0.4

' 1/2* (3 + 0) + 1 + 0 5

simh2 = 1 - 0.4 = 0.6
The dissimilarity and the similarity between Object 1 and Object 3:

A- 1 + 3 4
d W l ' 3 = l / 2 * (0 + 0) + l + 3 = I = 1"°

simi,3 = 1 - 1 = 0

file:///o.iu

Proximity Measures 55

A summary of the results from different similarity measures for the sample data is

given in Table 3.2. In the following subsection we compare these similarity coefficients for

the binary variables and show the interrelation between each of these similarity measures.

Similarity between Similarity between
Similarity Measures

Object 1 and Object 2 Object 1 and Object 3

Czekanowski 0.8571 0.0
Jaccard 0.75 0.0
Sokal and Sneath 0.6 0.0
Simple Matching Coefficient 0.75 0.0
Russell and Rao 0.75 0.0
Rogers and Tanimoto 0.6 0.0

Table 3.2: Sample result from different similarity measures (binary variables).

3.2.7 Comparison of Similarity Measures

The formulas given in the previous sections for the binary data types show that the equa­

tions may be categorized into three subgroups based on the presence and absence of the

four terms (a, b, c and d) in each equation. The groups are given below. Abbreviations

for each of these measures are also given and will be used in later chapters.

First Group: Czekanowski (CZE), Jaccard (JAC), Sokal and Sneath (SAS)

Coefficients in this category do not consider d, which denotes the negative matches. If 1

represents presence and 0 represents absence, then this group does not include the cases

when values for both the objects are 0. Usually, in binary data, the values represent

presence - absence, agree - disagree or yes - no relationships, assuming that the positive

answers (presence, agree, yes) carry more information than the negative ones (absence,

disagree or no). Therefore, coefficients from this group work well for situations where the

positive matches (the ones with the most important outcome) are given more value (i.e.

asymmetric binary variables). An example of this would be the results from a medical

diagnosis in which the positive and negative outcomes are not equal. However, if the

data gives equal weight to both positive and negative values then these equations are

not expected to do well, e.g. the Gender attribute where male and female may carry

equal weight. Similarity measures in this group are also correlated in the sense that both

the Czekanowski and Sokal and Sneath coefficients may be written as a function of the

Jaccard coefficient (Figure 3.1). Moreover, all three coefficients from this group are very

sensitive if the values are interchanged. For instance, if 1 (which usually contains more

Proximity Measures 56

Czeksstomld re-written es a function of

Jaccard

•$gl[cjand §$e$$,,re-»rittgn as a function ofJaccard

la-rb+C

la „ a-b±c
a+b+c 2a+b~c

2a ,2a + b+c
a + b+c a+b^c

2a , a a+b+c
a±b~c a + b-r-c a + b + c

J<r a •+1)
a-tb-c a^b+c

= 2*jaci{jac~V) {jac-.

2* jac
a + b+c

jac~\

1

2 a

a-

a-

a-

a

a-

a-

a-

+ br

1
-a
2

-5-6-*

1
-a
2

~b*

a

±b*
a

+ * 4

a

a

r i 4
a

^ 4 -

-c

•c

-C

-c

•c

•c

•c

•c

<nr

± .a + b+c

1 ,
— a -r b••¥ C

2

2
* *- #

?

* a

a j .

. a +

a -

a-»

./

2

+b*c

• 2b+ 2c
-2b ^2c

+ b±c

a

•b+c
a

- O-rC

a
1 .

• i ">. -">* i/ic

•c

*c

lb

a *
2b-

2a-

a

> I

; 2 £ >
b+c ±2c~2a-

a-rb~c

±-2b-2c

4rb+C

^

a

a

2a .

+ b+c

-\
a + b+c

jac

Figure 3.1: The Czekanowski and Sokal and Sneath coefficient re-written as a function

of the Jaccard coefficient.

weight) is interchanged with 0 (which usually denote less weight) then, these measures

will not give correct answer.

Second Group: Simple matching coefficient (SIM), Roger and Tanimoto

(RAT)

Similarity measures in this subgroup give equal weight to both the variables a and d.

In contrast to other similarity measures, it will give equal importance to both positive

and negatives values. Therefore, these coefficients are particularly suitable for symmetric

binary attributes. For example, if an attribute represents 1 as a female population and

0 as a male population then these measures will do justice to the attribute values by

Proximity Measures 57

Rogers and Ta.mm.oto re-written as a function of Simple Matching Coefficient

\(o + d)

-(a+d)+b + c
2

Ua + d) '.
_ 2 *• , a+b+c+d

a+b+c+d 2 } _ i a + c!) + b + c

(a + d) a+b+c+d

a + b + c + d a + d + 2b+2c

(a + d) t(a + d) + 2b+2c

a+b+c+d

(a + d)

a+b+c+d

(a + d) L 2b + 2c
r)

a+b+c+d a+b+c+d a+b+c+d

(a + d) ,. (a + d) 2b + 2c + 2a-2a + 2d-2d

a+b+c+d' a+b + c + d a+b+c+d
)

(a + d)
/(-

(a + d) 2a+2b+2c + 2d 2a + 2d

a+b+c+d a+b+c+d
(a + d) (a + d)

a+b+c+d a+b+c+d
- + 2

a+b+c+d

2(a + d)

a+b+c+d

a+b+c+d
)

)

= simi(sim +2 —2 * sim) [sim = —]
a+b+c+d

Figure 3.2: The Rogers and Tanimoto coefficient re-written as a function of the Simple

Matching Coefficient.

giving them equal weight. However, in situations where 1 strictly considers cases with

presence or agree and have more importance, this will not give expected result. This

means that two objects with no common pairs of 1 (a — 0) but with many common pairs

of 0 {d > 0), will have a higher value for these two coefficients. The Rogers and Tanimoto

coefficient may be re-written as a function of the Simple Matching Coefficient as given

in Figure 3.2 below. Since, both the coefficients give equal weight to the positive and

negative matches, they are not sensitive if the values are interchanged.

Third Group: Russell and Rao (RAR)

The Russell and Rao coefficient gives the proportion of the matching cases where both

http://Ta.mm.oto

Proximity Measures 58

the attribute values are Is. In contrast to the Simple Matching Coefficient, which gives

the matching cases for the instances that have values 00s and l i s , it will give a higher

value for a pair of objects when there are many l i s . The Russell and Rao similarity coef­

ficient is also suitable for the asymmetric binary variables where more weight is given to

the positive matches. Since the equation does not consider d (the negative matches) in

the numerator, it may not be suitable for the symmetric binary attribute. The coefficient

is also sensitive to the meaning of positive and negative values for the same reason.

In the next section, we discuss the proximity measures for the mixed variable types.

3.3 Proximity Measures for Mixed Variables

In the previous section, the discussion mostly focused on datasets of a particular variable

type (e.g. binary). Nevertheless, in practical applications, it is possible to have more

than one type of attribute in the same dataset. For instance, a dataset may have numeric

and binary attributes to describe the objects. In such cases, the conventional proximity

measures for these two data types may not work well, as they are suitable to deal with

one kind of variable at a time. In cluster analysis, one way to deal with the mixed data

type is to perform separate cluster analysis for each kind of variable and then combine the

results if the conclusions all agree [39]. However, research suggests that if the conclusions

from different variable types do not agree then it would be difficult to reconcile them. As

such, a more practical approach is to process all the variables of different types together

and then perform a single cluster analysis [39]. Therefore, some similarity measures are

proposed that incorporate information from various data types into a single similarity

coefficient. The coefficients present in literature to calculate the similarity for mixed

data type are, the Gower's General Dissimilarity Coefficient [39], [32] and the Laflin's

General Coefficient [43], [39].

3.3.1 Gower's General Dissimilarity Coefficient

The dissimilarity measure was originally introduced by Gower and discussed in [32]. The

function is defined as follows (where i and j are two data objects and / is the set of

attributes):

lsf=i°ij aij

2^/=i °ij
<*(M)= !:: v (3-18)

Where the indicator 8\y = 0 if either,

Proximity Measures 59

1. Xif or Xjf is missing (x is the attribute value) or

2. Xif — Xjf — 0 and / is Asymmetric Binary.

Otherwise, 5>J = 1. The distance between object i and j for a variable / is calculated

using different distance measures that already exist for various attribute types. For

example:

• If f is Numeric: d){ — / - X j / , where h runs over all the non-missing

objects of attribute / . Therefore, this measure is not scale sensitive for the numeric

variables.

• If / is Binary or Nominal: if x^f = Xjf then d\j = 0; otherwise d\y — 1.

• If / is Ordinal: First we compute the rank r ^ for object i assuming that the

attribute / has Mj ordered states and r»/ € l,...Mf . This is done by replacing

Xif by its corresponding rank. The rank is determined by the significance of the

attribute value. For example: an attribute with values First, Second and Third will

have a rank 3, 2 and 1 respectively. Thus, a value with the most weight will have

the highest rank and an attribute with less weight will have a lower rank. Once

ranking is performed on the objects, the values need to be normalized so that each

of them falls in the interval [0.0,1.0]. This is done by using the following formula:
r r — 1

Zif — M -i • Here, Zif is treated as a numeric variable and a distance metric for

the numeric variable (as discussed in Section 3.4) is used to calculate the distance

between the objects.

• If / is Ratio-scaled (According to Han and Kamber [32], "a ratio-scaled variable

makes a positive measurement on a nonlinear scale, such as an exponential scale."),

then the distance between its objects may be calculated in one of two ways. Firstly

by performing a logarithmic transformation and treating this transformed data as

numeric values, or secondly, by treating / as continuous ordinal data and calculat­

ing the distance as mentioned above.

Example 3.3.1. For this example, we used a dataset (Table 3.3) similar to the one given

in [32].

To calculate the similarity between Object 1 and Object 2; we proceed as follows:

Attribute 1 (Numeric): max = 12 and min — 3

ll2 ~ 112^31 ~ 666

Proximity Measures 60

A
A
C

Good
Excellent

Fair

First
First
Third

Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6

(Numeric) (Numeric) (Nominal) (Nominal) (Ordinal) (Ordinal)

Object 1 12 10 A

Object 2 9 12 A

Object 3 3 4 B

Table 3.3: Sample dataset for mixed data type.

Attribute 2 (Numeric): max = 12 and min = 4

Attribute 3 (Nominal):

Attribute 4 (Nominal):

,(Attribute2) = |10 ~ 12| =
1,2 112-41

,(Attribute3) n

"1,2 ~~ U

,(Attribute4) -.
"1,2 — i

Attribute 5 (Ordinal): rank: Fair = 1, Good = 2 and Excellent — 3 and M/ = 3

The normalized values for Attribute 5 will be:

Object! = §EY = 0.5, Objects = §5± = 1, ObjectZ = ±\ = 0

,(i4ttrii)ute5) _ | 0 -5 ~ 1 | _
"1,2 — 1 _ Q ~~

Attribute 6 (Ordinal):

rank: Third — 1, Second = 2 and Fzrsi = 3 and M/ = 3

The normalized values for Attribute 6 will be:

Objectl = |= i = 1, Object! = |=i = 1, 06jeci3 = | f f = 0

,(.Attri&ute6) _ | 1 ~ 1 | _ «
1,2 1 - 0

The total dissimilarity between Object 1 and Object 2 are thus calculated as,

, (1*0.3333) + (1*0.25) + (1*0) + (1*1) + (1*0.5) + (1*0) 2.0833
"1,2 = : : : : : : = = 0.3472

1 + 1 + 1 + 1 + 1 + 1 6

Next, the similarity may be derived by using Equation 3.5 as follows:

similarity^ = 1- 0.3472 = 0.6528

Proximity Measures 61

Now, to calculate the similarity between Object 1 and Object 3, we follow a similar

method. Therefore, the total dissimilarity and similarity between Object 1 and Object

3 are as follows.

, (1*1) + (1*0.75) + (1*1) + (1*1) + (1*0.5) + (1*1) 5.25
1,3 1 + 1 + 1 + 1 + 1 + 1 6

similarityh3 = 1 - 0.8750 = 0.1250

3.3.2 Laflin's General Coefficient

The Laflin's coefficient is measured as follows. Let there be Nl Binary attributes and

iV2 Numeric attributes in a dataset. Let si and s2 be the similarity measures calculated

for the Binary and the Numeric data respectively using some existing similarity measures

(as discussed in Section 3.2 and Section 3.4 respectively). Then Laflin's coefficient [43]

is calculated as follows:
,. ., Nl.sl + N2.s2 fn .

S (") " N1 + N2 (3 - 1 9)

This function may be extended to include additional data types in a similar manner.

For example, if each instance in a dataset contains four types of variables (i.e. Binary,

Numeric, Ordinal and Nominal) then Nl, N2, N3 and iV4 will represent the total

number of attributes for these four types of variables, respectively. Next, we calculate

the similarity between each pair of objects using existing similarity measures, as discussed

earlier, for each of these set of attributes separately. Let s i , s2, s3 and s4 be the similarity

measure associated with the set of attributes iVl, N2, N2> and N4, respectively. All

these similarity values should be scaled so that they fall in between 0 and 1. The general

similarity coefficient for this mixed set of attributes is calculated as:
,̂ _ Nl.sl + N2.s2 + JV3.s3 + N4.s4

S{l,J'~ N1 + N2 + N3 + N4 (3 ' 2 0)

This equation ensures that each attribute makes an equal contribution to the measure

of similarity between two objects i and j [43].

Example 3.3.2. For the dataset given in Table 3.3, Laflin's coefficient is calculated as

follows.

There are three different variable types in this dataset each type containing 2 variables.

Thus, N l = N2 = N3 = 2. To calculate the distance between nominal variables we use

the formula given in [32]:

d{i,j) = P - ^ (3.21)

Proximity Measures 62

Here p is the total number of variables and m is the number of variables for which % and

j have the same value.

For numeric variables, the Euclidean distance measure as defined in Equation 3.22 is

used and for all the cases distance measure is converted into a similarity measure by

using Equation 3.4.

The similarity between Object 1 and Object 2 is calculated as follows.

Numeric variables:

dl = \/(12 - 9)2 + (10 - 12)2 - 3.4641

51 = — - — = = 0.2240
1 + dl 1 + 3.4641

Nominal variables: P = 2 (total number of variables of type nominal)

2 - 2
d2 = = 0

2

52 = - ^ — = J - = l
1 + dl 1 + 0

Ordinal variables:

d3 — 0.5 (same as the example given for Gower's Coefficient)

S3 = —!-— = , * = 0.6667
l + d3 1 + 0.5

When substituting the values of Si, S2 and S3 in Equation 3.20, we obtain:

. , (2* 0.2240)+ (2 * 1) + (2* 0.6667) n n n similarityx 2 = — - 0.6302 y' 2 + 2 + 2

To calculate the similarity between Object 1 and Object 3, we proceed as follows.

Numeric variables:

Nominal variables:

dl = x/(12 - 3)2 + (10 - 4)2 = 10.8167

d2 = ^ = .
2

Proximity Measures 63

Nominal variables:

d3 = 1.118

53 = — - — = = 0.4721
l + d3 1 + 1.118

When substituting the values of SI, S2 and S3 in Equation 3.20, we obtain:

* • » * » • « » , , - P ' 0-°846) + (2 . 0.5) + (2* 0.4721) _ 0 . 3 5 2 2

Table 3.4 summarizes the results for the Similarity Measures for Mixed Type:
Similarity between Similarity between

Similarity Coefficient
Object 1 and Object 2 Object 1 and Object 3

Gower's General Coefficient 0.6528 0.1250

Laflin's General Coefficient 0.6302 0.3522

Table 3.4: Sample result from different similarity measures (mixed variable type).

As before, both the similarity measures for the mixed data types have been able to

distinguish between objects that are similar to one another as well as the objects that

are different from one another. This is denoted by a higher value for objects that are

comparatively similar to one another and a lower value for the objects that are different

from one another. It is shown in Table 3.4 that Object 1 and Object 2 represent two

such objects that are closely related, whereas Object 1 and Object 3 are very different

from one another scoring a lower similarity value.

In the next section, we discuss the distance measures that are applicable to the objects

with numeric, continuous, or interval-scaled variables.

3.4 Proximity Measures for Numeric Variables

There exist several distance measures for numeric or real-valued data. We present our

discussion based on the measures presented in [69], [54], [64]. For the purpose of clar­

ification, we provide an example that shows the calculations for each of these distance

measures. We use the sample dataset given in Table 3.5, which contains three data

objects, and each of the objects is represented with four features.

Proximity Measures 64

Object 1

Object 2

Object 3

10
11
1

Object ID Attribute 1 Attribute 2 Attribute 3 Attribute 4
5~~ 8 ~~2 "
6 9 1
20 0 8

Table 3.5: Sample dataset for numeric data type.

3.4.1 Euclidean Distance
The Euclidean distance is one of the most widely used distance measures in the area of

cluster analysis [19]. The distance, in this case, is the straight-line distance between a

given pair of data points. The distance is calculated as the summation of the differences

between the coordinates of the data points Xi and Xj. The function is denoted as Equation

3.22.

' = \
J2{xik - xjkf (3.22)
fc=i

Jain et al.[35], stated that the Euclidean distance works well for compact or isolated

clusters and discovers clusters of spherical shape. The K-means algorithm often uses this

distance measure to compute the distance between the objects and the cluster centroids.

Since triangle inequality holds for the distance measure, the distance between any two

objects may not be influenced by the addition of a new object (i.e. outliers) [60]. However,

one drawback is, when the underlying clusters are not isolated, compact, or clusters of

spherical shape, this distance measure may not be suitable. Moreover, the distance

measure is very sensitive to the scales of the variables. As a result, the variables with

the largest values may always dominate the distance score. For instance, let there be

two variables p and q, where p ranges between 0 and 100 and q ranges in [0 — 1]. When

the distance is calculated, taking these two variables into consideration, the Euclidean

distance will usually be dominated by the variable p. Therefore, it is necessary to scale

all the variables in the dataset into similar units.

Example 3.4.1. The distance between Object 1 and Object 2 is calculated as:

di,2 = V(10 - H) 2 + (5 - 6)2 + (8 - 9)2 + (2 - l) 2 = 2

The distance between Object 1 and Object 3 is calculated as:

di,3 = \/(10 - l) 2 + (5 - 20)2 + (8 - 0)2 + (2 - 8)2 = 20.1494

Proximity Measures 65

3.4.2 Manhat tan Distance

The Manhattan distance is also commonly known as the city-block distance. Unlike

the Euclidean distance, which takes the straight-line distance between the objects, the

Manhattan distance measure would travel from one point to another as if a grid-like path

is followed. It is the summation of absolute differences between the coordinates of two

data points (xi and Xj).
n

&Xi,Xj — / J \%ik %jk\ \O.Zo)

k=\

The Euclidean and Manhattan distance measures are very similar to one another.

However, compared to the Euclidean distance, the Manhattan distance is computation­

ally cheaper (as the variables are not squared) and may be selected over the Euclidean

distance when the speed of an application is the main concern [54]. For similar reasons,

it is less likely that variables with large differences may dominate the total distance [60].

However, the weaknesses of the Euclidean distance (i.e. scale-dependent) also persist for

the Manhattan distance. Everitt [19] noted that this measure is particularly suitable

for situations when "two entities are specified by two variables whose scale units are of

equal value, they should have the same distance whether (a) they are two units apart on

each variable or (b) they are one unit apart on one variable and three units apart on the

other". For instance, let there be two objects, p denoted by variables (2,4) and q denoted

by variables (4,6). Then, the Manhattan distance between p and q is: 2 + 2 = 4. Now,

if p = (2,4) and q = (3,7), then the distance is 1 + 3 = 4. In contrast, for these two

situations, the Euclidean distance would score, \ /22 + 22 = V8 and Vl2 + 32 = \ / l0 ,

respectively.

Example 3.4.2. The distance between Object 1 and Object 2 is calculated as:

di,2 = |10 - 11| + |5 - 6| + |8 - 9| + |2 - 1| = 4

The distance between Object 1 and Object 3 is calculated as:

di,3 = |10 - 1| + |5 - 20| + |8 - 0| + |2 - 8| = 38

3.4.3 Minkowski Distance

The Minkowski distance is defined in Equation 3.24.

file:///O.Zo

Proximity Measures 66

In Equation 3.24, A may take any value greater than 0. Depending on the value of

A, the Minkowski distance may take several different forms. For instance, when A = 1,

the Minkowski distance is similar to the Manhattan distance, whereas when A = 2, the

Minkowski distance is similar to the Euclidean distance. Therefore, one advantage of

using this distance measure is the flexibility of controlling the amount of emphasis one

may want to place on the larger differences [69]. A large value of A indicates larger dif­

ference. However, a larger value of A also indicates that the largest scale would dominate

the total distance. Moreover, computationally, the Minkowski distance may cost more

than the Euclidean and the Manhattan distance when A > 2.

Example 3.4.3. The distance between Object 1 and Object 2 is calculated as (when

A = 3):

di,2 = </|10 - 11|3 + |5 - 6|3 + |8 - 9|3 + |2 - 1|3 = 1.587

The distance between Object 1 and Object 3 is calculated as (when A = 3):

di,3 = </|10 - 1|3 + |5 - 20|3 + |8 - 0|3 + |2 - 8|3 = 16.9061

3.4.4 Chebyshev Distance

The Chebyshev distance is a special case of the Minkowski distance with A = oo. In this

case, the distance is measured as the distance between the coordinates of two data points

where the absolute distance between the points in any single dimension is maximized.

dXi,Xj = maxk\xik - xjk\ (3.25)

Since the function returns the maximum difference across all the variables, the Cheby­

shev distance is suitable for situations where the computation time is very crucial. As

the Chebyshev distance considers the largest difference in any dimension, it is also very

sensitive to the scale of the variables.

Example 3.4.4. The distance between Object 1 and Object 2 is calculated as:

di,2 = maxfllO - 11|, |5 - 6|, |8 - 9|, |2 - 1|) = max(l, 1,1,1) = 1

The distance between Object 1 and Object 3 is calculated as:

di,3 = max(| 10 - 1|, |5 - 20|, |8 - 0|, |2 - 8|) = max{9,15,8, 6) = 15

Proximity Measures 67

3.4.5 Canberra Distance

The Canberra distance is the summation of the series of fractional differences between

coordinates of two data points (XJ and Xj). The Canberra distance is defined as Equation

3.26.

d*^ = £ \Xlk~Xjk\ (3.26)
fc=1 \xik + Xjk\

The numerator of this equation signifies the difference between the objects, whereas

the denominator normalizes the difference. Thus, the distance for each dimension may

at most be 1. Therefore, in contrast to the distance measures such as, Euclidean, Man­

hattan, Minkowski, and Chebyshev, it is not scale sensitive. The Canberra distance is

suitable for non-negative values. One of the drawbacks of the Canberra distance mea­

sure, is that it is very sensitive to changes near the origin. In a special case, it is possible

that both coordinates may take the value 0 and will create a situation when both the

numerator and denominator are 0. Thus, the distance will return a value which is unde­

fined.

Example 3.4.5. The distance between Object 1 and Object 2 is calculated as:

| 1 0 - 1 1 | | 5 - 6 | | 8 - 9 | | 2 - 1 | „ c o n f r

The distance between Object 1 and Object 3 is calculated as:

| 1 0 - 1 | | 5 - 2 0 | | 8 - 0 | |2
'1,3 + 73 T^ + k ^ + 7= 7̂ = 3.0182

|10 + 1| |5 + 20| |8 + 0| |2 + 8|

3.4.6 Mahalanobis Distance

The Mahalanobis distance [74], considers the correlation between variables. The Maha­

lanobis distance measure uses the covariance matrix to measure the variance and the

correlation between the objects. Let x and y be two vectors and C~l be the inverse

covariance matrix. Then the Mahalanobis distance is calculated as:

d(x, y) = ^/{x-y)C-\x-y)T (3.27)

The main difference between the distance measures discussed so far and the Ma­

halanobis distance measure is that it considers the correlation between the variables.

Moreover, the distance measure is not scale-dependent. When applied to a cluster anal­

ysis problem, the distance measure favors the clusters of hyper-ellipsoidal shape [7], [80].

Proximity Measures 68

However, one of the drawbacks of using the Mahalanobis distance measure is its high

computational cost, which is due to the calculation required to construct the inverse

covariance matrix. The Mahalanobis distance may not be suitable for high-dimensional

datasets as covariance estimation may be inaccurate [26].

Example 3.4.6. The covariance matrix (C_ 1) for the data in Table 3.5 is (as calculated

by MATLAB):

(30.3333 -45.6667 27.1667 -20.8333 ^

-45.6667 70.3333 -40.8333 31.1667

27.1667 -40.8333 24.3333 -18.6667

\ -20.8333 31.1667 -18.6667 14.3333 /

The distance between Object 1 and Object 2 is calculated as:

(x-y) = - 1 - 1 - 1 1

di,2 = - 1 - 1 - 1 1 * c - x *
l T

- 1 - 1 -1 1 = 1.9828

The distance between Object 1 and Object 3 is calculated as:

(x-y) = 9 -15 - 6

^1,3 = -15 8 - 6 *C~l* 9 - 1 5 8 - 6 = 3.8609

3.4.7 Angular Distance

The Angular Separation or Cosine Distance [64], measures the angular distance between

the coordinates of two data points [xi and Xj). Even though, this measure is called the

Angular distance, it is a similarity measure rather than a distance measure. It represents

the cosine angle between the unit vectors in the direction of the two pattern vectors [69]

and thus the value lies between 1 and -1 as of the range of cosine angle. Though the

angles are measured, it is meant to give the linear distance between the data points.

A higher value of this function denotes that the data objects are very similar to one

another. The similarity and distance measure between object Xi and Xj is given below:

E n
fe=l Xik ' Xjk

lz^fe=l Xik ' Z^fe=l Xjk)

(3.28)

Proximity Measures 69

dXuX] = i J^^**'** 2 ^ (3 29)
(Z^fc=l xik ' Z^fc=l xjfeJ

The Angular distance measure is widely applied to Text Document cluster analysis,

where the data is usually highly dimensional. One of the reasons for its popularity in

document cluster analysis is that the Angular distance does not depend on the length:

sXi,x = Saxi^j, a > 0 [26]. Therefore, documents with similar term frequency proportion

but different totals are treated as similar. In addition to this property, the Angular

distance is also scale invariant, and thus, the different units do not affect the result. The

Angular distance considers the relative distance between the objects from a fixed point

(the origin).

Example 3.4.7. The distance between Object 1 and Object 2 is calculated as:

(1 0 * l l) + (5*6) + (8*9) + (2 * l) =

^/(102 + 52 + 82 + 22) * (l l 2 + 62 + 92 + l2)

The distance between Object 1 and Object 3 is calculated as:

d --1 (10*l) + (5*20) + (8*0) + (2*8) = n R ? Q 4
1,3 ^/(lO2 + 52 + 82 + 22) * (l2 + 202 + 02 + 82)

3.4.8 Pearson Correlation Distance

The Pearson correlation coefficient [64] measures similarity between data points. The

values of this function ranges from +1 to -1 . Since this measurement shows whether two

data points are linearly related or not, a value of 1 shows that the points are lying on

the same line and are positively correlated. A value of -1 indicates that the points are

negatively correlated, whereas 0 means there is no linear correlation between the data

points.

_ /L,k=nxJk ~ XJ> ' ixjk ~ xj) /o QQ\

\/L*k=l\Xik — xi) ' Z_,/c=l(Xjfc ~~' Xj)) 2

where, x$ = ^ X f̂c=i Xik a n f l xj — \ Sfe=i xjk- The similarity function may be changed

to correlation distance measure by subtracting from 1.

dtj = 1 ^T,l=ifak - %)-fak - Xj) _ (3 3 1)

\Z^fc=lVa'ifc ~~ Xi) ' Z^/k=l\XJk ~~ Xj) I

The Pearson correlation coefficient is scale invariant. Therefore, two curves with iden­

tical shape but different magnitude will have similar similarity. The Pearson Correlation

Proximity Measures 70

Coefficient takes the mean of the variables into consideration, and thus, the measure

gives the similarity or distance in terms of the mean of the variables. This coefficient

is also similar to the Angular Distance where the mean is zero. The Pearson coefficient

correlation is used in the areas of microarray analysis and the document cluster analy­

sis, amongst others. Since this distance measure considers the correlation between the

objects, the outliers may affect the end results.

Example 3.4.8. f i = 1 0 + 5+8 + 2 - 6.25, x2 = 1 1 + 6+9 + 1 = 6.75 and x3 = 1+20
4

+0+8 = 7.25

The distance between Object 1 and Object 2 is calculated as:
• _ -, [(10-6.25)«(ll-6.75)] + [(5-6.25)*(6-6.75)] + [(8-6.25)«(9-6.75)] + [(2-6.25)«(l-6.75)]
1 , 2 ~~ N /!(10-6.25)2+(5-6.25)2+(8-6.25)2+(2-6.25)2]*[(l l-6.75)2 + (6-6.75)2+(9-6.75)2+(l-6.75)2]

_ i _ 45.2498 = Anno
~~ l 45.6680 - U U M Z

The distance between Object 1 and Object 3 is calculated as:

. _ , [(10-6.25)*(l-7.25)]+[(5-6.25)*(20-7.25)]+[(8-6.25)*(0-7.25)] + [(2-6.25)«(8-7.25)]
1 , 3 ~~ -v/[(10-6.25)2+(5-6.25)2 + (8-6.25)2 + (2-6.25)2]*[(l-7.25)2+(20-7.25)2+(0-7.25)2 + (8-7.25)2]

1 _ -55.25 _ i c y
x 96.7586 ± - l J I

Table 3.6 contains the results from each of the distance measures when the distance

is calculated in between the objects in Table 3.5. The distance between Object 1 and

Object 2 is less than the distance between Object 1 and Object 3 in all cases. The values

in the table shows that each distance measure gives a different value for these two pairs,

as the way they calculate the distance is different from one another. Table 3.7 provides

a summary of each of the distance measures based on the discussion provided in this

section.

Distance Measure

Euclidean Distance
Manhattan Distance
Minkowski Distance
Chebyshev Distance
Canberra Distance
Mahalanobis Distance
Angular Distance
Pearson Coefficient Distance

Dist:
Object

ance between
1 and Object 2

2
4

1.5874
1

0.5307
1.9828
0.0036
0.0092

Distance between
Object 1 and Object 3

20.1494
38

16.9061
15

3.0182
3.8609
0.5794
1.571

Table 3.6: Sample result from different distance measures (numeric variables).

Proximity Measures

Distance

Measure

Comments Limitations

Euclidean Works well for compact or iso-

Distance lated clusters; Discovers clusters

of spherical shape; Any two ob­

jects may not be influenced by the

addition of a new object (i.e. out­

liers).

Very sensitive to the scales of the

variables; Not suitable for clus­

ters of different shapes; The vari­

ables with the largest values may

always dominate the distance.

Manhattan
Distance

Minkowski
Distance

Chebyshev

Distance

Canberra

Distance

Computationally cheaper than

the Euclidean distance.

One may control the amount of

emphasis given on the larger dif­

ferences.

Suitable for situations where the

computation time is very crucial.

Not scale sensitive; Suitable for

non-negative values.

Scale dependent.

The Minkowski distance may cost

more than the Euclidean and

Manhattan distance when A > 2.

Very sensitive to the scale of the

variables.

Very sensitive to the changes near

the origin; Undefined when both

the coordinates are 0.

Mahalanobis Considers the correlation be-

Distance tween the variables; Not scale-

dependent; Favors the clusters of

hyper ellipsoidal shape.

Computational cost is high;

May not be suitable for high-

dimensional datasets.

Angular Calculates the relative distance

Separation between the objects from the ori­

gin; Suitable for semi-structured

datasets (i.e. Widely applied

in Text Document cluster analy­

sis where data is highly dimen­

sional); Does not depend on the

vector length; Scale invariant.

Absolute distance between the

data objects is not captured.

Pearson Scale invariant; Considers the

Correlation correlation between the variables;

Coefficient Calculates the relative distance

between the objects from the

mean of the data; Suitable for

semi-structured data analysis (i.e.

in microarray analysis, document

cluster analysis).

Outliers may affect the results.

Table 3.7: Summary of distance measures for the numeric data type.

Proximity Measures 72

3.5 Chapter Summary

Similarity, dissimilarity, and distance are the three fundamental terms directly related to

the concept of cluster analysis. As such, the measures that define and calculate similarity,

dissimilarity, and distance often need special consideration. This chapter provided an

introduction to each of the three terms. We discussed the proximity measures that are

particularly suitable for datasets with numeric, binary, and mixed attributes. There

are several different measures available for each of the data types. We noticed that

several proximity measures for the numeric variables are very sensitive to the scale of

the attribute. A number of these measures also consider the correlation between the

variables into account. For the binary datasets, the similarity measures differ mainly on

the amount of weight given to positive matches, negative matches, and disagreements.

On the other hand, similarity and dissimilarity coefficients for the mixed variable combine

measures from various data types into a single equation.

In the next chapter, we discuss the experimental approach observed in this study.

That is, we present the techniques and methods used in this work to compare the per­

formance of the proximity measures presented in this chapter.

Chapter 4

Experimental Approach

In this thesis, a comparative study of several proximity measures is performed against the

spectral clustering algorithm. Therefore, in Chapter 2, we discussed two variants of spec­

tral clustering algorithms and in Chapter 3; we presented the proximity measures suitable

for three types of attributes (i.e. binary, numeric, and mixed). This chapter presents the

experimental approach that we followed. The chapter begins with a discussion regard­

ing the preparation of data and the construction of the similarity matrix in Section 4.1.

Section 4.2 presents the methods that are applied to address several algorithm-specific

issues. This is followed by Section 4.3, where we present the procedures that are used to

ensure the accuracy of the experiments, such as the cross-validation technique. Recall

from Chapter 2 that, once the selection is made and the algorithm is performed on a

given dataset, the next fundamental step is the validation or assessment of the results

obtained from the cluster analysis method. Thus, Section 4.4 is dedicated to the cluster

evaluation methods used in this study. We conclude our discussion with a brief summary

in Section 4.6.

4.1 Data Preparation

As mentioned in Chapter 2, the spectral clustering algorithms take the similarity matrix

as input (Step 1 in Figure 4.1). Before the data is converted to a similarity matrix, it

is necessary to process the data to ensure that the data is compatible with the distance

measures and that they do not contain any missing values. Therefore, to ensure the

accuracy and usefulness of the results, it is important to pre-process the data [16]. In

this section, we present the methods adopted in this study to prepare the data for our

73

Experimental Approach 74

Constructing the Laplacian
Matrix {May vary

depending on which
spectral clustering

algorithm used)

Data
Similarity

Matrix

Use various splitting
and grouping criteria

to find the segments or
clusters by using the

eigenvectors)

Laplacian
Matrix

Constructing the
similarity matrix using
various similarity and

distance measures

Eigeavector(s) Clusters

Solve the eigensystem
(this may also vary
depending on which

algorithm used)

Figure 4.1: Steps of spectral clustering algorithm.

experiments.

4.1.1 Preprocessing

We used several datasets in this study. A number of these datasets contained missing

values. According to Witten et al. [76], the missing values may be replaced by the

mean or the mode of the attribute values depending on the attribute type. For instance,

the numeric missing values were replaced by the mean, whereas the binary and nominal

missing values were replaced by the mode of the attribute values.

Recall from Chapter 3 that several distance measures (i.e. Euclidean, Manhattan,

and Minkowski) are scale-dependent for the numeric variable type. Therefore, the nu­

meric datasets that contain attributes with different scales need to be preprocessed. Data

is standardized by converting the original measurements to unitless variables [32]. The

procedure is as follows [32].

Standardization

Given the measurements for a variable / for a dataset, we first calculate the mean abso­

lute deviation, Sf:

sf = -{\xif - mf\ + \x2f - mf\ + ... + \xnf - mf\)
n

(4.1)

where, xif, ...,£„/ are n measurements of variable / and m,f is the mean value of / such

that nif — \{x\f + x%f + ... + xnf). Next, we calculate the standardized measurement

Experimental Approach 75

Zif-

4.1.2 Constructing the Similarity Matrix

Recall from Chapter 2, that the first step of the spectral clustering algorithm is the con­

struction of the similarity matrix (Step 1 in Figure 4.1). A similarity matrix is a n x n

symmetric non-negative matrix, where n is the number of objects in a given dataset. Let,

i and j be any two objects in a given dataset, located at row i and row j , respectively. If

the similarity (i.e. calculated from a similarity measure) between these two objects is Sij,

then it will be located at the cell at row i and column j in the similarity matrix. Since,

the similarity matrix is symmetric, the entry at row i and column j will be the same as

the entry at row j and column i. As mentioned in Chapter 3, the similarity matrix is

built from the proximity measure that depends on the type of the attributes in a dataset.

There are several choices to be made regarding the similarity and the distance measures.

For instance, a number of different user-defined scaling parameters may need to be set

during the experimental stage. Therefore, construction of the similarity matrices for the

data types (numeric, binary, and mixed) considered in this study, vary from one another.

Below we discuss the procedures for creating the similarity matrix for each of the data

types.

Similarity Matrix for Binary Data

Constructing the similarity matrix for binary data is less complicated than any other

data types. Most of the coefficients for the binary data as discussed in Chapter 3, directly

calculate either the similarity or the dissimilarity between the object pairs. Therefore, no

external or secondary function (Gaussian function for numeric data) is necessary. How­

ever, if the coefficient gives the dissimilarity rather than the similarity measure, we need

to convert the coefficient into a similarity measure. We get the similarity between the

two objects by subtracting the dissimilarity value from 1. The values from the similarity

measures for the binary data type ranges from 0 to 1. Therefore, we do not need to

be concerned about the cases when the similarity value is between —1 and +1 . Once

the similarity between the objects is calculated, these values become the entries of the

similarity matrix. In Chapter 3, we defined six similarity measures for the binary data.

Recall that the similarity coefficients are: 1. Czekanowski (CZE), 2. Jaccard (JAC),

3. Sokal and Sneath (SAS), 4. Simple Matching Coefficient (SIM), 5. Russell and Rao

Experimental Approach 76

(RAR) and 6) Rogers and Tanimoto (RAT).

Similarity Matrix for Numeric Data

Constructing the similarity matrix for numeric data is more complicated than for bi­

nary data. There are a number of issues related to computing the similarity between

the objects of numeric attribute type. First, most of the measures that calculate the

proximity between the numeric objects are distance measures. In contrast, the spectral

clustering algorithms take the similarity matrix as an input, rather than the distance

matrix. Therefore, we cannot use them directly to construct the similarity matrix. They

need to be converted to a similarity measure before they may be used. For this reason,

an external or secondary function that converts the distance measure to the similarity

measure is necessary. A number of functions that convert the distance measures into the

similarity measures are discussed in Chapter 3. In this work, we use the function given

by Equation 3.2. Recall that the function is commonly known as the Gaussian function.

S(x,y) = exp(~f^) 2) (4.3)

In the above equation,

s(x, y) = similarity between points x and y

d(x, y) — distance between points x and y

a = a user specified scaling variable

Regarding the selection of a function that calculates the similarity between the objects

for numeric data, Fischer and Poland [22] said, "any symmetrical, non-negative function

monotonously falling with increasing distance can be applied". However, they also note

that using the function given in Equation 4.3 is preferable because it simplifies the

computation of the eigenvalues. It may be clarified as follows. Recall that d(x, y) > 0,

according to the properties of distance measures discussed in Chapter 3. The value of a

is also greater than 0, since, if a = 0 then ~ £j%' becomes undefined as the denominator

becomes 0. Moreover, a cannot be negative because of the way a value for o is selected,

which we will discuss shortly. Therefore, it directly follows from the above consequences

that the term d)*'y\ > 0 in Equation 4.3 and from this we can deduce that ~^x '^ < 0

(true for all the values of d(x,y) and a). Next, let y = ex be an exponential function

where x is any real number, then according to the properties of exponential function exp

[73]:

Experimental Approach 77

• y is always positive and lies above the x-axis.

• The function never touches the x-axis, even though it passes very close to the

x-axis. Therefore, y cannot have a value of 0.

• The function climbs quickly for the positive values of x.

• The function climbs slowly for the negative values of x.

• When the negative value of x is very small, the function will have a value very close

to 0. These properties may be depicted through Figure 4.2.

Figure 4.2: The exponential function as given in [73]

Therefore, according to the properties of exponential function, when the distance between

two objects i and j is large (the objects are very different from one another), the Gaussian

function will return a very small value (a value very close to zero). This is depicted in

Figure 4.2. Since the Gaussian function is the similarity function for numeric data, the

returned value will represent the similarity between the objects i and j . Thus, when the

distance is large between any two objects, the similarity will be low, and vise versa. An

example is presented in Table 4.1. In this example, to show the difference, we assigned

two values to d(i,j). The first column contains the value as distance and the last column

in the table gives the similarity as calculated by the Gaussian function. The first distance

value (2) being comparatively larger than the second value (0.25), has a smaller similarity

value (1.9287 * 10 ("2 2 \ very close to 0). Since, the Gaussian function never takes the

value zero and is always positive, the similarity matrix constructed for a dataset using

this function always has positive entries, irrespective of the distance value. According to

Experimental Approach 78

d(x,y) d(x,y)2 . ff
2 g s(i)J-)exp(^|)!)

2 4 0.2 0.04 50 1.9287*10-22

0.25 0.0625 0.2 0.04 0.7813 0.4578

Table 4.1: Example showing the behaviour of the Gaussian function with small and large

distance value.

[22], when this matrix is used in a spectral clustering algorithm, it simplifies the analysis

and computation of the eigenvalues. Shi and Malik in [58], also compared a number of

functions (as presented in Chapter 3) that convert a distance measure into a similarity

measure and found that the Gaussian function outperforms most of the time. In their

work, they showed that the Gaussian function has the fastest decreasing rate and only

the objects that are located close to one another will have a significantly larger value.

We use this Gaussian function in all the experiments for the datasets of the numeric

variable type.

However, there is a drawback associated with the Gaussian function. The function

is very sensitive to the choice of a [46]. The significance of a in Equation 4.3, is that it

controls the portion of area that serves as the neighborhood of the points in a dataset. If

the value of a is large then more points are included in the neighborhood, which results

in a more spread-out area. Therefore, a large a may merge the natural clusters [23].

In contrast, a small value for a considers a smaller area, or neighborhood of points.

However, a smaller value for a may also present problems. If the a is too small, it may

neglect some points in the neighborhood, which may produce an incorrect clustering

result. This is shown in the Figure 4.3 where the area of the neighborhood increases

with the value of a. In this figure, we plot the similarity matrices after applying the

normalized cut spectral clustering algorithm on a sample dataset, keeping the distance

measure constant for all four cases. Therefore, it is necessary to choose a a where the

similarity of closely connected points is high [23]. Initially the value is set to 10 to 20

percent of the total range of the values obtained from the distance function d{x, y) as

suggested by Shi and Malik [58]. However, to ensure that we take the correct value that

gives the best result for a, we consider a range of values for a in addition to the values

obtained from the method suggested by the authors.

In Chapter 3, we discussed the distance measures considered in this study for the

datasets with numeric variables. Recall that these measures are, 1. Euclidean Distance

(EUC), 2. Manhattan Distance (MAN), 3. Minkowski Distance (MIN), 4. Canberra

Experimental Approach

Figure 4.3: Similarity matrices using various values of o

Distance (CAN), 5. Mahalanobis Distance (MAH), 6. Chebyshev Distance (CHEB), 7.

Angular Distance (COS), and 8. Pearson Correlation Distance (COR). It is important

to note that, for each distance measure, there may be a different set of values of a. This

is because, different distance measures give different distance values for the same pair of

objects, which in turn depends on how the distance function is defined. Furthermore, the

value of a depends on the values of these distance measures. Therefore, it is necessary

to consider different sets of values of a for the various distance measures.

Similarity Matrix for Mixed Data
To construct the similarity matrix for mixed data, we calculate the similarity directly

from the data as we did for the binary data. Therefore, we do not need any secondary

function or any user defined parameter (i.e. a for numeric data). As mentioned in Chap­

ter 1, the most common attribute types are numeric, nominal, and binary [39]. As such,

the datasets considered in this study contain attributes from these three types. Com­

pared to the number of proximity measures for the numeric and binary attribute types,

there are not many similarity measures proposed for the mixed data types. In this work

we used two measures as defined in Chapter 3, namely, 1. Gower's General Dissimi­

larity Coefficient (GOWER) and 2. Laflin's General Coefficient (LAFLIN). Recall that

the GOWER coefficient is a dissimilarity measure that ranges from 0 to 1. Thus, we

subtracted this value from 1 to get the similarity score using the Equation 3.1 defined

in Chapter 3. On the other hand, LAFLIN gives the similarity value rather than the

distance and we do not need any additional steps for this measure. However, as the

definition suggests, we need a distance measure to compute the distance between the nu-

Experimental Approach 80

meric objects in a mixed dataset. We used the Euclidean Distance measure to calculate

this distance, which is a widely used distance measure in spectral clustering algorithms

(defined in Equation 3.3). Since this coefficient only considers the similarity between

the objects, rather than the distance, we used Equation 3.4 to convert the Euclidean

distance to the similarity score. Recall that the definitions for each of these proximity

measures are presented in Chapter 3 (Section 3.3).

4.2 Algorithm-specific Issues

Once the similarity matrix is created, the spectral clustering algorithm is applied to this

matrix. In Chapter 2, we discussed the steps for the spectral method. In this section,

we address several additional issues related to the algorithms, such as the stopping and

splitting criteria that are applied in this study.

4.2.1 Stopping Criteria for SM(NCut) Algorithm

In Chapter 2, we discussed the SM(NCut) spectral clustering algorithm. Recall that

the SM(NCut) algorithm is a recursive algorithm that bi-partitions the data at each

level. Therefore, the result of this algorithm when applied to a given dataset forms a

hierarchical tree of clusters. Since, the algorithm recursively continues until a stopping

criterion is satisfied, the authors of [58] suggested a method to terminate partitioning

when a stability criterion is satisfied. The stability is measured by taking the ratio

of the minimum and maximum bin sizes. This is done by drawing the histogram of

the components of the eigenvector and then computing the ratio of the minimum and

maximum bin sizes. According to [58], if the values of the eigenvector change frequently,

the histogram bins will stay relatively the same and thus the ratio will be high. In

contrast, when the values of the eigenvector do not change much, the histogram bins

will vary and the ratio will be small. In such cases, when stability is smaller than a

certain threshold, the algorithm would recursively repartition the segments. Another

method that we used in this work keeps track of the size of each cluster. When the

size reaches a certain user specified threshold, the algorithm stops repartitioning that

cluster. This is particularly helpful, since we are able to control the minimum size of

the clusters acceptable by the algorithm. However, it is important to note that, since

we are comparing the performance of various similarity measures, it is essential to keep

the stopping criteria constant for a given dataset. By doing so, we ensure that all the

Experimental Approach 81

parameters and settings are the same for a particular dataset and the only place they

vary is in the similarity matrices itself.

4.2.2 Splitting Criteria and Grouping Algorithm

Recall from Chapter 2 that, in spectral clustering, clusters are generated from the eigen­

vectors of the Laplacian matrix, which is a modified version of the similarity matrix.

The eigenvectors are split at different positions to find the clusters (step 4 of Figure 4.1).

Therefore, the choice of splitting method may also influence the results as it partitions

the eigenvectors at different positions. Shi and Malik [58], suggested a number of split­

ting methods in their work. In this study, we performed an evaluation on these splitting

points to compare their performance. We discuss the splitting methods proposed in [58]

as well as another method as proposed in [66].

Let the eigenvector associated with the second smallest eigenvalue be e. Assume

that there are i = l...n objects in the dataset which was initially provided as input for

constructing the similarity matrix. Then the eigenvector e = e\, e2..-.e„ will have exactly

n elements, where element 1 in e corresponds to the object 1 in the dataset, element 2

corresponds to the object 2, and so on. Now, the main idea behind finding an optimal

cut at c (splitting at c) is to split e in such a way so that all the components e* < c

(i € [l...n]) are in one partition and the elements where e, > c are in a different group.

Then,

• Split at Zero: In this case, c — 0. Therefore, we will have one partition that

contains the components with negative values of e (e^ < 0) and another partition

with positive elements of e (e* > 0).

• Split at Mean: This method uses the mean value of eigenvector e (average of

ei..e„) as the splitting criteria. The elements in e with values greater or equal to

the mean value will be in one group and the rest will be in a different group.

• Split at Median: The splitting point c is located at the median of e\..en. In this

case, the elements in e are sorted in ascending order and the element located at

the middle is used as c, separating the elements in the higher half from the lower

half. Thus, it gives two partitions of almost the same sizes.

• Split using normalized cut method 1 (NCut l) : This method optimizes the

normalized cut [58] (as elaborated in Chapter 2). There are two methods proposed

Experimental Approach 82

in two different studies. One such method as discussed in [66] performs a search

over n—1 partitions to find the best one. Recall that this is the value that minimizes

the NCut as denned by the Equation 2.4 in Chapter 2. This partitioning algorithm

works as follows:

- Sort the eigenvector associated with the second smallest eigenvalue in ascend­

ing order.

- For i = \..n — 1 (here i is the index of sorted eigenvector)

Partition A = l...i

Partition B = i + l...n

Compute NCut(A.B);

- Return the partition that gives the minimum value for NCut.

• Split using normalized cut method 2 (NCut2): Another method for finding

the minimum value for NCut from the sorted eigenvector is given in [58] and [49].

Unlike the previous NCut based splitting method, this method considers m evenly

spacing splitting points and computes the minimum NCut among them. This

partitioning method works as follows:

- Sort the eigenvector associated with the second smallest eigenvalue in ascend­

ing order.

- Find m uniform values between the maximum and minimum value of eigenvec­

tor e. Here, m = |~log2(n) + 1]. This will return m points from the eigenvector

of equal interval. Let the points be denoted as eim ,e2m . . .emm .

- For j = l...m

Partition A = e* < e jm

Partition B = ê > ejm

Compute NCut(A,B);

- Return the partition that gives minimum value for NCut.

Since the splitting methods based on the concept of normalized cut perform a search

over the eigenvector space, it is comparatively slower and more time consuming than the

splitting methods based on zero, mean, and median. The spectral clustering algorithm

using the K-means algorithm does not need any splitting criteria, as it uses the K-means

algorithm to directly cluster the objects in eigenvectors into k groups.

Experimental Approach 83

As of now we discussed some of the algorithm-specific issues related to the spectral

clustering algorithms. In the next section we will discuss the experimental method.

4.3 Experimental Methodology

This section explains the experimental details that are not directly related to the algo­

rithms. This includes methods, such as cross-validation, which is often applied to ensure

the performance of the algorithms.

4.3.1 Cross-Validation

In order to evaluate the performance of the distance measures, we need to perform the

experiments on several datasets. We apply a ten-fold cross validation method, similar to

the approach proposed in [12], for cluster analysis. In this method, data is first divided

into ten folds. For each iteration, one set is used as the test set and the rest of the

nine sets are used as training sets. The cluster analysis algorithm is then applied on the

training set. Next, we calculate the cluster centroid for each of the clusters obtained

from the result. Then, for each object in the test set, we calculate the proximity between

the centroids of each cluster and the object. The object is assigned to the cluster with

the nearest centroid. Next, with the help of the external class labels, we compute the

external evaluation measures as discussed in the next section. It is important to note

that the external class labels are not used prior to this step. They are stored in a different

file and are not used when the cluster analysis algorithm is applied to the training set.

Therefore, they are only used for the purpose of evaluation. This method is similar to the

classes to clusters evaluation method [76], where we ignore the class attribute first and

then use them later to compute the evaluation measures. Once the evaluation measures

are computed, the entire process is repeated ten times, each time with a new test set.

The results from the evaluation measures are then averaged over the ten folds to get the

final result. When the dataset is subdivided into folds, it is important to stratify the

folds, so that each fold has approximately similar distribution of the class labels as the

original dataset, to ensure accuracy. We also restore the original index numbers of the

similarity matrix to correctly identify each object. Since we partition the eigenvector(s)

to find the clusters, if the indexes are not restored then once the eigenvectors are sorted,

there will be no way to determine the cluster membership. However, the ordering of

rows is unimportant at the time of building the similarity matrix. Once the similarity

Experimental Approach 84

matrix is created, the ordering information must be restored in order to correctly map

the objects to their corresponding components in the eigenvector(s).

4.3.2 Experiments

As mentioned, we considered several distance measures for each of the three data types.

In order to compare the performance of the proximity measures for a particular data

type, we performed ten-fold cross validation and classes to clusters evaluation on each

of the datasets. Therefore, it is important that we divide a dataset into ten folds first

and then apply the cross validation and classes to clusters evaluation for each of the

proximity and spectral clustering algorithm combinations. For instance, we have six

similarity coefficients for the binary attribute types and we have two spectral clustering

algorithms for each experiment. Then, we first subdivide the dataset into ten sets and

for a similarity and algorithm combination; we perform the cross validation and classes

to clusters evaluation. For the next similarity coefficient, we use the same folds and

repeat the procedure. In that way, we ensure that, for each algorithm, the only reasons

the results may vary, is because of the choice of similarity coefficient.

4.3.3 Implementation and Settings

For all the experiments in this study, the data preprocessing was performed using WEKA

[76], an open-source Java-based machine learning software developed at the University

of Waikato in New Zealand. The spectral cluster analysis algorithms are implemented in

MATLAB ®. Since the spectral clustering algorithm manipulates the similarity matrix

of a dataset, computation of eigenvalues and eigenvectors of the similarity matrix may

be inefficient for a large matrix. However, MATLAB has a function called eigs that

efficiently solves the eigensystem of large matrices. We used this function in this study

to find the eigenvalues and eigenvectors. The cluster evaluation measures have been

implemented in Java.

4.4 Cluster Evaluation Measures

In Chapter 2, we presented the four fundamental components of the cluster analysis

process. The first two steps deal with the preprocessing of data, the selection of the

proximity measure, and the selection of the clustering algorithm. Apart from the selection

Experimental Approach 85

of measure and the execution of the cluster analysis algorithm, the next fundamental step

in a given cluster analysis process is the verification or evaluation of the results to assess

the quality of the clusters. In this section we present the evaluation measures that are

used in this study.

Cluster evaluation methods measure the goodness or the quality of the clusters ob­

tained from a cluster analysis method. In this study, we applied the external quality

measures. The external evaluation measures may be calculated when the true class

labels are known to the user. In this study, we consider the external measures when

evaluating our results, as the external class labels for each of the datasets used were

available to us. Moreover, this allows us to perform a fair comparison against the known

true clusters for all the proximity measures. We present the three external methods that

we used for the evaluation purpose in this thesis. These measures have been previously

used in numerous studies regarding cluster analysis and have proved successful in repre­

senting the quality of clusters numerically. For instance, the F-measure is widely used

to evaluate the quality of clusters when hierarchical algorithms are applied [6].

We define a number of terms here before presenting the evaluation measures in the

section. Let C be the set of external class labels available to users and D be the set

of clusters obtained after an algorithm is applied on a given dataset. Then according

to [61], \Ci n Dj\ denotes the number of members of external class i (C,) that are also

in cluster j (Dj), |Cj| denotes the number of members that are in external class C*

according to C, \Dj\ denote the number of members that are in cluster Dj according to

D, and n = \C\ denotes the total number of objects present in the dataset. The cluster

evaluation methods such as F-measure, G-means, and Entropy are defined as follows.

4.4.1 F-measure

F-measure [52], [61], [10] is one of the external cluster evaluation methods that are

widely used when the class information is known. The F-measure incorporates precision

and recall from the information theory into a single number. The precision denotes the

proportion of correctly clustered objects out of all the objects in a cluster Dj. The

precision for a cluster j (Dj) and external class i (d) is defined as:

P..JC^Dj\

In contrast, the recall denotes the proportion of correctly clustered objects out of all the

objects in an external class Cj. The recall for cluster j (Dj) and external class i (Cj) is

Experimental Approach 86

defined as:

H „ = ^ (4.5,

Then, F-measure combines both the precision and recall together. The F-measure for

cluster j (Dj) and external class i (Cj) is defined as:

F* = 2*PPV^ (4-6)

For each external class i, the F-measure is the maximum value attained at any cluster:

Ft = maXjFij (4.7)

Therefore, the F-measure for an entire solution is defined as:

The range for F-measure is [0,1]. A higher value for F-measure implies a better solution,

whereas a lower value implies that the results from cluster analysis do not match with the

external class information. For hierarchical cluster analysis, each node in the hierarchical

tree is considered as a cluster and each cluster is treated as if it were the result of a query.

For an entire hierarchical clustering, the F-measure of any class is the maximum value it

attains at any node in the tree, and the overall value for the F-measure is then calculated

by taking the weighted average of all values for the F-measure as given above [61].

4.4.2 G-means

G-means is defined as the geometric mean of recall and precision.

G — means = y recall * precision (4.9)

As the equation above suggests, G-means will have a high value when precision and recall

are both high. G-means may be used in a similar way as F-measure described earlier

[17]. For a more detail introduction of G-means we suggest [41],

4.4.3 Entropy

Entropy [10], [61] is another cluster evaluation method used to measure the quality of

clusters. This measure considers the distribution of classes in a cluster to assess the

Experimental Approach 87

results. For each cluster Dj, the Entropy is calculated as:

Here, the sum is taken over all classes and log is log base 2. The total Entropy for a set

of clusters is calculated as the sum of entropies of each cluster weighted by the size of

each cluster:
k

E-j^EiD,).^ (4.11)

The Entropy of a cluster is a measure of disorder within the cluster and a lower value for

Entropy indicates a better clustering result. Thus, a value close to 0 denotes that the

cluster mostly includes objects from one class.

There are, however, several drawbacks of using the Entropy measure. The measure

gives the best score when a cluster contains a single object. Therefore, this measure

is biased to favor a large number of clusters [26]. Prior research on several hierarchical

clustering algorithms also suggest that the Entropy may not be a suitable measure where

the algorithms produce clusters of different sizes [78]. In such cases, the authors noticed

that the Entropy measures more heavily penalizes a large impure cluster (a cluster is

impure when it contains members from several external classes). In contrast, the F-

measure and G-means do not favor larger number of clusters and attain the best score

when each external class is contained in a single cluster [78]. Therefore, in our study,

we rely more on the results from these two measures than the results from the Entropy

measure. As such, when evaluating the clustering results from the SM(NCut) algorithm

(i.e. a recursive, bi-partitioning, and hierarchical spectral clustering algorithm), we do

not consider the Entropy scores as they may provide biased information.

Example 4.4.1. Let a given dataset contain 10 objects such as 1, 2, 3, , 10. Suppose,

the objects in this datasets are categorized in two classes: C\ and C^- The members

of class C\ = 1,4,6,9 and class Ci = 2,3,5,7,8,10. Also assume that, after cluster

analysis has been performed on this data, the dataset is divided into to two clusters,

Di = 1,2,6,9,10 and D2 = 3,4,5,7,8. Then according to the definitions given above,

we have:

Total number of members in external class C\, \C\\ = 4,

Total number of members in external class C2, |C21 = 6,

Total number of members in cluster Z?i, |Di| — 5,

Experimental Approach 88

Total number of members in cluster D2, |Z?2| = 5.

External Class

Cx

Cx

c2

c2

Cluster

Dx

D2

Dx

D2

Precision

Pi,i = 0.6

Px,2 = 0.2

P2,i = 0.4

P2,2 = 0.8

Recall

Rx.x = 0.75

Rx,2 = 0.25

i?2,i = 0.33

#2,2 = 0.67

F-measure

Fx,x = 0.6667

F l i 2 = 0.2222

F2>1 = 0.3616

F2,2 = 0.7293

G-means

Gi,i = 0.6708

Gi,2 = 0.2236

G2,i = 0.3633

G2,2 = 0.7321

Table 4.2: The F-measure and G-means scores for the external class i and cluster j

Table 4.2 gives the F-measure and G-means scores for each external class i and cluster

j . Then, the maximum F-measure score for external class C\ is 0.6667 and C<i is 0.7293.

Therefore, the overall F-measure (Equation 4.8) is 0.7043. Similarly, the maximum

G-means score for external class C\ is 0.6708 and class C?, is 0.7321. Thus, the overall G-

means (Equation 4.9) score is 0.7076. The overall Entropy as calculated from Equation

4.11 is 0.8254. In this example, 3 out of 10 objects are placed incorrectly. A high value

for the F-measure, G-means, and Entropy indicate that the clusters are not pure and

contain objects from different true clusters or classes.

4.5 Statistical Significance Testing

In many practical applications, the scores obtained by evaluation methods are usually

sufficient to compare the performance of different learning methods [76]. However, in

several cases, there is a possibility that the difference may have occurred by chance and

may not be statistically significant. As such, statistical tests may be applied to confirm

that the results are statistically significant. Nonetheless, the use of statistical tests in

machine learning has been widely debated [36], [14]. Several researchers suggest against

the usage of such tests, as they believe that the tests lead to overvalued results. According

to Japkowicz et al. [36], "the use of available statistical tools for such testing in the fields

of machine learning and data mining has been limited at best". The authors also suggest

that not all the tests are appropriate for machine learning tasks. The most commonly

used test in this area is called the t-test1 [36], [76]. However, the t-test is suitable for

pairwise comparison. In our study, we compare a number of proximity measures against

several datasets. Therefore, to perform statistical tests on our experiments, we need

^ o r a detailed description of the t-test we refer to [36], [76].

Experimental Approach 89

tests that are appropriate for performing multiple comparisons on multiple datasets.

There are two tests, as mentioned in [36], that are most appropriate for our experiments.

The first is known as the Analysis of Variance (ANOVA) and the second is known as

the Friedman Test [36]. However, ANOVA assumes that the samples are drawn from a

normal distribution. In contrast, the Friedman test does not make any assumption about

the distribution of data. As such, we select this test to explore the statistical significance

of our experimental results. The Friedman test is available in MATLAB as a built-in

function. In our case, we choose the null hypothesis as, "the performance of all the

proximity measures is equivalent". The Friedman test returns the p-value, as a result.

A significantly small p-value (a value close to zero) suggests that there is a significant

difference between the proximity measures on the datasets used. It is common to reject

the null hypothesis when the p-value is less than 0.05 [36]. According to [75], "// the

level is 0.05, then the results are only 5% likely to be as extraordinary as just seen, given

that the null hypothesis is true".

4.6 Chapter Summary

In this chapter, we discussed the experimental process that we adapted for our exper­

iments. Recall that in Chapter 2, we discussed the four fundamentals of the cluster

analysis process. For the experiments in this study, we closely followed the fundamental

steps. We start with the preprocessing of the dataset so that it is ready to be used as

an input to the spectral clustering algorithm. We also presented several algorithm and

experimentation specific details and provided the approaches that are best suitable for

the spectral clustering algorithm and our study. We applied a ten-fold cross-validation

technique to ensure the accuracy of the results. We then applied these methods and

approaches on two spectral methods using several proximity measures depending on the

types of the attributes (i.e. binary, numeric, and mixed) present in the dataset. The

experiments are tested against a number of datasets in each case.

In the next three chapters, we analyze and evaluate the performance of the proximity

measures for each of the three types. In Chapter 5, we present the result analysis for

datasets with binary attributes. Chapter 6 provides the result analysis for the datasets

with mixed variables and Chapter 7 presents the results for the datasets with numeric

attributes.

Chapter 5

Result Analysis - Binary Data

In Chapter 4, we presented the experimental approach that we have adopted to compare

and evaluate the performance of several proximity measures. To compare the perfor­

mance of these coefficients, we first performed spectral cluster analysis on the datasets.

Next, we used the external cluster evaluation measures discussed in Chapter 4 to assess

the results. These results are then used to compare the similarity coefficients. This

chapter provides the analysis of our results after the experiments are performed on the

datasets with binary attributes. The chapter begins with Section 5.1, with the descrip­

tion of datasets used in this experiment. Next, in Section 5.2, we provide the quantita­

tive analysis of the results from the two spectral clustering algorithms, SM(NCut) and

NJW(K-means), in terms of the scores obtained from the external evaluation measures.

This is followed by the discussion in Section 5.3, where we do some further analysis and

suggest possible reasons that may have caused the differences in performance. We also

compare the performance of the spitting methods used for the SM(NCut) algorithm in

Section 5.4. In Section 5.5, we provide the clustering results from both the spectral

clustering algorithms and we conclude the chapter with a brief summary in Section 5.6.

5.1 Binary Datasets

We use six datasets in this study. Five of the datasets are from the UCI data repository

[3] and one dataset (Genes dataset) is from one of the KDD cup [53] competitions. In

order to reach a conclusion with higher generality, we use more than one datasets for this

task. As mentioned in Chapter 4, we use a ten-fold cross validation. The performance of

the similarity coefficients are measured with the external criteria as discussed in Chapter

90

Result Analysis - Binary Data 91

3. The evaluation measures use the external information (i.e. class labels) as the external

criterion to evaluate the performance. Therefore, the class labels serve as the true clusters

in this case. Prom here onward, we will refer to the class labels as the true cluster or

class. The datasets are selected while keeping a number of characteristics in mind.

• The datasets are of different sizes. There are some datasets (i.e. Lenses and Balloon

datasets) with only a number of objects. There are also a number of datasets (i.e.

Genes, Votes, and SPECT) that are comparatively larger in size than the others.

• The datasets are based on real world problems that represent various fields and

domains. For instance, the SPECT dataset is a medical dataset, whereas the Zoo

dataset is based on the animal kingdom.

• We considered both imbalanced and balanced datasets. Imbalanced datasets are

the datasets where the number of examples of one class is much higher than the rest

of the classes [30]. The SPECT dataset is an example of a two-class imbalanced

dataset in which one class contains only 36 examples, whereas the other class

includes 206 examples.

Next, we describe each of the datasets. For each dataset, we also provide the information

on the true clusters that are provided with the dataset.

SPECT Dataset: The SPECT dataset describes the diagnosing of the cardiac Single

Proton Emission Computed Tomography (SPECT) images. There are 22 binary

attributes and 242 instances in the dataset. The original dataset has 44 continuous

attributes. These attributes are processed to create a set of 22 binary feature

patterns. The UCI data repository contains both the processed dataset as well as

the original numeric dataset. In this dataset, the heart condition of each patient is

categorized as normal or abnormal. As such, this attribute is used as the class label

or true cluster for the assessment of the results. Table 5.1 contains the information

for each true cluster. It shows that one of the true clusters contains relatively fewer

members than the other. Thus, it is an example of imbalanced dataset.

Votes Dataset: The dataset comprises votes for each of the US House of Repre­

sentative Congressmen on 16 key votes identified by the Congressional Quarterly

Almanac from the 1984 Congressional Voting Records Database. The true clusters

represent whether a representative is Democrat or Republican (Table 5.2). There

are 16 attributes and 435 instances in this dataset.

Result Analysis - Binary Data 92

True Clusters Number of Members

0 (Normal) 36

1 (Abnormal) 206

Table 5.1: The true cluster distribution of the SPECT dataset.

True Clusters Number of Members

Democrats 267

Republicans 168

Table 5.2: The true cluster distribution of the Votes dataset.

Lenses Dataset: The dataset contains examples to predict the contact lens type for

each of the patients. The dataset is small and includes only 24 instances and 4

attributes. However, one of the attributes is nominal with three distinct values. We

use the NominalToBinary method from WEKA that changes a nominal attribute

into several binary attributes, one for each nominal value [76]. Therefore, we have 6

binary attributes. The class attribute involves three values where 1 represents the

patients who need hard contact lenses, 2 represents patients who need soft contact

lenses and 3 represents patients who do not need lenses (Table 5.3). This dataset

is also imbalanced as two of the categories (i.e. hard lens and soft lens) contain

fewer members than the members from the category with no lens.

True Clusters Number of Members

1 (Hard lens) 4

2 (Soft lens) 5

3 (No lens) 15

Table 5.3: The true cluster distribution of the Lenses dataset.

Zoo Dataset: The Zoo dataset contains 101 instances. Each of the instances in this

dataset represents an animal and each animal is described with 18 attributes (in­

cluding the class label). These attributes correspond to the presence and absence

of various features (e.g. hair, feather, eggs, and milk) that describe each animal.

The class labels present in the dataset categorizes each animal into one of the 7

categories. Since this experiment only considers the binary or boolean valued at-

Result Analysis - Binary Data 93

tributes, a set of 16 attributes were selected. The attributes that are not considered

in this work are: 1) the unique name (string) of each of the animals and 2) the

number of legs (numeric). The external class information for this dataset is given

in Table 5.4. The class labels in the original dataset are represented with numbers.

However, we notice that they actually represent different classes (a taxonomic rank

in the biological classification [71]) that are used to uniquely identify the animals

in the animal kingdom. We also provide the scientific class names associated with

the unique class labels. The dataset is imbalanced.

True Clusters

1 (Mammals)

2 (Aves)

3 (Reptiles)

4 (Fishes)

5 (Amphibians)

6 (Insect)

7 (Mollusks)

Number of Members

41

20

5

13

4

8

10

Table 5.4: The true cluster distribution of the Zoo dataset.

Genes Dataset: This dataset was originally provided in one of the KDD cup compe­

titions [53]. The dataset consists of 1242 genes and there are 13 binary attributes.

The attributes give the information about the functions in which each of the genes

is involved. The external class information denotes the genes localization based

on the functions in which they are involved. Table 5.5 contains the external class

information.

Balloon Dataset: A small dataset of 19 examples and 4 attributes (excluding the

external class attribute). The attributes represent some of the characteristics of

the balloon (i.e. size and age). The external class attribute determines whether

the balloon is inflated or not. The external class distribution for this dataset is

given in Table 5.6.

A summary of all of the datasets, as discussed above, is given in Table 5.7.

We perform the experiments, as outlined in Chapter 4, on these datasets to compare

the performance of the six binary coefficients. Recall that all the tests are performed

Result Analysis - Binary Data

True Clusters Number of Members

Nucleus

Cytoplasm

Mitochondria

Cytoskeleton

ER

Plasma Membrane

Golgi

Others

539

257

104

88

68

61

47

78

Table 5.5: The true cluster distribution of the Genes dataset.

True Clusters Number of Members

Inflated

Not Inflated 11

Table 5.6: The true cluster distribution of the Balloon dataset.

Dataset Number of Number of Number of Notes

Instances True Clusters Attributes

Zoo

Votes

SPECT

Lenses

Balloon

Genes

101

435

242

24

19

1242

7

2

2

3

2

8

15

16

22

6

4

13

Imbalanced

5.3% missing values

Imbalanced

Imbalanced

Imbalanced

Table 5.7: Summary of binary datasets used for our experiments. Given in the table (from

left) the name of the datasets; the number of instances; the number of true clusters; the

number of attributes; and some notes on the datasets.

on two different versions of the spectral clustering algorithms, SM(NCut) and NJW(K-

means). In the subsequent sections, we discuss the results obtained from each of the

algorithms when combined with the similarity coefficients.

Result Analysis - Binary Data 95

5.2 Comparison of Similarity Measures

Here we provide the results obtained from each of the datasets. Recall from Chapter 3,

for binary data we used six similarity coefficients, namely Czekanowski (CZE), Jaccard

(JAC), Sokal and Sneath (SAS), Simple Matching Coefficient (SIM), Russell and Rao

(RAR) and Rogers and Tanimoto (RAT). We test the performance of each of these

coefficients on two different spectral clustering algorithms, SM (NCut) and NJW(K-

means) and against six datasets as discussed in the previous section. In the next section,

we discuss the quantitative results obtained from the external evaluation measures and

the ten-fold cross validation when applied to the SM(NCut) algorithm.

5.2.1 Results from SM(NCut) Spectral Clustering Algorithm

The results from external evaluation measures are given in Table 5.8 and Table 5.9. Ta­

ble 5.8 contains the F-measure scores for each of the datasets and Table 5.9 contains

the G-means scores. Recall from Chapter 4 that the Entropy measure may not always

be a suitable measure for the hierarchical clustering algorithms. Therefore, we do not

consider this measure to evaluate the results from the SM(NCut) algorithm. As men­

tioned in Chapter 2, this algorithm bipartitions the objects in a given dataset by splitting

the eigenvector associated with the second smallest eigenvalue of the Laplacian matrix

constructed from the similarity matrix. There are five splitting points, as discussed in

Chapter 4, and they are Split Zero, Split Mean, Split Median, Split NCutl and Split

NCut2. Also recall from Chapter 4 that the first three splitting methods perform the

split at a particular point (i.e. zero, mean or median) of the eigenvector, whereas, NCut-

based splitting methods perform a search over the eigenvector and considers the partition

that minimizes the NCut value.

The results, as given in Table 5.8 and Table 5.9, show that the average difference

between the maximum and the minimum F-measure scores is 4.0% and for the G-means,

the average difference is 3.9% for all the datasets and irrespective of the splitting points

used. Figure 5.1 depicts the average F-measure scores for the binary datasets used in

this study. Recall that the F-measure and G-means scores range from 0 to 1 and the

average differences (which is calculated from the values in tables) are given as a per­

centage. When taking the original range into consideration, the differences are 0.04 and

0.039 respectively, which is very small. Therefore, the scores indicate that the perfor­

mance of the similarity coefficients is very similar. However, the F-measure and G-means

scores show that in all the cases, one or more similarity coefficients performed best for a

Result Analysis - Binary Data 96

Split Zero

Split Mean

Split Median

Split NCutl

Split NCut2

Split Zero

Split Mean

Split Median

Split NCutl

Split NCut2

Split Zero

Split Mean

Split Median

Split NCutl

Split NCut2

CZE

0.62

0.62

0.65

0.68

0.68

CZE

0.60

0.59

0.59

0.81

0.80

CZE

0.93

0.92

0.82

0.74

0.81

JAC

0.62

0.65

0.65

0.68

0.68

JAC

0.60

0.60

0.59

0.80

0.81

JAC

0.93

0.92

0.82

0.76

0.84

Balloon

SAS

0.63

0.67

0.64

0.66

0.70

SIM

0.72

0.68

0.70

0.68

0.66

SPECT

SAS

0.62

0.64

0.60

0.82

0.81

SIM

0.61

0.60

0.65

0.79

0.76

Zoo

SAS

0.93

0.92

0.82

0.78

0.87

SIM

0.93

0.94

0.83

0.77

0.84

RAT

0.70

0.68

0.70

0.66

0.67

RAT

0.61

0.60

0.65

0.80

0.79

RAT

0.94

0.94

0.84

0.78

0.81

RAR

0.59

0.68

0.61

0.69

0.69

RAR

0.60

0.59

0.59

0.82

0.81

RAR

0.90

0.90

0.80

0.75

0.83

CZE

0.56

0.56

0.58

0.62

0.63

CZE

0.88

0.88

0.87

0.81

0.80

CZE

0.52

0.52

0.48

0.46

0.51

JAC

0.59

0.58

0.59

0.65

0.65

JAC

0.88

0.88

0.87

0.82

0.80

JAC

0.52

0.52

0.47
0.49

0.48

Lenses

SAS

0.56

0.57

0.57

0.62

0.61

SIM

0.57

0.56

0.58

0.59

0.60

Votes

SAS

0.88

0.88

0.87

0.81

0.81

SIM

0.88

0.88

0.87

0.81

0.80

Genes

SAS

0.52

0.52

0.47

0.50

0.49

SIM

0.49

0.49

0.50

0.48

0.50

RAT

0.54

0.57

0.57

0.61

0.60

RAT

0.88

0.88

0.87

0.81

0.84

RAT

0.49

0.48

0.48

0.49

0.50

RAR

0.54

0.55

0.60

0.63

0.63

RAR

0.88

0.88

0.87

0.84

0.82

RAR

0.51

0.51

0.48

0.50

0.50

Table 5.8: The F-measure scores for the binary datasets when the SM(NCut) algorithm

is used.

particular dataset. For example, the Balloon dataset performed best when the SIM or

RAT coefficient is used, whereas the Lenses dataset scored best when the JAC coeffi­

cient is used. Here, the best performance for a similarity coefficient is measured by the

number of times it achieves the highest (or close to highest) scores. For instance, if a

similarity coefficient attains the highest scores for three out of five splitting methods for

a given dataset, then we consider this coefficient performing the best. In this way, we

ensure that the highest scores are not achieved by chance. Therefore, the performance

of the similarity coefficients relies on the datasets. Below we compare the F-measure

and G-means scores for each of the datasets individually and in Section 5.3 we analyze

the datasets and similarity matrices to determine the causes. For each dataset we also

provide the highest and lowest scores when Split Zero is used as the splitting point. This

splitting point performed well in most of the cases and we provide a discussion on this

later in the section.

Result Analysis - Binary Data 97

Average F-measure

Balloon SPECT Zoo Lenses

Datasets

Votes Genes

Figure 5.1: The average F-measure scores for the binary datasets.

Split Zero

Split Mean

Split Median

Split NCutl

Split NCut2

Split Zero

Split Mean

Split Median

Split NCutl

Split NCut2

Split Zero

Split Mean

Split Median

Split NCutl

Split NCut2

CZB

0.63

0.63

0.66

0.69

0.70

CZE

0.62

0.61

0.61

0.82

0.81

CZE

0.93

0.92

0.83

0.76

0.82

JAC

0.63

0.66

0.66

0.71

0.69

JAC

0.62

0.62

0.61

0.82

0.82

JAC

0.93

0.92

0.83

0.78

0.85

Balloon

SAS

0.64

0.69

0.65

0.69

0.71

SIM

0.72

0.70

0.70

0.70

0.68

SPECT

SAS

0.63

0.66

0.62

0.84

0.82

SIM

0.65

0.63

0.68

0.80

0.78

Zoo

SAS

0.94

0.93

0.83

0.80

0.88

SIM

0.94

0.94

0.84

0.79

0.85

RAT

0.71

0.69

0.71

0.69

0.69

RAT

0.65

0.63

0.68

0.80

0.80

RAT

0.94

0.95

0.84

0.79

0.83

RAR

0.60

0.70

0.63

0.71

0.70

RAR

0.62

0.61

0.61

0.84

0.83

RAR

0.90

0.91

0.81

0.77

0.85

CZE

0.57

0.57

0.59

0.64

0.65

CZE

0.88

0.88

0.87

0.82

0.81

CZE

0.55

0.55

0.50

0.49

0.53

JAC

0.60

0.58

0.60

0.66

0.66

JAC

0.88

0.88

0.87

0.83

0.81

JAC

0.55

0.55

0.50

0.52

0.52

Lenses

SAS

0.56

0.57

0.58

0.65

0.64

SIM

0.58

0.57

0.58

0.60

0.61

Votes

SAS

0.88

0.88

0.87

0.82

0.81

SIM

0.88

0.88

0.87

0.82

0.82

Genes

SAS

0.55

0.55

0.50

0.52

0.52

SIM

0.52

0.51

0.52

0.52

0.53

RAT

0.54

0.58

0.58

0.63

0.61

RAT

0.88

0.88

0.87

0.81

0.84

RAT

0.52

0.51

0.50

0.52

0.53

RAR

0.56

0.57

0.61

0.66

0.67

RAR

0.88

0.88

0.87

0.84

0.83

RAR

0.54

0.54

0.51

0.53

0.52

Table 5.9: The G-means scores for the binary datasets when the SM(NCut) algorithm is

used.

Balloon Dataset
The average F-measure score is 0.66 and the average G-means score is 0.68. The max-

Result Analysis - Binary Data 98

imum F-measure and G-means scores for the Balloon dataset are 0.72 for both of the

evaluation measures. The minimum scores are 0.59 (F-measure) and 0.60 (G-means),

respectively. The average difference between the maximum and minimum scores over all

the splitting points is 0.07. The highest scores were frequently achieved by the SIM and

RAT coefficients. The lowest score was achieved by the RAR coefficient.

Lenses Da tase t

The average F-measure and G-means scores for the Lenses dataset are, 0.59 and 0.60,

respectively. The highest F-measure score is 0.59 and the minimum score is 0.54. The

highest G-means score is 0.60 and the lowest score is 0.54. The average difference be­

tween the maximum and the minimum values are 0.04 (F-measure) and 0.05 (G-means).

According to both the evaluation measures, the best scores were achieved by the J AC

coefficient. In terms of both F-measure and G-means scores, the lowest scores were fre­

quently achieved by the RAT and RAR coefficients.

SPECT Dataset

For the SPECT dataset, the average F-measure and G-means scores are, 0.68 and 0.70,

respectively. The highest F-measure and G-means scores are 0.61 and 0.65 and the low­

est scores are 0.59 and 0.62, respectively. The average difference between the maximum

and the minimum scores are 0.04 (F-measure) and 0.05 (G-means). According to the F-

measure scores, the similarity coefficient that achieved the highest scores most frequently

was the 5^45 coefficient. In contrast, the G-means scores suggest that the SIM and RAT

coefficients performed well. The lowest scores are achieved by the RAR, CZE, SIM and

J AC coefficients.

Votes Dataset

The Votes dataset scored almost the same scores for all the coefficients. The scores are

exactly the same for both the evaluation measures when Split Zero, Split Mean and Split

Median are used as the splitting method. The NCut-based spitting methods worked well

for the RAT and RAR coefficient. However, as we will see from our discussion in the

next section, these methods tend to produce clusters in which one partition only contains

a handful of objects. Therefore, we rely more on the results from the first three splitting

methods. The average F-measure score is 0.85 and the average G-means score is 0.86.

The highest scores achieved by both the measures are 0.88. The lowest score is 0.80

by F-measure and 0.81 by G-means. The average difference between the maximum and

the minimum scores are 0.02 for the F-measure and 0.01 for the G-means. The average

differences between the maximum and the minimum scores is low and suggest that all

the similarity measures performed similarly for this dataset.

Result Analysis - Binary Data 99

Zoo Dataset

The average F-measure score for the Zoo dataset is 0.85 and the average G-means score is

0.86, irrespective of the similarity coefficient and the splitting point used. The maximum

value achieved by both the measures is 0.94. The minimum score achieved by F-measure

and G-means is 0.90. The average difference between the highest score and the lowest

score is 0.04 for both the evaluation measures. The RAT and SIM coefficients achieved

the best scores more frequently, whereas the RAR coefficient scored the lowest score most

of the time.

Genes Dataset

The average F-measure and G-means score for the Genes dataset are 0.50 and 0.52,

respectively. The highest F-measure score is 0.52 and the lowest score is 0.49. The

maximum G-means score is 0.55 and the minimum score is 0.52. The average difference

between the highest and lowest score is 0.03 for both of the coefficients. The similarity

coefficients that performed best for this dataset in comparison to others are: CZE, SAS

and JAC. In contrast, the RAT and SIM coefficients scored the lowest scores.

5.2.2 Results from NJW(K-means) Algorithm

In this section, we present the results from the NJW(K-means) spectral clustering al­

gorithm. Recall from Chapter 2 that this algorithm uses the k largest eigenvectors of

the Laplacian matrix to find k clusters by applying the K-means algorithm on the eigen­

vectors. Since we use the external criteria to assess the performance of the similarity

coefficients, we know the number of clusters from the number of true clusters. However,

we use a range of values for k (k — [2.. 10]) in our experiments. This helps us to observe

how the clusters are formed when k is set to a value other than the number of true

clusters.

Table 5.10, 5.11 and 5.12 contain the results from F-measure, G-means, and Entropy,

respectively. Similar to the F-measure and G-means scores for the SM(NCut) method de­

scribed in the previous section, in this method, the scores also show that the performance

of the similarity coefficient are comparable. The results indicate that the performance

of a particular coefficient depends on the dataset. For example, a coefficient that works

well for a certain dataset may not work well for all the datasets. The average difference

between the highest and the lowest value achieved by the F-measure and G-means scores

are both 6% (0.06), which indicate that the difference between the performance of the

similarity coefficients are not significant. However, we noticed that there are several sit-

Result Analysis - Binary Data 100

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.63

0.58

0.52

0.49

0.49

0.46

0.45

0.44

0.43

CZE

0.59

0.50

0.44

0.40

0.36

0.34

0.33

0.30

0.28

CZE

0.60

0.72

0.68

0.70

0.70

0.76

0.73

0.70

0.68

JAC

0.63

0.59

0.50

0.49

0.48

0.44

0.44

0.42

0.39

JAC

0.59

0.56

0.45

0.42

0.35

0.35

0.32

0.31

0.27

JAC

0.61

0.67

0.72

0.71

0.76

0.75

0.72

0.71

0.68

Balloon

SAS

0.63

0.61

0.49

0.49

0.44

0.44

0.41

0.40

0.36

SIM

0.69

0.66

0.57

0.54

0.50

0.47

0.47

0.43

0.41

SPECT

SAS

0.61

0.55

0.48

0.42

0.39

0.35

0.34

0.31

0.29

SIM

0.60

0.50

0.43

0.38

0.35

0.30

0.30

0.29

0.27

Zoo

SAS

0.61

0.70

0.77

0.76

0.72

0.74

0.74

0.74

0.71

SIM

0.61

0.67

0.68

0.72

0.73

0.70

0.67

0.68

0.69

RAT

0.68

0.61

0.54

0.54

0.49

0.48

0.46

0.45

0.37

RAT

0.60

0.50

0.45

0.40

0.34

0.31

0.31

0.29

0.27

RAT

0.61

0.70

0.75

0.67

0.75

0.70

0.70

0.73

0.69

RAR

0.62

0.58

0.53

0.49

0.44

0.41

0.42

0.37

0.36

RAR

0.61

0.46

0.44

0.38

0.35

0.33

0.30

0.29

0.27

RAR

0.60

0.69

0.71

0.64

0.72

0.75

0.71

0.69

0.71

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.53

0.49

0.44

0.42

0.42

0.42

0.41

0.41

0.38

CZE

0.88

0.79

0.64

0.60

0.53

0.50

0.47

0.44

0.42

CZE

0.46

0.47

0.50

0.48

0.47

0.46

0.46

0.46

0.43

JAC

0.56

0.57

0.47

0.45

0.43

0.42

0.44

0.40

0.42

JAC

0.88

0.74

0.65

0.59

0.54

0.48

0.47

0.43

0.40

JAC

0.47

0.49

0.48

0.49

0.46

0.46

0.45

0.43

0.43

Lenses

SAS

0.52

0.45

0.43

0.43

0.41

0.39

0.39

0.35

0.34

SIM

0.52

0.47

0.45

0.42

0.42

0.41

0.38

0.41

0.38

Votes

SAS

0.88

0.72

0.65

0.62

0.55

0.51

0.47

0.42

0.41

SIM

0.88

0.76

0.66

0.59

0.55

0.50

0.48

0.46

0.44

Genes

SAS

0.47

0.47

0.49

0.48

0.47

0.47

0.44

0.46

0.42

SIM

0.45

0.43

0.47

0.45

0.44

0.45

0.45

0.43

0.42

RAT

0.51

0.45

0.42

0.43

0.44

0.38

0.36

0.33

0.33

RAT

0.88

0.76

0.66

0.56

0.54

0.51

0.47

0.45

0.41

RAT

0.45

0.45

0.47

0.46

0.47

0.45

0.47

0.45

0.45

RAR

0.51

0.46

0.47

0.45

0.44

0.38

0.40

0.42

0.38

RAR

0.88

0.76

0.64

0.59

0.54

0.49

0.45

0.45

0.43

RAR

0.46

0.45

0.46

0.47

0.44

0.44

0.42

0.42

0.41

Table 5.10: The F-measure scores for the binary datasets when NJW(K-means) spectral

clustering algorithm is used.

uations where some of the similarity measures frequently achieved either the highest or

the lowest value for a given dataset. Below, we discuss the quantitative results for each

individual dataset. For each dataset, we also provide the highest and lowest scores when

k is set to the number of true clusters.

Result Analysis - Binary Data 101

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.64

0.60

0.54

0.53

0.54

0.51

0.52

0.51

0.50

JAC

0.63

0.60

0.53

0.54

0.53

0.50

0.52

0.50

0.48

Balloon

SAS

0.63

0.62

0.50

0.55

0.50

0.51

0.48

0.48

0.44

SIM

0.70

0.68

0.60

0.58

0.56

0.55

0.54

0.52

0.50

RAT

0.69

0.64

0.57

0.59

0.56

0.54

0.53

0.53

0.47

RAR

0.63

0.59

0.56

0.54

0.49

0.47

0.48

0.45

0.44

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.55

0.51

0.47

0.46

0.45

0.48

0.48

0.48

0.45

JAC

0.59

0.60

0.51

0.49

0.47

0.49

0.50

0.47

0.49

Lenses

SAS

0.54

0.47

0.46

0.47

0.46

0.45

0.47

0.43

0.43

SIM

0.53

0.49

0.48

0.46

0.45

0.46

0.44

0.47

0.45

RAT

0.53

0.47

0.46

0.47

0.48

0.44

0.43

0.41

0.41

RAR

0.52

0.48

0.49

0.48

0.48

0.43

0.45

0.49

0.46

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.62

0.54

0.50

0.46

0.44

0.42

0.41

0.39

0.38

JAC

0.61

0.59

0.50

0.49

0.42

0.43

0.41

0.40

0.36

SPECT

SAS

0.63

0.58

0.52

0.48

0.46

0.43

0.42

0.40

0.38

SIM

0.63

0.56

0.49

0.46

0.43

0.40

0.39

0.38

0.36

RAT

0.63

0.55

0.51

0.48

0.43

0.41

0.40

0.38

0.36

RAR

0.63

0.51

0.49

0.45

0.42

0.41

0.39

0.38

0.37

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.88

0.80

0.68

0.64

0.59

0.57

0.55

0.53

0.51

JAC

0.88

0.76

0.69

0.64

0.60

0.56

0.55

0.52

0.49

Votes

SAS

0.88

0.75

0.69

0.67

0.61

0.58

0.55

0.50

0.50

SIM

0.88

0.78

0.70

0.63

0.61

0.57

0.55

0.54

0.52

RAT

0.88

0.78

0.69

0.61

0.61

0.58

0.55

0.53

0.51

RAR

0.88

0.78

0.68

0.63

0.60

0.56

0.53

0.53

0.52

Zoo Genes
k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.67

0.75

0.71

0.73

0.73

0.78

0.75

0.73

0.71

JAC

0.67

0.71

0.75

0.75

0.78

0.78

0.75

0.74

0.72

SAS

0.67

0.74

0.79

0.79

0.75

0.77

0.77

0.77

0.74

SIM

0.67

0.72

0.72

0.75

0.76

0.73

0.71

0.71

0.72

RAT

0.67

0.74

0.77

0.71

0.78

0.73

0.73

0.75

0.72

RAR

0.66

0.73

0.74

0.68

0.74

0.77

0.73

0.72

0.74

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.53

0.52

0.53

0.51

0.50

0.49

0.49

0.49

0.46

JAC

0.54

0.54

0.51

0.52

0.48

0.49

0.49

0.46

0.47

SAS

0.54

0.52

0.52

0.50

0.50

0.49

0.48

0.48

0.45

SIM

0.49

0.47

0.50

0.48

0.46

0.48

0.47

0.46

0.46

RAT

0.51

0.49

0.50

0.49

0.49

0.48

0.49

0.48

0.48

RAR

0.53

0.50

0.49

0.50

0.46

0.47

0.45

0.45

0.44

Table 5.11: The G-means scores for the binary datasets when NJW(K-means) spectral

clustering algorithm is used.

Balloon Dataset

The Balloon dataset achieved the best scores when the SIM and RAT coefficients are

used as the similarity coefficients. According to the F-measure scores, the SIM coeffi­

cient scored 0.69 and the RAT coefficient scored 0.68. In contrast, the RAR coefficient

scored the minimum score. The F-measure value for the RAR coefficient is 0.62 when

Result Analysis - Binary Data 102

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.64
0.56

0.56

0.51
0.44

0.40

0.34

0.29

0.26

JAC

0.64

0.58
0.55

0.45

0.42

0.41

0.32

0.29

0.28

SAS

0.64

0.56

0.59

0.47

0.47

0.39

0.39

0.33

0.34

Bolloon

SIM

0.56

0.47

0.47

0.41

0.38

0.32

0.29

0.26

0.20

RAT

0.56

0.50

0.48

0.42

0.38

0.34

0.30

0.25

0.29

RAR

0.64

0.58

0.53

0.50

0.52

0.47
0.42

0.36
0.31

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.89

0.86

0.82

0.77

0.73

0.63

0.54

0.49

0.47

JAC

0.82

0.68

0.74

0.68

0.67

0.55

0.48

0.44

0.41

Lenses

SAS

0.90

0.89

0.86

0.78

0.72

0.67

0.60

0.61

0.56

SIM

0.90

0.86

0.81

0.76

0.71

0.63

0.60

0.54

0.49

RAT

0.91
0.88

0.83

0.79
0.68

0.67

0.67

0.62
0.58

RAR

0.90

0.88

0.79

0.73

0.68

0.69
0.60

0.51

0.49

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.42
0.42

0.41
0.41

0.40

0.40

0.39

0.38

0.38

JAC

0.42

0.42
0.41
0.41

0.40

0.39

0.39

0.38

0.38

SPECT

SAS

0.42

0.41

0.41
0.41

0.40

0.40

0.38

0.38

0.37

SIM

0.38

0.38

0.38

0.37

0.36

0.37

0.37

0.36

0.36

RAT

0.38

0.39

0.37

0.36

0.37

0.37

0.36

0.36

0.35

RAR

0.42

0.42
0.41

0.41
0.41

0.41

0.40
0.40
0.39

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

0.34

0.32

0.31
0.30

0.29

0.28

0.25

0.23

0.24

JAC

0.34

0.34
0.29

0.28

0.25

0.26

0.25

0.24

0.24

Votes

SAS

0.34

0.30

0.30

0.28

0.25

0.26

0.25

0.24

0.23

SIM

0.34

0.33

0.30

0.29

0.31

0.29
0.29

0.26
0.26

RAT

0.34

0.32

0.30

0.30

0.26

0.27

0.25

0.24

0.25

RAR

0.34

0.32

0.29

0.29

0.27

0.25

0.26

0.24

0.24

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

1.02

0.72

0.64

0.51

0.44

0.30

0.29

0.30

0.25

JAC

0.98

0.77

0.59

0.46

0.40

0.30

0.34

0.29

0.27

Zoo

SAS

0.98

0.71

0.51

0.47

0.41

0.34

0.29

0.27

0.24

SIM

0.99

0.75

0.63

0.47

0.41

0.36

0.36

0.29

0.28

RAT

0.99

0.72

0.53

0.53

0.33

0.33

0.31

0.26

0.26

RAR

1.06

0.76

0.64
0.61

0.47
0.38
0.41

0.36
0.30

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

CZE

1.61
1.39

1.33

1.34

1.30

1.27

1.26

1.25

1.24

JAC

1.45

1.36

1.34

1.31

1.31

1.29

1.27

1.27

1.24

Genes

SAS

1.45

1.40

1.33

1.34

1.33

1.27

1.26

1.26

1.26

SIM

1.54

1.44
1.35

1.35
1.34

1.32

1.31

1.29
1.25

RAT

1.48

1.42

1.38

1.33

1.34

1.31

1.30

1.28

1.28

RAR

1.51

1.41

1.38

1.33

1.32

1.30

1.27

1.26

1.24

Table 5.12: The Entropy scores for the binary datasets when NJW(K-means) spectral

clustering algorithm is used.

k = 2. The G-means and Entropy scores also indicate a similar pattern. The maximum

F-measure score is 0.69 and the minimum is 0.62 when k = 2. The maximum G-means

score is 0.70 and the minimum is 0.63, whereas the minimum Entropy (the lower the

value the better) is 0.54 and the maximum is 0.64.

Lenses Dataset

The JAC similarity coefficient performed the best for the Lenses dataset. In contrast,

Result Analysis - Binary Data 103

the RAT similarity coefficient scored the lowest. The Entropy scores also show a similar

trend where the J AC coefficient performed the best and the RAT coefficient scored the

highest value (for Entropy the lower the value the better). The maximum F-measure,

G-means and the minimum Entropy scores are, 0.57, 0.60, and 0.68, respectively, when

k = 3. The minimum F-measure, G-means and the maximum Entropy scores are, 0.44,

0.46, and 0.89, respectively.

SPECT Dataset

According to the F-measure scores, the SPECT dataset performed well for the SAS and

RAR coefficients. In contrast, the G-means scores suggest that the SIM, RAT, SAS, and

RAR coefficients scored the highest values. When compared against the Entropy scores,

it achieved the lowest scores for the SIM and RAT coefficients. Therefore, we consider

the SAS, SIM, and RAT coefficients to be the best performers for this dataset. However,

we noticed that the difference is very low between the highest and lowest value when

k = 2. For F-measure and G-means both, this value is 0.02. The maximum F-measure

score is 0.61 and the minimum score is 0.59 when k = 2. The maximum G-means score

is 0.63 and the minimum is 0.61.

Votes Dataset

When consulting the external class information, all three evaluation measures suggest

that the Votes dataset performs equally well for all six coefficients. The highest and the

lowest F-measure and G-means score is 0.88 when k = 2. The Entropy score is also the

same for all the similarity measures. When k = 2, the Entropy score for this dataset is

0.34.

Zoo Dataset

According to the F-measure, G-means, and Entropy scores, the J AC and CZE coeffi­

cients scored the highest for this dataset. When k is set to the external number of classes,

the Entropy scores indicate that the RAR similarity coefficient scored the highest en­

tropy. The maximum F-measure and G-means scores are (when k = 7) 0.75 and 0.78,

respectively. The minimum scores are 0.63 and 0.73, accordingly.

Genes Dataset

According to the F-measure and G-means scores, the Genes dataset scored the highest

scores when the CZE, J AC, and RAT coefficients are used. For the same evaluation

measures, the RAR coefficient scored the lowest values when compared to the rest of

the similarity coefficients. Results from the G-means and Entropy measures also show

similar trends. The maximum F-measure and G-means scores when k = 8 are 0.46 and

0.49, respectively. The minimum scores are 0.42 and 0.45, accordingly.

Result Analysis - Binary Data 104

In the next section we analyze the results from this section and evaluate the perfor­

mance of the similarity measures.

5.3 Result Evaluation

In the previous two sections, we provided the quantitative results from our experiments.

The analysis showed similar results for both of the spectral clustering algorithms. The

results indicated that the average difference between the highest score and the lowest

score achieved for each of the datasets is low for all the evaluation measures. Recall

from Chapter 4, that we applied the Friedman test to measure the statistical significance

of our results. Figure 5.2 shows the results, when the Friedman test is applied on the

results from the SM(NCut) and NJW(K-means) algorithm. The p-values are 0.1839

and 0.9207, respectively. In this case, both the p-values are greater than 0.05. As

mentioned in Chapter 4, this indicate that the difference between the performance of the

proximity measures for binary data is not statistically significant on our datasets. The

Source SS df MS Chi-sq Prob>Chi-sq

Columns 19.0833 S
Error £6.9167 IS
Total 76 35

Source SS d£ HS Chi-sq Prob>Chi-sq

Columns 3.9167 S
Error 78.0833 ZS
Total 82 35

Figure 5.2: Results from the Friedman test when applied on the results from (a) the

SM(NCut) algorithm and (b) the NJW(K-means) algorithm.

average difference between the F-measure scores are 0.04 and 0.06 for SM(NCut) and

NJW(K-means) algorithm, respectively. The average differences for the G-means scores

are 0.039 and 0.06, accordingly. This indicates that the performance of the coefficients

is similar but varies slightly from one another. There is no single similarity coefficient

that outperformed for all or a majority of the datasets. In contrast, the results show

that the performance of the similarity coefficients varies depending on the datasets. One

similarity coefficient may perform slightly better than the others for a given dataset,

whereas for another dataset, a different coefficient may outperform. For example, the

J AC coefficient scored the highest scores for the Lenses dataset and the SIM coefficient

3.81667 7.S3
Z.27667

(a)

0.78333
3.12333

(b)

Result Analysis - Binary Data 105

scored the highest for the Balloon dataset. Nevertheless, one exception is the RAR

coefficient. The RAR coefficient frequently attained the lowest scores, compared to the

rest of the five similarity coefficients. Among the six datasets used for the experiments,

the RAR coefficient achieved the lowest scores in four (i.e. Balloon, Lenses, SPECT and

Zoo datasets) of the datasets when the SM(NCut) algorithm is used for testing. We

also found similar results for the RAR coefficient when the experiments are performed

on the NJW(K-means) algorithm. In this case, the four datasets, i.e. Balloon, SPECT,

Zoo, and Genes, also scored the lowest for the RAR similarity coefficient. Therefore, the

results indicate that the RAR coefficient is the only coefficient for which the performance

is lower, on average, than the other coefficients for majority of the datasets.

Different coefficients give different similarity values for a given pair of objects. Recall

from Chapter 3 that there are four variables (a, b, c and d) that are used to define the

similarity coefficients. If 1 is denoted as present (the positive cases) and 0 is denoted as

absent (the negative cases) then for any two instances (x and y) in the dataset, these

four variables are defined as: a = number of occurrences when Xi = 1 and yi = 1, b —

number of occurrences when x\ = 0 and yi = 1, c = number of occurrences when x, = 1

and yt = 0 and d = number of occurrences when x, = 0 and yi = 0. The coefficients

vary from one another depending on the weight they give on each of the four variables.

Since, in our case the results vary over the datasets, we observe the characteristics of the

datasets to find the possible causes.

In spectral clustering, the objects in a given dataset are considered the nodes in a

graph and the similarity between them are the edges between the objects. To find the

clusters from this data, the algorithms from this family perform a cut on this graph

such that the similarity within the clusters is maximized and the similarity between the

clusters is minimized. Since different coefficients give different similarity values for the

same pair of objects, the similarity matrix created from one coefficient may vary from

another coefficient. Therefore, depending on the values in the similarity matrix, the cut

position may also change. As such, the clustering results may also be different for two

different coefficients. For instance, consider a small dataset of four objects as given in

Table 5.13. Figure 5.3 contains the similarity matrix, degree matrix, Laplacian matrix

and the eigenvalue and eigenvector when the SIM coefficient and the RAR coefficient

are used as the similarity coefficient. When the SIM coefficient is used, the spectral

clustering algorithm returns one cluster with objects 1, 2, and 3 and a second cluster

with only object 4. In contrast, the RAR coefficient returns two clusters where one of

them contains object 1 and object 2 and the second cluster contains object 3 and object

Result Analysis - Binary Data 106

4. Now, depending on the true cluster labels, both the similarity coefficients may give

different values for the external evaluation scores.

ID al a2 a3 a4

1 0 6 1 0~
2 0 0 1 1

3 1 0 1 1

4 1 0 0 0

Table 5.13: Sample binary dataset.

Similarity
Matrix (W)

Degree
Matrix (D)

Lapladm
Matrix (L)

Second
Smallest

Eigenvalue
Eigenvector
associated

with the 2°d

smallest
eigenvalue

Clusters

Simple Matching Coefficient

0 0.7500 O.SOOO 0.5000
0.7500 O 0.7500 0.2500
0.5000 0.7S00 0 0.5000
0.5000 0.2500 0.5000 0

1.7500 0 0 0
0 1.7500 0 0
0 0 1.7S00 0
0 0 0 1.2500

1.7500 -0.7500 -0.5000 -0.5000
-0.7500 1.7S00 -0.7500 -0.2500
-0.5000 -0.7500 1.7S0O -O.SOOO
-O.SOOO -0.2SOO -0.5000 1.2S00

1.1628

-0.0361
-0 .4435
-0.0361

0.7218

Cluster!: 1,2,3
Cluster 2: 4

Russell and Rao

0 0.2500 0.2500 0
0.2500 0 O.SOOO 0
0.2500 0.5000 0 0.2500

0 0 0.2500 0

0.5000 0 0 0
0 0.7500 .0 0
0 0 1.0000 0
0 0 0 0.2500

0.5000 -0.2500 -0.2500 0
-0.2500 0.7S00 -0.5000 0
-0.2500 -0.5000 1.0000 -0.2500

0 0 -0.2500 0.2500

.0.8561

0.6311
0.4089

-0.2273
-1.5797

Cluster 1:1, 2
Cluster 2: 3, 4

Figure 5.3: The spectral clustering algorithm applied on the sample data given in Table

5.13. The first column contain the results when the SIM coefficient is used as the

similarity measure and the second column contain the results for the RAR coefficient.

Recall that our results from the previous section indicated that the RAR coefficient

performed slightly lower than the rest of the five coefficients. We noticed that the iL4.fi!

coefficient is the only coefficient that considers d in the denominator but not in the

numerator. The numerator, in this case is a (the number of positive matches), and the

denominator is a+b+c+d which is same as the total number of attributes in the dataset.

Therefore, this coefficient gives the proportion of positive matches calculated against the

total number of attributes. Other coefficients either neglect the negative matches (i.e.

http://iL4.fi

Result Analysis - Binary Data 107

CZE, J AC, SAS) or give equal weight to both the positive and the negative matches (i.e.

SIM, RAT). Combining the negative matches in the denominator, on average, results in

a smaller similarity value for a dataset, unless the dataset contains more l's than 0's.

For instance, for the Votes dataset, where the number of l's is more than the number of

0's, the RAR coefficient performed as well as the other coefficients. We noticed that the

similarity matrix constructed from the RAR coefficient often contains values in a smaller

range, where the similarity varies over several fixed values. If there are 3 attributes then

we know that the possible values are: 0 (when a = 0), 1/3 (when a = 1), 2/3 (when

a = 2), and 3/3 (when a = 3). Moreover, the frequency of scoring a higher similarity

value is also very low and most of the values that dominate the similarity matrix are

among the ones with smaller similarity value. This is because most of the datasets we

used contain more 0's than l's. A higher similarity value in this case means that two

objects contain many positive matches. Consider the Balloon dataset, which contains

4 attributes. There are five possible values that this coefficient may take (i.e. 0, 0.25,

0.5, 0.75, and 1.0). The similarity matrix for this dataset is mostly dominated by the

value 0.25 (42.90%) and 0.5 (29.06%). Therefore, the objects that may not otherwise

be placed together, are placed in the same cluster by the RAR coefficient for having the

same similarity value as the other objects in that cluster. This indicates that using the

variable d only in the denominator may slightly degrade the performance, especially for

the situations when the number of positive matches is low in the dataset.

As mentioned, the Balloon dataset contains four attributes. For all four attributes,

the values (1 and 0) represent two different states of an attribute with equal weight.

For instance, the attribute color has two values, yellow and purple, where 1 is used to

represent yellow and 0 is used to represent purple. Therefore, the attributes in this

dataset carry equal weight. Our results show that the SIM and RAT coefficient scored

the highest for this dataset. Recall from Chapter 3 that these two coefficients give

equal weight to both, the positive (1) and the negative (0) values as both contain the

variable d in their equations (in both, the numerator and the denominator). There are

several objects that are clustered differently by the rest of the four coefficients because of

not giving equal weight to both 1 and 0. For example, two objects from this dataset are

0\ — 1, 0, 0, 0 and 0 2 = 1, 0, 0,1. According to the class labels provided with the dataset,

they belong to the same true cluster. According to our results, when we used SIM as

the similarity coefficient, they are placed in the same cluster. In contrast, when we used

RAR as the coefficient, they are placed in two different clusters. The similarity between

these two objects is, 0.75 for the SIM coefficient and 0.25 for the RAR coefficient.

Result Analysis - Binary Data 108

The Lenses dataset contains six attributes. The first three attributes contain twice

the number of 0's as l's. For these three attributes, the l's represent the positive values

and carry more weight. Therefore, the significance of positive matches a is much higher

than the negative matches d. The rest of the three attributes are symmetric where both

the values l's and 0's carry equal weight. The results show that the J AC coefficient

performed well for this dataset and SIM, RAT and RAR coefficients scored the lowest.

Recall from Chapter 3 that the SIM coefficient and RAT coefficient both give equal

weight to both the variables a and d and that the J AC coefficient do not consider the

negative matches. Since we have more pairs of negative matches in the first three at­

tributes, including these pairs in the calculation of similarity affects the overall similarity.

Therefore, there are several situations where two objects that are different from one an­

other, have high similarity values and are placed in the same cluster. For instance, two

objects from this datasets are 0\ = 0,1,0,0,1,0 and 02 = 0,1,0,1,0,0. According to

the external class information, they belong to two different categories. When the SIM

coefficient is used as the similarity coefficient to cluster the objects, these two objects

are placed in the same cluster. In contrast, when the J AC coefficient is used, the objects

are placed in two different clusters.

In the case of SPECT and Genes, both the datasets contain more 0's than l's. The

SPECT dataset contains almost twice as many 0's (65.63%) as l's (34.37%), whereas the

Genes dataset contains almost 4 times as many 0's (80.09%) as l 's (19.91%). Our results

show that the 571S coefficient performed better than the other similarity coefficients.

This is a coefficient that gives more weight to the positive matches and neglects the

negative matches. This indicates that the positive attributes in these datasets are given

more weight than the negative attributes. Moreover, as we mentioned previously, the

datasets contain more 0's than l's. This measure also gives more weight to the unmatched

pairs in the denominator. As a result, if a pair of objects contains more unmatched pairs

than the positive matches, the similarity between the objects will be very low. In contrast,

the similarity will be high only if there are more positive matches. The SIM and RAT

coefficients performed slightly lower as they both give equal weight to the positive and

negative matches. Therefore, when there are many pairs of negative matches in between

a pair of objects these coefficients will give a very high similarity value. As such, they

may be placed together in the same cluster, despite being different from one another. We

also noticed that the two other coefficients (JAC and CZE), which are suitable for these

types of datasets, also perform well for the Genes dataset. The results also indicate that,

among these three coefficients, the performance is slightly better for SAS and J AC than

Result Analysis - Binary Data 109

CZE. The difference in general is very small; less than 1%. For these three coefficients,

the difference between the functions is that, while they all give equal weight to the

positive matches (variable a), they give different amounts of weight to the unmatched

pairs (variables b and c) in the denominator. For instance, the 5^45 coefficient gives

double weight to the unmatched pairs, the CZE coefficient gives the lowest weight (half

the weight) and the J AC coeffcient keeps the original. Therefore, the similarity value

will be low when the number of positive values (a) is small and the number of unmatched

pairs is relatively high. For instance, if a — 1 and b + c — 10 then, the similarity values

are 0.0476 for the SAS coefficient, 0.0909 for the JAC coeffcient, and 0.1667 for the CZE

coefficient. In contrast, when a is high, and b + c is low, the situation will be reversed.

For these two datasets, we have more 0's than l's and both of the datasets have a large

number of attributes. Therefore, this may be one of the possible reasons for the SAS

coeffcient and the JAC coefficient performing slightly better than the CZE coefficient.

The Votes dataset is the only dataset for which all the similarity coefficients achieved

almost the same scores. This dataset also differs from the rest of the datasets used in

this study in the sense that the number of l 's in the dataset is higher than the number of

zeros. The ratio of the number of l's and 0's is 53.30 : 46.70 (in percentage). The dataset

contains 16 attributes represented by the values, yes and no. We notice that for each

of the objects in the dataset, the number of l's on average is higher than the number

of 0's. One of the possible reasons the coefficients perform exactly the same is that the

inclusion of the negative matches does not have impact on the similarity. Therefore,

the similarity coefficients that only consider the positive matches perform similar to the

coefficients that consider both a and d.

The Zoo dataset contains 15 attributes to denote a number of features that are used

to describe each of the animals in the datasets. For each of the attributes, the values

denote the presence and absence of a feature in a given object in the dataset. According

to the SM(NCut) algorithm, the SIM coefficient and the RAT coefficient performed

the best and according to the NJW(K-means) algorithm, the SAS coefficient and the

JAC coefficient performed well. The attributes in the dataset give equal weight to both

the attribute values where 56.44% values are from absence (0's) and 43.56% values are

from presence (l 's). The SIM and RAT coefficients performed slightly better as they

both give equal weight to both the attribute values. One possible reason that the SAS

coefficient and the JAC coefficient also performed well for this dataset may be that the

ratio of 0's and l's is not too high. As for the NJW(K-means) algorithm, we notice, that

the algorithm tends to split the largest true cluster into smaller subgroups as k increases.

Result Analysis - Binary Data 110

This may be one possible reason that the NJW(K-means) algorithm provided a slightly

different result.

In summary, our results indicate that in terms of the evaluation measures, all of the

similarity coefficients show similar results except for the RAR coefficient. However, as

expected the difference between the performances of each individual coefficient depends

on the datasets. We noticed that when the amount of l 's is relatively higher than the 0's,

the performances of the similarity coefficients are the same (i.e. the Votes dataset). We

also noticed that when the datasets contain relatively more 0's than l 's (i.e. the SPECT

and Genes Dataset) and when the attributes give more weight to the positive values,

then the CZE, J AC and SAS coefficients performed well. All the three coefficients give

equal weight to the positive matches (a), do not consider the negative matches (d), and

only vary on the amount of weight each of them give on the unmatched pairs (b and c).

The results do not show any particular pattern within the performance of these three

coefficients. The only coefficient that scored the lowest by the evaluation measures for

majority of the datasets most often, is the RAR coefficient. Therefore, this coefficient

may not be a suitable choice when spectral clustering algorithms are performed on the

binary datasets.

5.4 Comparing the Performance of Splitting Meth­

ods

As mentioned above, the SM(NCut) algorithm uses a splitting point to bipartition the

eigenvector. We discussed five splitting methods, that are proposed in previous stud­

ies, in Chapter 4. In this section, we compare the results from the perspective of the

splitting methods. When comparing the splitting methods, the results from Table 5.8

and Table 5.9 show that the Split Zero method often performed well for most of the

datasets irrespective of the similarity measures used. The F-measure scores show that

in 51.43% cases the Split Zero method achieved the highest scores. As for the G-means

scores, in 54.28% cases, this method performed the best. We also noticed that in most

of the cases the Split Mean method achieved a score very close to the one obtained from

the Split Zero method. The difference is, on average, only 1.0 or 2.0 percent. This is

followed by the Split NCut2 method, which achieved the highest scores in 48.57% cases

for the F-measure and 42.86% cases for the G-means. In 34.28% (F-measure) and 40%

(G-means) cases the Split NCutl method achieved the highest scores. We found that

Result Analysis - Binary Data 111

there is a similarity between the values obtained from the Split NCutl and Split NCut2

methods. The Split NCutl method usually achieved either the same value or a value

very close to the score achieved by the Split NCut2 method. However, we also noticed

that in all the datasets except for the Zoo and Lenses datasets, these two splitting points

tend to have partitions with very small sets of objects. Therefore, the results from these

two splitting methods may be biased in some situations. Thus, even though the scores

show that the Split NCutl and Split NCut2 method work well, this claim may need to be

checked manually by looking at the partitions. For this reason, these two splitting points

may not always be a good option to consider. Among the five splitting points, the Split

Median method scored low most of the time. In 34.28% cases for the F-measure and

42.85% cases for the G-means, the splitting method scored the lowest values. This is also

confirmed by the low percentage of cases when the Split Median method achieved the

highest scores. The splitting method did not work well in any cases for the F-measure

scores and only worked well in 2.85% cases for the G-means score, which is very low

compared to the other splitting methods.

Recall from Chapter 2 that the eigenvector associated with the second smallest eigen­

value is used to partition the data into two subgroups. In the ideal case, this vector should

contain two discrete values and the signs of these values usually indicate the cluster as­

signments. We also discussed in Chapter 2 that the eigenvectors usually take continuous

values, rather than the two discrete values, when applied to real problems [58]. However,

we notice that even though the values are continuous, they range from positive to nega­

tive values. Thus, splitting at 0 will separate the positive values from the negative values

and this situation becomes very close to the ideal case. This is also true for the split

at mean method. In most of the cases, we noticed that the mean value is very close to

the point zero. In contrast, the split at median method usually performs poorly since it

splits the eigenvector exactly at the middle point, disregarding the values. Thus, we get

two same sized partitions which may not separate the clusters correctly. The case is also

similar for the splitting methods based on the normalized cut. These methods perform

a search over the eigenvector values and take the cluster that minimizes the NCut value.

For instance, the Split NCut2 method performs a search over m evenly spaced values and

considers the one that minimizes the NCut value as discussed in Chapter 2. In several

cases, these two methods create partitions with only a number of objects. Therefore, this

observation indicates that the Split Zero or Split Mean method may be a better choice

as a splitting method.

Result Analysis - Binary Data 112

5.5 Clustering Results

In this section, we analyze the results to determine the performance of the spectral

clustering algorithms on each of the datasets. Table 5.14 contains the best F-measure

scores for each of the datasets. For the SM(NCut) algorithm, this is the maximum score

achieved by the similarity measure that performed the best combined with the Split Zero

option. For the NJW(K-means) algorithm, this is the score when the number of clusters

is set to the number of true clusters for the similarity measure that scored the best.

Dataset SM(NCut) NJW(K-means)

Balloon 0.72 0.69

Lenses 0.59 0.57

SPECT 0.62 0.61

Votes 0.88 0.88

Zoo 0.94 0.75

Genes 0.52 0.46

Table 5.14: The F-measure scores for the SM(NCut) and NJW (K-means) spectral clus­

tering algorithm for the binary datasets.

The F-measure scores indicate that the SM(NCut) algorithm performs slightly better

than the NJW(K-means) algorithm. This confirms the work performed in [66] where

several different versions of the spectral clustering algorithm were compared. The ap­

proach, evaluation criteria, and the datasets considered for the work performed in [66]

are different from our work. In [66], the possible reason is not clearly indicated; however,

they suggest that the NJW(K-means) algorithm uses larger eigenvectors which may add

noise to the solution.

In terms of the datasets, the results from Table 5.14 indicate that the spectral clus­

tering algorithm, in general, performed very well for the Votes and Zoo datasets. We

may verify this by comparing the similarity matrix ordered by the true clusters and the

solution from the spectral clustering algorithms. If the dataset contains well-separated

clusters, than by ordering them according to the true cluster labels, we will get a block

diagonal similarity matrix [63]. The blocks on the main diagonal refer to each individ­

ual cluster where the similarity is high. The off diagonal boxes refer to the between

cluster similarity. Figure 5.4(b) depicts the ordered similarity matrix according to the

Result Analysis - Binary Data 113

true cluster information. It shows that there are two well-defined clusters in the dataset.

Figure 5.4(a) depicts the similarity matrix from the spectral clustering algorithm. In this

figure there are also two well-defined blocks representing the underlying clusters on the

main diagonal. The situation is also similar for the Zoo dataset. The Zoo dataset is an

example of an imbalanced dataset, as one of the true clusters contains relatively more

objects than the others. This indicates that the spectral clustering algorithm works well

even when the dataset is imbalanced.

(a) (fe)

Figure 5.4: The similarity matrix for the Votes dataset. (a) The similarity matrix ac­

cording to the results from the spectral clustering algorithm, (b) The similarity matrix

according to the true cluster index (sorted).

For the Genes, SPECT and Lenses datasets, the performance is comparatively poorer

than the other datasets. When we ordered the original similarity matrix according to

the true cluster index, the datasets also did not show any strong clusters. Figure 5.5 (a)

depicts the original similarity matrix sorted according to the true cluster labels. Notice

that the figure does not contain any blocks on the main diagonal. The results from

the spectral clustering algorithm also do not show any clear blocks with strong within

cluster similarity. Therefore, the spectral clustering algorithm did not work well, as the

true clusters according to the class labels do not correspond to the natural groupings.

The external cluster evaluation measures provide a numeric value to measure how

good a clustering solution is, compared to the true cluster information. When a score

is high, it indicates that the discovered clusters are very similar to the true clusters and

vise versa. However, it is also necessary to inspect the results to see how the clusters are

formed. For each of the datasets, we provide the solutions from the spectral clustering

algorithms in the next two sections.

Result Analysis - Binary Data 114

Figure 5.5: The similarity matrix for the SPECT dataset. (a) The similarity matrix

according to the true cluster index (sorted), (b) The similarity matrix according to the

results from the spectral clustering algorithm.

5.5.1 Clustering Results from the SM(NCut) Algorithm

Here we observe the clusters generated for each of the datasets when the SM(NCut)

algorithm is used. Figure 5.6 depicts the hierarchical structure of the Votes dataset. The

Root: Votes Dataset
(Democrats =267)

(Republicans = 168)

H (1:1): Democrats
(Democrats =223)
(Republicans = 10)

{ \ H (1:2): Republicans
(Republicans = 158)
(Democrats = 44)

Figure 5.6: The hierarchical tree structure of the Votes dataset when SM(NCut) algo­

rithm is applied.

tree starts from the root, which contains all the members from the dataset. Each square

box represents a node in the hierarchical tree and provides the dominating true cluster

labels and the number of members from each true cluster present in that particular node.

Since we know that the dataset contains two true clusters, we only show the first level of

the tree. The actual tree contains many nodes, as the algorithm continues to recursively

partition the nodes until a stopping criterion is satisfied. Table 5.2 contains the true

cluster distribution for this dataset. As the results suggest, the overall error rate for this

dataset is approximately 12.41% with 54 incorrectly clustered objects out of 435, when

compared to the true clusters. Among these 54 voters, 10 of them are the Republicans

wrongly placed with the Democrats, and 44 of them are the Democrats who are wrongly

clustered with the Republicans. Table 5.15 provides the original centroid along with

the centroids from the partitions from the first level of the hierarchy. We notice that

Result Analysis - Binary Data 115

the centroids are almost the same except for one attribute (attribute alO), where the

values differ from the original. The spectral clustering algorithms cluster the objects

such that the similarity within the cluster in maximized, whereas the similarity between

the clusters is minimal. Therefore, the objects that are wrongly placed according to the

true class, may be placed in a particular cluster by the spectral clustering algorithm, as

they are more similar to the other objects in that particular cluster.

a l

1

0

a2

1

1

a3

1

0

a4

0

1

a5

0

1

a6

0

1

Original Centroids

a7 a8 a9 alO a l l

1 1 1 0 0

0 0 0 1 0

al2

0

1

a l3

0

1

al4

0

1

a l5

1

0

a l6

1

1

True Cluster Labels

Democrat

Republican

a l

1

0

a2

1

1

a3

1

0

Centroids from the first level of the hierarchy

a4 a5 a6 a7 a8 a9 alO a l l a l2 a l 3

0 0 0 1 1 1 1 0 0 0

1 1 1 0 0 0 0 0 1 1

a l4

0

1

a l5

1

0

a l6

1

1

Dominating members

Mostly Democrat

Mostly Republicans

Table 5.15: The true cluster centroids from the original Votes dataset and the cluster

centroids from the clusters generated from the SM(NCut) algorithm.

Root: Zoo Dataset
(Mammals = 41) (Aves =20)

(Reptile = 5) (Fishes = 13) (Amphibians .
(Insect = 8) (Mollusks = 10)

H (1.1): Mammals
(Mammals = 41)

_̂ _
H (1.2): Rest of the members

(Aves =20) (Reptile = 5} (Fishes = 13)
(Amphibians = 4) (Insect = 6) (Mollusks = 10)

yr. ™ ™

H (2.1): Fishes, Reptile,
Amphibians, Mollusks

(Aves = 1) (Reptile = 4) (Fishes = 13)
(Amphibians = 4) (Mollusks = 7)

7

H (2.2): Aves, Insect
(Aves = 19) (Reptile = 1)

(Insect = 8) (Mollusks = 3)

H (3.1): Mollusks
(Mollusks = 7)

(Amphibians = 1)
(Aves = 1)

X
H (3.2): Fishes, Reptile,

Amphibians
(Reptile = 4) (Fishes = 13)

(Amphibians = 3)

--7=

H(3J) : Insect
(Insect = 8)

(Mollusks =2)

X

H (3.4): Aves
(Aves = 19)
(Reptile = 1)

(Mollusks = 1)

H (4.1): Fishes
(Fishes = 13)

H (4.2): Reptile,
Amphibians
(Reptile = 4)

(Amphibians « 3)

Figure 5.7: The hierarchical tree structure for the Zoo dataset when SM(NCut) algorithm

is applied.

The hierarchical tree of the Zoo dataset is given in Figure 5.7 and the class distribution

is given in Table 5.4. The overall error rate for this dataset is 5.95% with 6 incorrectly

Result Analysis - Binary Data 116

clustered animals out of the 101 animals. Thus, almost all the animals are placed in

their respective groups. We noticed that the algorithm failed to distinguish between the

members from the class Reptile (i.e. Sea snake, Slowworm, and Tortoise) and Amphibians

(i.e. Frog and Toad). Moreover, the six members that are incorrectly clustered are from

the class Reptile, Amphibians and Mollusks (i.e. Starfish, Worm, Clam, and Lobster).

While Amphibians are very similar to the class Reptile, on the basis that animals from

both the classes usually reside in both water and ground, the Mollusks usually live in

marine environment. This may be one of the reasons for placing some of the members

from this class with the members of classes Amphibians and the Reptiles. This dataset is

also an example of an imbalanced dataset with the largest class containing 41 members

out of the 101 members. However, the results from manual inspection and the F-measure

and G-means scores are exceptional for this dataset. Thus, the dataset is an example

where the algorithm works very well for the imbalanced dataset. The spectral clustering

algorithm separates the data by maximizing the within cluster similarity and minimizing

the between cluster similarity. Therefore, it does not make any assumption on the size

of the clusters. As such, if the data is imbalanced, but the within cluster similarity is

high and between cluster similarity is very low, it should find the clusters.

For the Balloon dataset the overall error rate is 36.84%, with 7 incorrectly clustered

objects out of the 19 instances. The Lenses dataset contains 24 instances, and only 10 of

them are correctly clustered with an error rate of 58.33%. The error rate for the SPECT

dataset is 44.63%. The dataset contains 242 instances and only 134 of them are correctly

clustered. The hierarchical tree, similar to the one given for the Zoo and Votes datasets,

is depicted in Figure 5.8. As we see, in both the partitions the dominating class includes

the patients with an abnormal heart condition. We look into the entire tree (the picture

depicts only the first level) to see whether at some point in the tree we have the patients

with a normal heart condition grouped together. However, we fail to find any such node

in the tree. In contrast to the Zoo dataset, the SPECT dataset is an example when the

spectral clustering algorithm failed to find correct clusters for the imbalanced datasets.

As depicted in Figure 5.5, the original dataset does not show well-defined structures.

The situation for the Genes dataset is also similar to the SPECT dataset. Only 64.56%

members from the Nucleus class and 49.03% from the Cytoplasm class are correctly

clustered. In most of the cases, the clusters are shared with the members from different

classes, which may be the reason for having a very low F-measure and G-means values.

Result Analysis - Binary Data 117

Root: SPECT Dataset I
(Normal = 36}

(Republicans = 206)

-^—^zz_
H (1:2): Abnormal
(Abnormal = 120)

(Normal =22)

Figure 5.8: The hierarchical tree structure for the SPECT dataset when SM(NCut)

algorithm is applied.

5.5.2 Clustering Results from the NJW(K-means) Algorithm

In this section, we discuss the clustering results from the NJW(K-means) algorithm.

Table 5.14 provides the best F-measure scores for each of the datasets. The performance

of the Votes dataset is the same for both the algorithms. However, the performance

of the Zoo dataset is degraded for the NJW(K-means) algorithm. We notice that the

algorithm splits the larger true clusters into smaller clusters, rather than separating the

true clusters of smaller sizes into individual groups as the number of clusters increases.

One possible reason for this, is that the algorithm uses the K-means algorithm to discover

the clusters from the k eigenvectors and the K-means algorithm has the tendency to

discover clusters of uniform sizes [79]. The Zoo dataset is an imbalanced dataset, as one

of the true clusters contains relatively more objects than the others. Therefore, as the

number of clusters increases, the algorithm splits the largest true cluster into several

smaller groups, resulting in lower F-measure scores. The number of true clusters for the

Zoo dataset is 7. Below we provide each of the cases when k is in between [2..7] to show

how the clusters are formed as the number of k increases.

k = 2: Cluster 1 includes all the members from Class 1 which represents the animals

from class Mammals from the animal kingdom. Cluster 2 contains the rest of the

members. The overall error rate is 39.60%.

k = 3: Cluster 1 comprises the members from class Mammals, Cluster 2 contains mostly

members from Class 2 which denotes the class Aves from the animal kingdom.

Cluster 3 contains the rest of the animals. The overall error rate is 27.72% and

this is due to the members of Cluster 3.

k = 4: In this case, apart from separating the members from classes Mammals (Cluster

1) and Aves (Cluster 2), the members from class Insect are also accurately grouped

H (1:1): Abnormal
(Abnormal = 88)

(Normal = 14)

Result Analysis - Binary Data 118

separately in Cluster 3. The rest of the members are placed in Cluster 4- The error

rate in this case is 18.81%.

k — 5: The class Mammals, which is the largest with 41 members, is split into two

separate clusters (Cluster 1 and Cluster 2). Cluster 3, and Cluster 4 mostly contain

members from class Aves and Insect including a number of members from other

classes. Cluster 5 contains the members from class Reptiles, Fishes, Amphibians

and Mollusks. The error rate is 37.63%.

k = 6: The class Mammals is split into three clusters this time. Cluster 4 mostly com­

prises the members from class Aves and Insect and Cluster 5 contains the members

from class Fishes. Cluster 6 includes the members from class Reptiles, Fishes and

Mollusks. We notice that one common characteristic between the members from

class Aves and the members from class Insect is that they are all airborne. In

contrast, the common characteristics for the members from classes Reptiles, Fishes

and Mollusks are that they are mostly aquatic and predator. This may be one of

the reasons for which they are placed together.

k = 7: In this case, the class Mammals is again split into two different clusters. Cluster

3, Cluster 4, Cluster 5, and Cluster 6 mostly comprise the members of classes Aves,

Fishes, Insects and Mollusks, respectively. Cluster 7 is shared by the members of

classes Reptiles and Amphibians.

Thus, the results show that as the number of clusters increase, the class with the largest

number of members is split into smaller clusters. In addition, the members from class

Reptiles and class Amphibians almost always share a cluster. The reason for this is that

the members from both the classes have some characteristics in common (e.g. they all

reside in both water and ground) and when clustering is performed, the members from

these classes are placed in one cluster as the objects have similar attribute values.

The Votes dataset contains 435 instances and among them 87.82% objects are cor­

rectly clustered when k = 2. Figure 5.9 shows the visual representation of the clusters

of the Votes dataset when K-means is performed on the largest two eigenvectors. In

this case, the centroids of the clusters (when k = 2) are also similar to the ones given in

Figure 5.15 for the first level of the hierarchical structure, when the SM(NCut) algorithm

is applied to the dataset. For the Balloon dataset, the percentage of incorrectly clustered

instances is 36.84%, with 7 (out of 19) objects wrongly placed in different clusters. The

Lenses dataset also has a high error rate of 62.56%, with 15 out of 24 objects wrongly

Result Analysis - Binary Data 119

placed in different clusters (when k = 3). Similarly to the Zoo dataset, in this case the

largest true cluster is also divided into several smaller clusters. The SPECT dataset also

has a high error rate of 46.69%. The evaluation scores from Table 5.10 and Table 5.11

c
a
n

D
e

&*$ J
=§xS

<>*<*

f % * * * < ^

Figure 5.9: Cluster visualization for the Votes dataset when K-means is performed on

the two largest eigenvectors.

show that the Genes dataset also performed poorly. Recall that the dataset determines

the localization of each of the genes based on a number of functions in which they par­

ticipate. When k = 2, we find that one of the clusters is mostly comprised of members

from class Nucleus, which is the largest group with 539 members. The cluster identifies

345 genes from this class. The second cluster includes the rest of the objects including

the remaining members from class Nucleus. The total error rate (when k = 2) is 53.70%.

When A; = 3, the error rate is 52.49%. In this case, two of the clusters contained members

mostly from class Nucleus and class Cytoplasm, and the third cluster contain the rest of

the members. When k is set to 8 (the number of true clusters), the algorithm subdivided

the largest true cluster into several smaller clusters. The rest of the clusters contain the

members from various classes.

5.6 Chapter Summary

Datasets with binary variables are composed of two states (i.e. presence-absence, yes-no,

1-0). There are a number of coefficients that compute the similarity between the binary

objects. This chapter discussed the performance of six such similarity measures that are

suitable for binary datasets. To compare and evaluate the performance of the coefficients,

we first performed the spectral cluster analysis on six binary datasets. We then evaluated

Result Analysis - Binary Data 120

the results from cluster analysis using a number of external evaluation measures. Next,

the similarity coefficients were compared using the results obtained from the external

evaluation measures.

Our results indicated that the Russell and Rao (RAR) similarity coefficient performed

poorer than the rest of the five similarity coefficients. For the majority of the datasets,

this coefficient scored the lowest. Recall from Chapter 2 that, this coefficient is the

only coefficient that considers the negative matches in the denominator but not in the

numerator. Therefore, when the spectral clustering algorithm is applied on the binary

datasets, this coefficient may not be a proper choice. The three coefficients (Czekanowski

(CZE), Jaccard {JAC), and Sokal and Sneath (SAS)) that neglect the negative matches,

give equal weight to the positive matches, and vary mostly on the weight given on the

unmatched pairs, did not show any particular pattern within their performance. We

also observed that the performance of the coefficients depends heavily on the datasets.

Therefore, we analyzed the datasets to determine the possible reasons that caused the

differences in the performance of each coefficient. Our analysis showed that the issues

that affect the performance most are, the weight given on the positive and negative

matches, the amount of 0's and l's in the dataset, and the amount of unmatched pairs.

We also compared the performance of the splitting methods of the SM(NCut) algorithm.

The results showed that the Split Zero and Split Mean methods often performed well. In

contrast, the Split NCutl and Split NCut2 methods often produced imbalanced clusters.

Therefore, based on our results, the Split Zero or Split Mean methods may be a preferred

selection for the SM(NCut) algorithm. The results from the two spectral clustering

algorithms are also comparable. Based on the evaluation scores, we noticed that the

SM(NCut) algorithm outperformed the NJW(K-means) algorithm most of the time. One

possible reason may be the use of the larger eigenvectors in the NJW(K-means) algorithm

which might have added noise to the solution. However, this needs further research and

more in depth experimentation to establish a strong conclusion.

In the next chapter, we perform a similar analysis for the similarity coefficients suit­

able for the datasets with mixed variables.

Chapter 6

Result Analysis - Mixed Data

In practical applications, datasets often combine attributes of mixed types. As mentioned

in Chapter 1, the most common types are binary, numeric, and nominal attributes. Most

of the traditional cluster analysis algorithms are suitable for datasets of a particular type

(numeric or nominal). Nevertheless, the spectral clustering algorithm is capable of han­

dling attributes of any type so long as a similarity matrix is constructed from the dataset.

In Chapter 3, we discussed a number of proximity coefficients particularly suitable for

datasets where the attributes are mixed. Using these coefficients, we construct the sim­

ilarity matrices as discussed in Chapter 4 and use them as an input to two different

versions of the spectral clustering algorithm. In this chapter we evaluate the results ob­

tained from these experiments to compare the performance of the proximity measures.

The chapter begins in Section 6.1 with a description of the datasets used for the ex­

periments. Next, in Section 6.2, we provide the quantitative results from the spectral

clustering algorithms obtained from the external evaluation measures. This section is

followed by Section 6.3, where we perform an evaluation on the results. We then discuss

the clusters formed from the spectral clustering algorithms in Section 7.4. We conclude

the chapter with a summary in Section 6.5.

6.1 Mixed Datasets

In this section we describe each of the datasets used in our experiments to compare the

performance of the proximity measures for mixed data. All the datasets are obtained

from the UCI repository [3]. The datasets are selected to have different characteristics.

First, they all vary in size. For instance, the largest dataset contains 690 (CRX dataset)

121

Result Analysis - Mixed Data 122

instances and the smallest dataset includes 24 (Lenses dataset) instances. Second, they

are based on real-world problems. For example, the Hepatitis dataset is a clinical dataset,

whereas, the CRX dataset is a credit card application dataset. The datasets used in this

study also contain the true cluster information which is used for the assessment of the

results. The datasets also vary in the number and size of the true clusters. For instance,

the Hepatitis dataset is an imbalanced dataset where the size of one of the true clusters

is comparatively larger than the others. However, the true cluster information is strictly

used for the cluster evaluation purpose. We provide a brief description for each of the

datasets below. We also provide the true cluster information for each of the datasets and

refer to them as either true cluster or class in the rest of the chapter.

Automobile (Auto) Dataset: The dataset comprises 205 instances and 25 attributes.

There are 15 numeric attributes, 6 nominal attributes, and 4 binary attributes

associated with each instance. According to the information provided with the

dataset, a number of these attributes may be considered and used as the true

cluster attribute. We use the attribute that represents the risk rating (also known

as the Symboling) as the class attribute, which indicates the degree to which the

automobile is more risky than its price. This attribute's values range from +3 to

—2. A positive value indicates that the vehicle is risky, whereas a negative value

indicates that the automobile is safe. The dataset contains 41 missing values, which

is 1.14% of the entire attribute values, and these are replaced using WEKA - an

open source data mining software [76], as part of the pre-processing task. WEKA

replaces the missing values by modes if the attribute is nominal or binary and by

means if the attribute is numeric [76]. The true cluster distribution for this dataset

is given in Table 6.1.

True

Clusters

1

2

3

Number of

Members

54

32

27

True

Clusters

0

-1

-2

Number

of Members

67

22

3

Table 6.1: The true cluster distribution of the Automobile (Auto) dataset.

Credit Approval (CRX) Dataset: The instances in this dataset represent various

attributes of credit card applications and the class labels consider whether or not

Result Analysis - Mixed Data 123

the credit card application is approved by the company. For this dataset, all

attribute names and values are changed to meaningless symbols to protect the

confidentiality of the data [3]. There are 6 numeric attributes, 5 nominal attributes,

and 4 binary attributes. There are 690 instances in total and 67 missing values in

the entire dataset. The missing values are replaced by WEKA. The true cluster

distribution for this dataset is given in Table 6.2.

True Cluster Number of Members

+ (Approved) 307

-(Not Approved) 383

Table 6.2: The true cluster distribution of the CRX dataset.

Dermatology Dataset: The Dermatology dataset determines the type of a disease

called Eryhemato-Squamous from various attributes. The attributes include the

clinical as well as the histopathological features of the patients suffering from the

disease. According to the dataset, the disease is categorized into six different types

and the type attribute is used as the true cluster attribute (Table 6.3). There

are 366 instances and 33 attributes (32 numeric attributes and 1 binary attribute)

in the dataset. However, one of the attributes has many missing values and is

therefore discarded for this task. The rest of the dataset has 8 missing values.

Class Number of Members

1 (Psoriasis) 112

2 (Seboreic Dermatitis) 61

3 (Lichen Planus) 72

4 (Pityriasis Rosea) 49

5 (Cronic Dermatitis) 52

6 (Pityriasis Rubra Pilaris) 20

Table 6.3: The true cluster distribution of the Dermatology dataset.

Hepatitis Dataset: The Hepatitis dataset predicts whether a patient with hepatitis

will survive or not by examining various clinical attributes collected from the pa­

tients affected by the disease. The dataset contains 155 examples and there are 20

Result Analysis - Mixed Data 124

attributes including the class attribute. There are 5 numeric attributes, 1 nominal

attribute, and 13 binary attributes in the dataset. The dataset is an example of an

imbalanced dataset, as there are only 32 examples (out of 155) that fall into the

category in which the patients will most probably die from the disease. There are

162 missing values (5.2% of the total attribute values) in the dataset. The class

distribution is given in Table 6.4.

Class Number of Members

Live 123

Die 32

Table 6.4: The true cluster distribution of the Hepatitis dataset.

Post-Operative Dataset: This dataset provides information to determine the place

to which the post-operative patients should be sent. The decision is made by exam­

ining various attributes, including the body temperature, blood pressure, amongst

others. The options are: I - patients are transferred to the intensive care unit, S

- the patients are sent home, and A - the patients are sent to the general hospital

floor. There are 90 instances in the dataset and 8 attributes (5 Nominal, 2 binary,

and 1 Numeric attribute) excluding the class attribute. Only 3 of the values are

missing in the dataset and are replaced using WEKA. Table 6.5 contains the class

distribution for this dataset.

Class

A

S

I

Number of Members

64

24

2

Table 6.5: The true cluster distribution of the Post-Operative dataset.

Soybean Dataset: The large Soybean dataset initially contained 307 instances and

19 classes. However, only 15 classes are used in most of the prior studies. The

remaining four classes either involve very few examples, or contain mostly missing

values, and thus, are discarded in this study also. We have a total of 290 instances

and 15 classes to consider. There are 35 attributes (18 nominal and 17 binary

Result Analysis - Mixed Data 125

attributes) associated with each instance. There are also 390 missing values and

these are replaced using WEKA. The classes denote various diseases of the soybean

plant that are diagnosed by analyzing the attribute values. The class distribution

is given in Table 6.6.

Class

Alternarialeaf-spot

Anthracnose

Bacterial-blight

Bacterial-pustule

Brown-spot

Brown-stem-rot

Charcoal-rot

Diaporthe-stem-canker

Number of Members

40

20

10

10

40

20

10

10

Class

Downy-mildew

Frog-eye-leaf-spot

Phyllosticta-leaf-spot

Phytophthora-rot

Powdery-mildew

Purple-seed-stain

Rhizoctonia-root-rot

Number of Members

10

40

10

40

10

10

10

Table 6.6: The true cluster distribution of the Soybean dataset.

A summary of the datasets as discussed above is given in Table 6.7.

Dataset Instances True Clusters Attributes Notes

Automobile
CRX
Dermatology
Hepatitis
Post Operative
Soybean

205
690
366
155
90
290

6
2
6
2
3
15

25
15
33
19
8
35

Imbalanced, 1.14% missing values
0.6% missing values
Imbalanced, 0.06% missing values
Imbalanced, 5.2% missing values
Imbalanced, 0.37% missing values
3.7% missing values

Table 6.7: Summary of the datasets with the mixed data types. Given in the table (from

left) the name of the datasets, the number of instances, the number of true clusters, the

number of attributes, and several additional information about the datasets.

6.2 Comparison of Proximity Measures

In this section we provide the quantitative results from our experiments on datasets

with mixed variable type. To compare the performance of the proximity measures for

datasets with mixed variables, we first apply the spectral clustering algorithms on each

of the datasets. Recall from Chapter 2, that all of the experiments are performed on two

different versions of spectral clustering algorithm: 1) Normalized Cut spectral clustering

Result Analysis - Mixed Data 126

algorithm (SM(NCut)) and 2) Spectral algorithm with K-means (NJW(K-means)). The

results from these two algorithms are assessed using the external evaluation measures

as discussed in Chapter 4. It is important to note that the class labels or the true

clusters are only used for the assessment of the results and that these attributes are not

used during clustering. The performance of the proximity measures are then compared

and evaluated by analyzing the scores from external evaluation measures. In Chapter

3, we discussed two existing proximity coefficients suitable for these types of datasets.

The coefficients are Gower's General Dissimilarity Coefficient (GOWER) and Laflin's

General Coefficient (LAFLIN).

6.2.1 Results from SM(NCut) Spectral Clustering Algorithm

Table 6.8 provides the F-measure and G-means scores when the SM(NCut) algorithm is

used as the cluster analysis method. Recall from Chapter 4 that the Entropy measure

may not be suitable for evaluating hierarchical clustering solutions. Therefore, we do not

consider this measure to evaluate the clustering results from the SM(NCut) algorithm.

As mentioned in Chapter 4, there are five splitting methods that may be used to discover

the partitions. These splitting methods are Split Zero, Split Mean, Split Median, Split

NCutl, and Split NCut2. In Chapter 5 we observed that the performance of the Split

Zero method and the Split Mean method is better than the Split Median, Split NCutl,

and Split NCut2 methods. The Split Median method always produces two equal sized

partitions, giving emphasis to the size of the clusters, and may not be suitable when the

sizes of the true clusters are not the same. The Split NCutl and Split NCut2 methods

perform a search over the eigenspace, and in several cases produce imbalanced partitions.

Figure 6.2 depicts the average F-measure scores for each of the datasets. Recall from

Chapter 4, that a higher F-measure and G-means value indicates a better result. Below

we provide the statistics for each of the datasets individually.

Automobile Dataset

For this dataset, the GOWER coefficient performs better than the LAFLIN coefficient.

The average F-measure score for the GOWER coefficient is 0.48 and the average G-

means score is 0.51. The LAFLIN coefficient scored 0.46 for F-measure and 0.49 for

G-means. The Split Zero and Split Mean methods both scored 0.46 for F-measure. The

lowest F-measure score is 0.44, whereas the lowest G-means score is 0.48. The average

F-measure scores fall between 0.46 and 0.48. The average G-means scores fall in the

range [0.49 — 0.51]. Therefore, both the F-measure and G-means scores indicate that the

Result Analysis - Mixed Data 127

Split Zero

Split Mean

Split Median

Split NCut l

Split NCut2

Split Zero

Split Mean

Split Median

Split NCut l

Split NCut,2

Automobile

Gower

0.46

0.46

0.46

0.49

0.51

Laflin

0.44

0.46

0.46

0.44

0.48

Automobile

Gower

0.49

0.50

0.48

0.53

0.53

Laflin

0.48

0.49

0.49

0.50

0.50

CRX

Gower

0.76

0.76

0.76

0.78

0.79

Laflin

0.79

0.79

0.79

0.72

0.71

CRX

Gower

0.76

0.76

0.76

0.78

0.80

Laflin

0.79

0.79

0.79

0.73

0.72

F-i measure

Dermatology

Gower

0.85

0.84

0.82

0.83

0.85

G

Dernic

Gower

0.86

0.85

0.83

0.84

0.86

Laflin

0.87

0.82

0.70

0.70

0.82

-means

itology

Laflin

0.87

0.83

0.73

0.72

0.83

Hepatitis

Gower

0.71

0.73

0.70

0.74

0.80

Laflin

0.73

0.75

0.69

0.73

0.80

Hepatitis

Gower

0.74

0.75

0.73

0.75

0.81

Laflin

0.75

0.77

0.72

0.75

0.81

Post Operative

Gower

0.56

0.56

0.55

0.67

0.65

Laflin

0.56

0.56

0.57

0.67

0.66

Post Operative

Gower

0.57

0.58

0.56

0.67

0.67

Laflin

0.57

0.57

0.58

0.67

0.66

Soybean

Gower

0.70

0.70

0.64

0.64

0.63

Laflin

0.70

0.70

0.64

0.56

0.66

Soybean

Gower

0.72

0.72

0.66

0.67

0.65

Laflin

0.72

0.72

0.66

0.59

0.68

Table 6.8: The F-measure and G-means scores from the SM(NCut) algorithm for the

datasets with mixed variable type.

0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

• Gower

• Laflin

Auto CRX Dermatology Hepatitis Post Soybean
Operative

Datasets

Figure 6.1: The average F-measure scores for the mixed datasets.

difference between the coefficients is very low.

C R X Dataset

The average F-measure scores indicate that the CRX dataset performs slightly better for

the GOWER coefficient than for the LAFLIN coefficient. However, the LAFLIN coeffi­

cient performs better for the Split Zero, Split Mean, and Split Median splitting methods,

whereas the GOWER coefficient performs better for the Split NCutl and Split NCut2

splitting methods. As mentioned, the Split Zero and Split Mean splitting methods often

provide robust results. Therefore, we consider the LAFLIN coefficient for this dataset.

The highest score by the LAFLIN coefficient is 0.79 and the lowest score is 0.76 (the

Result Analysis - Mixed Data 128

GOWER coefficient) for both, F-measure and G-means. The average F-measure and

G-means scores fall between the range [0.76 — 0.77] and also indicate that the difference

is very low.

Dermatology Dataset

The Dermatology dataset performs well for the GOWER coefficient. The average F-

measure and G-means scores for the GOWER coefficient are 0.84 and 0.85, respectively.

For the LAFLIN coefficient, the scores are 0.78 (F-measure) and 0.80 (G-means). There­

fore, the overall range for the average F-measure is [0.78 — 0.84]. The average G-means

score falls in between 0.80 and 0.84.

Hepatitis Dataset

The average F-measure and G-means for this dataset are 0.74 and 0.76, respectively.

The results indicate that the average scores are the same for both the coefficients. How­

ever, the F-measure scores for the LAFLIN coefficient when the Split Zero and Split

Mean splitting methods are used are slightly higher than the scores from the GOWER

coefficient. This indicates that the performance of the LAFLIN coefficient is slightly

better than the GOWER coefficient. For instance, the LAFLIN coefficient scored 0.73

(G-means: 0.75) and the GOWER coefficient scored 0.71 (G-means: 0.74) when the Split

Zero is used as the splitting method.

Post-Operative Dataset

For this dataset, the average F-measure and G-means scores are same for both of the

coefficients. The average F-measure score is 0.60 and the average G-means score is 0.61.

This also indicates that the performance of both the coefficients is the same for this

dataset.

Soybean Dataset

The average F-measure and G-means scores suggest that the GOWER coefficient per­

forms better for this dataset. However, we notice that for Split Zero, Split Mean, and

Split Median, both F-measure and G-means scores are similar. The highest F-measure

score is 0.70 and the highest G-means score is 0.72. The lowest F-measure score is 0.64

and the lowest G-means score is 0.66. The average F-measure score varies from 0.65 to

0.66 and the average G-means scores varies from 0.67 to 0.68, indicating that the average

difference between the GOWER coefficient and the LAFLIN coefficient is very low.

From the discussion above, we observe that the GOWER coefficient performs slightly

better than the LAFLIN coefficient when the average F-measure and G-means scores are

considered. In four (i.e. Automobile, CRX, Dermatology, and Soybean dataset) out of

six datasets, the average scores are higher for the GOWER coefficient than the LAFLIN

Result Analysis - Mixed Data 129

coefficient. After considering the splitting methods, two datasets (i.e. Automobile and

Dermatology dataset) score well for the GOWER coefficient. In contrast, the LAFLIN

coefficient performs slightly better for the CRX and Hepatitis dataset when splitting

methods are considered. The performance of both the coefficients is the same for the

Post-Operative and Soybean dataset when Split Zero and Split Mean are used as the

splitting points.

6.2.2 Results from NJW(K-means) Spectral Clustering Algo­

ri thm

Table 6.9 provides the evaluation scores from the NJW(K-means) spectral clustering al­

gorithm. Recall from Chapter 2, that this algorithm requires the number of clusters (k)

as input, in addition to the similarity matrix. Table 6.9 provides the results when k is

set to the number of true clusters (which is available to us). The number of true clusters

for each dataset is given in Table 6.7. Figure 6.2 illustrates the F-measure scores for each

dataset. Recall from Chapter 3, that the higher the F-measure and G-means scores,

the better the solution. In contrast, the lower the Entropy scores, the better. In several

situations, results may vary from F-measure and G-means to Entropy. According to [78],

Entropy tends to favor results with uniform cluster sizes. Therefore, in such situations,

we rely more heavily on the scores from F-measure and G-means.

F-measure

G-means

Entropy

Automobile

Cower Laflin

0.47 0.45

0.48 0.46

1.12 1.09

CRX

Gower Laflin

0.76 0.80

0.76 0.80

0.54 0.49

Dermatology

Gower Laflin

0.84 0.82

0.86 0.84

0.24 0.31

Hepatitis

Gower Laflin

0.71 0.74

0.74 0.76

0.41 0.40

Post Operative

Gower Laflin

0.52 0.47

0.53 0.49

0.58 0.58

Soybean

Gower Laflin

0.57 0.53

0.61 0.56

0.84 0.92

Table 6.9: The external evaluation scores (F-measure, G-means, and Entropy) from the

NJW(K-means) algorithm for the datasets with mixed variables when k (the number of

clusters) is set to the true cluster number.

Automobile Dataset

For this dataset, k is set to 6, the number of true clusters. According to the F-measure

and G-means scores, the GOWER coefficient performs well for this dataset. The highest

scores are 0.47 for F-measure and 0.48 for G-means. The lowest scores are 0.45 and 0.46,

respectively. The lowest Entropy is 1.09 and the highest Entropy is 1.12. The difference

between the highest and lowest score is 0.02, which indicates that the difference is very

low for the coefficients.

Result Analysis - Mixed Data 130

0.90 -i
0.80 — T — 1 1 J—1
0.70 1 1—T"

£ 0.60 = — —
| 0.50 1 — j = — -
1 0.40 — I I I
d. 0.30 —

0.20 —
0.10 —
0.00 4—I • 1 r—I 1 1 1—I 1 ' r—' 1 1 1—" 1 1 i—l 1

Auto CRX Dermatology Hepatitis Post Soybean
Operative

Dataset

Figure 6.2: The F-measure scores for the mixed datasets for NJW(K-means) algorithm.

CRX Dataset
The evaluation scores indicate that, for this dataset, the LAFLIN coefficient performs

better than the GOWER coefficient (when k = 2). The highest F-measure and G-means

score is 0.80 and the lowest score is 0.76, for both the evaluation measures. The average

difference between the highest and lowest scores is 0.04, which, is again, very low. The

lowest Entropy is 0.49 and the highest Entropy is 0.54.

Dermatology Dataset
The GOWER coefficient performs well for the Dermatology dataset when k is set to 6,

which is the number of true clusters. For this dataset the highest F-measure score is

0.84, whereas the lowest score is 0.82. This again shows that the difference is very low

between the scores. The highest G-means score as scored by the GOWER coefficient

is 0.86 and the lowest score as scored by the LAFLIN coefficient is 0.84. The Entropy

value for the GOWER coefficient is 0.24 and 0.31 for the LAFLIN coefficient.

Hepatitis Dataset
For Hepatitis dataset, the LAFLIN coefficient performs better than the GOWER coeffi­

cient when k = 2. The F-measure scores are 0.74 for the LAFLIN coefficient and 0.71 for

the GOWER coefficient. The G-means value for the LAFLIN coefficient is 0.76 and 0.74

for the GOWER coefficient. The difference between the highest and lowest F-measure

score is 0.03 and 0.02 for G-means. Low differences indicate that the results from the

two coefficients are not very different from one another.

Post-Operative Dataset

The Post-Operative dataset scores the highest F-measure and G-means scores for the

GOWER coefficient. The F-measure scores are 0.52 and 0.47 for the GOWER coeffi-

• Gower

a Lafiin

Result Analysis - Mixed Data 131

cient and the LAFLIN coefficient, respectively. The G-means scores are 0.53 and 0.49,

accordingly. Both of the coefficients achieve the same Entropy score (0.58). The number

of true clusters for this dataset is 3 and this value is used as the number of clusters.

Soybean Da tase t

The GOWER coefficient achieves the highest F-measure and G-means scores and the

lowest Entropy score for the Soybean dataset when k = 15. The highest and lowest

F-measure scores are 0.57 for the GOWER coefficient and 0.53 for the LAFLIN coeffi­

cient, respectively. The G-means score for the GOWER coefficient is 0.61 and 0.84 for

the Entropy. The G-means and Entropy scores for the LAFLIN coefficient are 0.56 and

0.92, respectively.

The above discussion indicates that the GOWER coefficient scored the highest F-

measure and G-means scores in four out of six datasets. The datasets are Automobile,

Dermatology, Post-Operative, and Soybean. The LAFLIN coefficient scored the highest

scores for the CRX and Hepatitis dataset. We also observe that, for all the datasets the

difference between the scores is very low. The average difference between the highest

and the lowest F-measure and G-means scores is 0.03 for both of the evaluation scores.

In the next section, we perform an evaluation on the results obtained from this section.

6.3 Result Evaluation

In the previous section, we discussed the quantitative results from the SM(NCut) and

NJW(K-means) spectral clustering algorithms. The results from the external evalua­

tion scores from these two algorithms show similar trends. For both the algorithms,

the GOWER coefficient frequently achieved the highest scores. The datasets that per­

formed well for the GOWER coefficient are Automobile, Dermatology, Post-Operative,

and Soybean, whereas CRX and Hepatitis performed well for the LAFLIN coefficient.

The results also indicate that the difference between the performances of the two coeffi­

cients is very low. On average the difference is 0.02 for the SM(NCut) algorithm and 0.03

for the NJW(K-means) algorithm. Figure 6.3 contains the results from the Friedman

test. The p-value for the results from the SM(NCut) algorithm is 0.3173. The p-value

is 0.4142 for the results from the NJW(K-means) algorithm. Recall from Chapter 4

that a p-value greater than 0.05 indicates that the difference between the performance

of the proximity measures is not statistically significant on our datasets. We analyze the

coefficients to determine the relationship between them. The function for the GOWER

Result Analysis - Mixed Data 132

Source

Columns
Brror
Total

Source

Columns
Error
Total

SS .

0.33333
1.66667
2

SS

0.33333
2.66667
3

df

1
S

11

df

1
S

11

HS

0.33333
0.33333

(a)

HS

0.33333
0.S3333

Chi-sq

1

Chi-sq

0.67

Prob>Chi-sq

(gT317$5

Prob>Chi-sq

(5741425

(b)

Figure 6.3: Results from the Friedman test when applied on the results from (a) the

SM(NCut) algorithm and (b) the NJW(K-means) algorithm.

coefficient as given in Equation 3.18 is:

TP 5(f)dU)

Where S\j' is an indicator variable associated with each of the variables present in the

dataset and d\, is the distance or dissimilarity calculated for each variable for objects

i and j . According to the definition given in Chapter 3, <5,j = 0, for asymmetric binary

variables and for all the other types ^ — 1. In our datasets, all of the attributes are

numeric, nominal, or symmetric binary. Therefore, 5 in the denominator of Equation 6.1

represents the total number of variables in the dataset. Also, recall from Chapter 3, that

the GOWER coefficient is a dissimilarity measure, where the dissimilarity between the

two objects, i and j , falls in between 0 and 1. Equation 6.1 is converted into a similarity

measure using the Equation 3.1. Therefore, the equation for the GOWER similarity

coefficient is:

Let N =Y?f=i % i De ^ n e total number of attributes and for each attribute 5*,- = 1, then

the Equation 6.2 becomes:

»(M) = 1 - T " - l
N " = y " ' (6.3)

The function for the LAFLIN similarity coefficient is given in Equation 6.4. In this

case Si is the total similarity value of attribute type i, and Nt is the total number of

variables of attribute type i. In our datasets, the attribute types are numeric (Ni and

Result Analysis - Mixed Data 133

S\), nominal (N2 and s2),
 a n d symmetric binary (A 3̂ and S3).

S{hJ)
 Nl + N2 + N3

 {bA)

Equation 6.4 may be rewritten as:

Nj + N2 + 7V3 - Nj - N2 - N3 + Ni.Sj + N2.s2 + JV3.s3
S{1'J) - Nl + N2 + N3

 (6 ' 5)

(JVi + N2 + N3) - {Ni - Ni.si + N2- N2.s2 + N3 - N3.s3) (6.6)
Ni + N2 + N3

The denominator in Equation 6.6 is the total number of attributes in the dataset, which

we previously denoted as N. Then, N = Ni + N2 + N3 and Equation 6.6 becomes,

N-(N1-Ni.si + N2-N2.s2 + N;i-N3.S3) (R _.
s(i,j) = ^ : (6.7)

N - (yVt(l - Sl) + N2(l - s2) + JV3(1 - S 3))
= N (6 ' 8)

At this point, Equation 6.3 (GOWER similarity coefficient) and Equation 6.8 (LAFLIN

similarity coefficient), have similar patterns. Both of the equations have the same denom­

inator. They differ only in terms of the numerator, which is JZ/=i d/j for the GOWER

similarity coefficient and JVi(l - Si) + AT2(1 - s2) + AT3(1 - s3) for the LAFLIN similarity

coefficient. As mentioned above, d^ is the distance or dissimilarity between the two

objects i and j , whereas (1 — Sj) is also a dissimilarity measure (SJ is the similarity).

Recall from Chapter 3, that the distance between the nominal or symmetric binary

attributes for the GOWER coefficient is calculated as: if Xif = Xjf then d^ = 0; oth­

erwise of — 1. This implies that the distance for all the nominal or binary attributes

is the total number of unmatched pairs within the two objects. For the LAFLIN coeffi­

cient, the dissimilarity for nominal or binary attributes are calculated as d(i,j) = E z I 2 .

Here, p is the total number of variables of type nominal or binary, and m is the num­

ber of variables for which i and j have the same value. Notice that (p — m) is the

total number of unmatched pairs for binary or nominal attributes. This implies that

the term JV2(1 - s2) + JV3(1 - s3) in iVi(l - si) + N2(l - s2) + N3(l - s3) is the same

as the total number of unmatched pairs. Here, iV2 = pn0minai and N3 = penary, the

total number of nominal and binary attributes, respectively, and (1 — s2) and (1 — s3)

are the total dissimilarity for the nominal and binary attributes, respectively. Thus,
J V 2 (1 - S2) = N2 * P^minal-mnomtnal ^ J^M _ ^ = _/V3 * P^aTy~mbinaT^ ^ g j - g f o j . ^ ^Q

Pnominal Pbinary

binary and nominal attributes are handled similarly by both of the similarity coefficients.

Result Analysis - Mixed Data 134

This also implies that the only difference in the equations occurs due to the functions

selected for the numeric attributes which are handled differently by the two coefficients.

This is one of the reasons that the difference between the performances of both of the

coefficients is very low. For the numeric attributes, the GOWER similarity coefficient

considers the equation given by Equation 6.9. The LAFLIN similarity coefficient uses

the Euclidean distance given in Equation 3.22.

11 maxhxhf - minhxhf

In the previous section, we observed that when the SM(NCut) algorithm is applied

on the Post-Operative and Soybean dataset, the evaluation values were similar for both

of the coefficients. We noticed that for both of the datasets, the number of nominal and

binary attributes were very high. The Post-Operative dataset only contained one numeric

variable, whereas the Soybean dataset has none. Therefore, both of the coefficients scored

similar scores, as they both handle the nominal and binary attributes in the same manner.

The results also show that, on average, the GOWER coefficient performs better than

the LAFLIN coefficient. In particular, the Automobile and Dermatology datasets, for

which the GOWER coefficient scored the highest, contain more numeric variables than

the nominal or binary variables. As discussed above, both of the coefficients in our

experiments vary based on the functions used for calculating the distance between the

numeric objects. We use the two numeric functions with the spectral clustering algo­

rithms and apply them on the Iris dataset from the UCI repository [3] to evaluate their

performances. We selected this dataset because the true clusters are well-separated and

the dataset contains only four attributes which simplifies the calculations. Therefore, the

differences between the distance measures may be more apparent from the Iris dataset.

Figure 6.4 illustrates the clusters obtained from the true clusters (left), the clusters ob­

tained from the numeric function of the GOWER coefficient (middle), and the clusters

obtained from the numeric function of the LAFLIN coefficient (right). We notice that

both of the measures correctly cluster the objects from true cluster 1, however, the dif­

ference between them is clear in true cluster 2 and 3. Notice that these two true clusters

have objects that overlap near the boundary of the clusters. The objects located at

the boundary usually have attribute values slightly different from the other members of

their own true clusters. While, the numeric function for the GOWER coefficient cor­

rectly distinguishes several objects near the boundary, the LAFLIN coefficient, which

used the Euclidean distance to compute the distance between the objects, placed the

objects which are located near the boundary, in two different clusters. We notice that

Result Analysis - Mixed Data 135

the clusters formed from this measure have a shape similar to a sphere. This may be the

reason for this measure performing slightly differently than the function of the GOWER

coefficient. However, the performance of the LAFLIN coefficient may be improved by

using a different distance measure for the numeric variables.

Figure 6.4: Comparison of numeric functions on Iris dataset. (From left) the clusters

obtained from the true clusters, the clusters obtained from the numeric function of the

GOWER coefficient, and the clusters obtained from the numeric function of the LAFLIN

coefficient.

In summary, the discussion from this chapter indicates that, under certain conditions,

the GOWER similarity coefficient and the LAFLIN coefficient may perform similarly.

The constrains are as follows: 1) the dataset does not include asymmetric binary vari­

ables, and 2) the distance and similarity measures for each of the variables are the same.

In our experiments, the two coefficients vary only for the numeric variables. Therefore,

the difference between the performances is very similar, as noted in the previous section.

According to the evaluation measures, the GOWER coefficient, on average, scored higher

values for the majority of the datasets. Nevertheless, the performance of the LAFLIN

coefficient may be improved by incorporating a different function for the numeric vari­

ables.

6.4 Clustering Results

In Table 6.10, we provide the best F-measure scores for each of the datasets used in

this study. Recall from Chapter 3, that a higher F-measure score indicates that the

result from cluster analysis is very similar to the true clusters. Here, the results from

the cluster analysis discover the natural clusters from the datasets based on the distance

Result Analysis - Mixed Data 136

or similarity of the objects in the datasets. Therefore, a low F-measure score indicates

that the true clusters do not correspond well to the natural clusters. For instance, two

objects with different sizes may belong to the same true cluster, whereas the natural

grouping may place them into two different clusters. The F-measure scores from Table

Dataset SM(Ncut) NJW(K-means)

Automobile 0.46 0.47

CRX 0.79 0.80

Dermatology 0.85 0.84

Hepatitis 0.73 0.74

Post-Operative 0.56 0.52

Soybean 0.70 0.57

Table 6.10: The F-measure scores from the SM(NCut) and NJW(K-mean) algorithm for

the mixed data.

6.10 suggest that the CRX and Dermatology datasets scored 0.80 and 0.85, respectively.

The error rate is 19.86 for the CRX dataset, and when compared to the true cluster

information, we notice that there are 137 members that are placed differently. Among

the 137 members, 57 of them are from the Approved class, which are placed with the

members from the Not Approved class. In contrast, there are 80 members from the Not

Approved class, which are placed with the Approved class. In Figure 6.5, we illustrate

the clusters from the CRX dataset. The left most figure in Figure 6.5 depicts the clusters

according to the true cluster labels; the clusters when the LAFLIN coefficient is used,

are depicted in the middle figure; the clusters from the GOWER coefficient are depicted

in figure at the right corner. While, the LAFLIN coefficient and the GOWER coefficient

both find similar clusters when compared to the true clusters, their sizes differ from that

of the true clusters, which indicates that there are members that are wrongly placed

into the other cluster. The Dermatology dataset correctly clustered 86% of members.

We notice that one of the clusters from spectral clustering algorithm is shared by the

members from the true cluster 2 (Sebpreic Dermatitis) and 4 (Pityriasis Rosea).

The Automobile and Post-Operative datasets scored the lowest F-measure scores.

This implies that the true clusters may not correspond to the natural groupings. The

clusters for these two datasets are mostly shared by the members from more than one

true cluster. For the Hepatitis dataset, one cluster contains 62.60% of members from

true cluster Live. The rest of the members from this cluster are placed with the members

Result Analysis - Mixed Data 137

Original Laflin Gower

Figure 6.5: Cluster visualization for the CRX dataset. (From left) the clusters obtained

from the true clusters, the clusters obtained from the LAFLIN coefficient, and the clus­

ters obtained from the GOWER coefficient.

from true cluster Die. In Figure 6.6, we illustrate the clusters obtained from the spectral

clustering method and the clusters from the true cluster. We notice that in the true

cluster assignments (left), the members from class Die, are sparsely located on the left

corner, whereas the members from class Live, are placed in the denser area marked with

the true cluster label. In contrast, the clusters obtained from the spectral clustering

algorithm (right), show that the members from class Die and class Live overlap, as the

similarity between the objects from these two true clusters are high.

< X

X

t)ie
* x x

, x x * * >

X
X

&51 X
X

*x
xx

x xDiex

v x * »

Original Spectral

Figure 6.6: Cluster visualization for the Hepatitis dataset. (From left) the clusters

obtained from the true clusters and the clusters obtained from the Spectral algorithm.

6.5 Chapter Summary

In this chapter, we performed spectral cluster analysis on datasets with mixed variable

types. Our results from the SM(NCut) and NJW(K-means) spectral clustering algorithm

indicate that the GOWER coefficient achieved higher evaluation scores for a majority

Result Analysis - Mixed Data 138

of the datasets. However, the average difference between the scores is very low for most

of the datasets. We also found that under certain conditions the GOWER similarity

coefficient and the LAFLIN similarity coefficient may perform similarly. The constraints

are: 1) the dataset does not contain asymmetric binary variables and 2) the distance

measure for each of the attributes for both the coefficients is the same. We also notice

that, in our experiments, these two coefficients vary only by the distance measures for

the numeric variables. Therefore, the difference in the performance of the coefficients

occurs due to the distances measured for the numeric variable types. In the next section,

we discuss the results from the datasets with the numeric attribute type. The results

from the next chapter may also be used to select a suitable distance measure for the

numeric variables for the LAFLIN coefficient; this is a future research direction which

needs to be further explored.

Chapter 7

Result Analysis - Numeric Data

In the previous two chapters we explored the performance of the proximity measures for

the binary and mixed data. In this chapter, we compare and evaluate the performance of

the distance measures for the datasets with numeric variables. As previously discussed

in Chapter 3, we consider eight distance measures in this study. We perform spectral

cluster analysis on each of these measures against six numeric datasets. The performance

is then measured by comparing the scores of the external cluster evaluation measures.

This chapter begins in Section 7.1 with the description of the datasets we used for our

experiments. Section 7.2 provides the quantitative result analysis of the scores obtained

from the external cluster evaluation measures. Next, in Section 7.3, we provide the

evaluation of our results from Section 7.2. We also present a discussion on the clusters

obtained from the spectral clustering algorithms in Section 7.4 and we conclude the

chapter with a brief summary in Section 7.5.

7.1 Numeric Datasets

We use six datasets to compare the performance of the distance measures. As in earlier

chapters, the datasets used in this study also vary in size, the number of true clusters,

and the type (balanced or imbalanced). They also belong to various application domains.

None of the datasets have missing values. For each of the datasets, the true cluster labels,

or class labels are known to us. We use the class information for the purpose of cluster

evaluation only. For the rest of this study we will refer to them as the class or true

cluster. A brief description of each of the datasets is given below:

139

Result Analysis - Numeric Data 140

Body Measurement Dataset: The body measurement dataset consists of the body

girth measurements and the skeletal diameter measurements of 507 individuals re­

siding in California, US [33]. There are 24 attributes that describe each individual

in the dataset. Nine of the attributes are skeletal or diameter measurements, and

twelve features represent the body girth or circumference measurements. In addi­

tion to these attributes, there are four more features associated with each subject

including age, weight, height, and gender. The class or true cluster attribute is

the gender attribute. For the experiments, we keep the last four attributes sepa­

rate and use only the body girth and skeletal measurements to find the clusters.

However, we later use these attributes to analyze the results.

True Clusters Number of Members

Male 247

Female 260

Table 7.1: The true cluster distribution of the Body Measurement dataset.

Ecoli Dataset: The Ecoli dataset [3], provides information in order to determine

cellular localization sites of the proteins. There are 336 instances and 7 numeric

attributes to represent each protein. The class is the localization site where a

protein may reside. There are eight such locations in this dataset. However, four

classes (OM, OML, IMS, and IML) are merged together as each of these classes

contains only a number of examples. This dataset is an example of an imbalanced

dataset (Table 7.2).

True Clusters Number of Members

Cytoplasm (CP) 143

Inner membrane without signal sequence (IM) 77

Perisplasm (PP) 52

Inner membrane, uncleavable signal sequence (IMU) 35

Others (OM, OML, IMS, IML) 29

Table 7.2: The true cluster distribution of the Ecoli dataset.

Glass Dataset: This dataset contains attributes that define various types of glass. The

dataset is obtained from the UCI repository [3]. There are 214 instances present in

Result Analysis - Numeric Data 141

the dataset, with 9 attributes, including the class or true cluster attribute. Since

the attribute values have different units, we standardize the dataset to ensure that

the distance measures that are not scale invariant work accurately. There are seven

classes in the dataset; however, class number 4 does not have any examples in the

dataset. The dataset is also an example of an imbalanced dataset. The objects in

the dataset form a hierarchical structure as illustrated in Figure 7.11.

True Clusters Number of Members

Building Windows Float Processed (1) 70

Building Windows Non Float Processed (2) 76

Vehicle Windows Float Processed (3) 17

Vehicle Windows Non Float Processed (4) 0

Containers (5) 13

Tableware (6) 9

Headlamps (7) 29

Table 7.3: The true cluster distribution of the Glass dataset.

Iris Dataset: The Iris dataset is one of the most commonly used and popular datasets

from the UCI repository [3]. The dataset consists of 150 instances and there are

three true clusters or classes. There are only four attributes to describe the char­

acteristics of each of the Iris flowers and these include the sepal and petal sizes

(length and width) of each flower. The class labels denote the type of the Iris plant

(Table 7.4).

True Clusters

Iris Setosa

Iris Versicolour

Iris Virginica

Number of Members

50

50

50

Table 7.4: The true cluster distribution of the Iris dataset.

SPECT Dataset: The SPECT dataset consists of 44 numeric features extracted from

the Single Proton Emission Computed Tomography (SPECT) images [3]. The

dataset contains 267 patients and each of them belongs to either of the two classes

Result Analysis - Numeric Data 142

True Clusters Number of Members

Abnormal

Normal

267

55

Table 7.5: The true cluster distribution of the SPECT dataset.

(i.e. normal or abnormal heart condition). This dataset is also an example of an

imbalanced dataset, and the true cluster distribution is given in Table 7.5.

Wine Dataset: The wine dataset contains the chemical properties of wine grown in

Italy [3]. The chemical properties are used to define three different types of wine.

There are 13 different features that represent various chemical properties. The wine

dataset contains 178 instances. The attributes are standardized to ensure that

the distance measures that are scale-dependent work properly. The true cluster

distribution for this dataset is given in Table 7.6.

True Clusters Number of Members

1

2

3

59

71

48

Table 7.6: The true cluster distribution of the Wine dataset.

Dataset

Body Measurement

Iris

Wine

Glass

Ecoli

SPECT

Number of

Instances

507

150

178

214

336

267

Number of

True Clusters

2

3

3

6

5

2

Number of

Attributes

21

4

13

8

7

44

Notes

Balanced

Balanced

Balanced

Imbalanced

Imbalanced

Imbalanced

Table 7.7: Summary of numeric datasets. Given in the table (from left) the name of the

datasets, the number of instances, the number of true clusters, the number of attributes,

and the type of the dataset.

Result Analysis - Numeric Data 143

Recall from Chapter 4, that we performed spectral cluster analysis with a ten-fold

cross validation method on these datasets. The results obtained from the spectral cluster

analysis are then evaluated using the external cluster evaluation measures to assess the

results. We use the results from the cluster evaluation measure to compare the perfor­

mance of each of the distance measures. In the next section, we discuss the quantitative

results of our experiments.

7.2 Comparison of Distance Measures

Recall from Chapter 4, that the construction of the similarity matrix for a given numeric

dataset is more complex than the datasets with binary or mixed attributes. Firstly, most

of the existing measures used to compare two numeric objects are distance measures,

whereas the spectral clustering algorithms consider the similarity between the objects

and take the similarity matrix as an input. Therefore, we need to convert the distance

measure into a similarity measure so that they are ready as an input for the algorithms.

Secondly, the conversion of distance measures to similarity measures using Equation 3.2,

involves searching for a user specified parameter Sigma, which, as we discussed in Chapter

4, makes the task more complex. Recall from Chapter 3, that the distance measures

for the numeric data that are considered in this study are Angular Distance (COS),

Pearson Correlation Distance (COR), Canberra Distance (CAN), Euclidean Distance

(EUC), Minkowski distance (MIN), Manhattan Distance (MAN), Chebyshev Distance

(CHEB), and Mahalanobis Distance (MAH). In the rest of the chapter we refer to each

of these distance measures with their respective abbreviations. Also recall from Chapter

2, that we performed the experiments on two different versions of spectral clustering

algorithms: 1) The normalized cut spectral clustering algorithm (SM(NCut)) and 2)

The spectral clustering algorithm with K-means (NJW(K-means)). In the next section

we provide the results from the SM(NCut) algorithm.

7.2.1 Results from SM(NCut) Spectral Clustering Algorithm

Table 7.8 provides the F-measure and G-means scores obtained for each of the distance

measures when tested on the SM(NCut) algorithm. Again, as mentioned in Chapter 4,

the Entropy measure has several limitations when it is used to evaluate the solutions

from the hierarchical clustering algorithms. Thus, to avoid further complications, we do

not consider this measure to evaluate the solutions from the SM(NCut) algorithm. Re-

Result Analysis - Numeric Data 144

call from Chapter 2, that the algorithm finds the partitions by splitting the eigenvector

of the Laplacian matrix (a matrix constructed from the similarity matrix). In Chapter

4, we presented the five splitting points that are used in the experiments: Split Zero,

Split Mean, Split Median, Split NCutl and Split NCut2. From Chapter 5, the results

indicate that the Split Zero and Split Mean splitting methods outperformed among the

five splitting points. In contrast, the Split NCutl and Split NCut2 splitting methods of­

ten produce imbalanced clusters. We observed that the results from Table 7.8 also show

similar results and therefore, we do not repeat the discussion in this chapter. Below

we discuss the F-measure and G-means scores from Table 7.8 for each of the datasets

individually. The average F-measure scores for each of the datasets are illustrated in

Figure 7.1. For both of the evaluation measures (F-measure and G-means), a high value

indicates a better result and vise versa.

Average F-measure

U HU

i
Body Wine SPECT

Datasets

Glass Ecoli

• COS

• COR
• CAN

• EUC

• WIN

• MAN

• CHEB

• I.1AH

Figure 7.1: The average F-measure scores for the numeric datasets from SM(NCut)

algorithm.

Body Dataset
According to the F-measure and G-means scores in Table 7.8, the COS distance and

the COR distance measures performed the best for the Body dataset. The highest F-

measure and G-means score is 0.97 and was achieved by the COS distance measure when

Split Zero is used as the splitting point. For the same splitting point the COR distance

measure scored 0.96. The lowest score was achieved by the MAH distance measure as

observed from both the F-measure and G-means scores. The average F-measure scores

for the COS distance and the COR distance measures are 0.91 (G-means: 0.92) and

Result Analysis - Numeric Data 145

Split Zero

Split Mean

Split Median

Split NCut l

Split NCut.2

Split Zero

Split Mean

Split Median

Split. NCut l

Split NCut.2

Split Zero

Split Mean

Split. Median

Split, NCut l

Split NCut.2

Split Zero

Split. Mean

Split. Median

Split. NCut l

Split NCut.2

Split Zero

Split Mean

Split Median

Split. NCut l

Split. NCut.2

Split Zero

Split. Mean

Split. Median

Split. NCut l

Split. NCut.2

COS

0.97

0.97

0.96

0.85

0.83

COS

0.97

0.97

0.75

0.90

0.91

COS

0.91

0.88

0.82

0.91

0.94

COS

0.80

0.79

0.59

0.78

0.81

COS

0.62

0.64

0.57

0.58

0.61

COS

0.81

0.81

0.60

0.76

0.75

COR

0.96

0.97

0.96

0.80

0.83

COR

0.96

0.96

0.76

0.91

0.91

COR

0.95

0.90

0.76

0.91

0.96

COR

0.77

0.77

0.57

0.78

0.77

COR

0.61

0.63

0.62

0.50

0.60

COR

0.79

0.80

0.75

0.74

0.80

F-measure Scores

CAN

0.90

0.90

0.90

0.76

0.72

CAN

0.94

0.94

0.77

0.87

0.89

CAN

0.84

0.85

0.83

0.72

0.92

CAN

0.81

0.82

0.70

0.77

0.79

CAN

0.61

0.64

0.62

0.53

0.60

CAN

0.83

0.80

0.62

0.73

0.75

B

EUC

0.87

0.82

0.87

0.72

0.74

EUC

0.90

0.89

0.75

0.86

0.88

lody

MIN

0.87

0.84

0.86

0.71

0.71

MIN

0.88

0.88

0.75

0.85

0.87

Wine

EUC

0.81

0.89

0.81

0.78

0.93

MIN

0.84

0.85

0.82

0.75

0.68

SPECT

EUC

0.80

0.81

0.59

0.78

0.81

MIN

0.80

0.79

0.72

0.81

0.82

Glass

EUC

0.61

0.61

0.55

0.55

0.59

E

EUC

0.82

0.86

0.62

0.71

0.84

MIN

0.60

0.59

0.55

0.58

0.57

Icoli

MIN

0.83

0.85

0.64

0.70

0.76

MAN

0.87

0.87

0.87

0.78

0.76

MAN

0.86

0.86

0.75

0.88

0.88

MAN

0.90

0.89

0.81

0.91

0.96

MAN

0.81

0.81

0.61

0.79

0.81

MAN

0.61

0.61

0.44

0.57

0.60

MAN

0.85

0.86

0.71

0.78

0.78

CHEB

0.85

0.85

0.85

0.81

0.78

CHEB

0.88

0.89

0.76

0.88

0.88

CHEB

0.87

0.89

0.75

0.71

0.76

CHEB

0.80

0.81

0.72

0.79

0.81

CHEB

0.59

0.57

0.51

0.54

0.52

CHEB

0.82

0.85

0.52

0.74

0.80

MAH

0.68

0.68

0.64

0.68

0.69

MAH

0.79

0.78

0.72

0.86

0.83

MAH

0.79

0.64

0.72

0.55

0.83

MAH

0.80

0.80

0.61

0.79

0.80

MAH

0.60

0.57

0.46

0.50

0.52

MAH

0.81

0.82

0.56

0.68

0.66

Split Zero

Split. Mean

Split. Median

Split NCu t l

Split NCut2

Split. Zero

Split. Mean

Split. Median

Split NCut l

Split NCut2

Split. Zero

Split. Mean

Split Median

Split NCu t l

Split NCut.2

Split. Zero

Split Mean

Split Median

Split NCu t l

Split NCut2

Split. Zero

Split Mean

Split Median

Split NCu t l

Split NCut.2

Split. Zero

Split Mean

Split. Median

Split NCu t l

Split. NCut.2

COS

0.97

0.97

0.96

0.86

0.84

COS

0.97

0.97

0.77

0.90

0.91

COS

0.92

0.89

0.83

0.91

0.94

COS

0.81

0.81

0.61

0.80

0.82

COS

0.65

0.66

0.58

0.61

0.64

COS

0.82

0.81

0.63

0.77

0.76

COR

0.96

0.97

0.96

0.82

0.84

COR

0.96

0.96

0.77

0.92

0.91

COR

0.95

0.91

0.77

0.91

0.96

COR

0.80

0.80

0.59

0.80

0.80

COR

0.64

0.65

0.63

0.54

0.64

COR

0.80

0.81

0.76

0.75

0.80

G-means Scores

CAN

0.90

0.90

0.90

0.78

0.75

CAN

0.94

0.94

0.79

0.88

0.90

CAN

0.86

0.86

0.84

0.76

0.92

CAN

0.82

0.83

0.73

0.80

0.81

CAN

0.65

0.67

0.62

0.57

0.65

CAN

0.83

0.81

0.64

0.74

0.77

E

EUC

0.87

0.83

0.87

0.74

0.77

EUC

0.90

0.90

0.77

0.87

0.88

lody

MIN

0.87

0.84

0.87

0.74

0.88

MIN

0.88

0.89

0.77

0.86

0.88

Wine

EUC

0.83

0.90

0.82

0.79

0.93

MIN

0.86

0.86

0.83

0.78

0.72

SPECT

EUC

0.82

0.82

0.61

0.80

0.82

MIN

0.81

0.82

0.74

0.82

0.83

Glass

EUC

0.66

0.64

0.56

0.61

0.63

MIN

0.64

0.62

0.56

0.62

0.61

Ecoli

EUC

0.82

0.86

0.64

0.73

0.84

MIN

0.83

0.86

0.66

0.71

0.77

MAN

0.87

0.87

0.87

0.80

0.71

MAN

0.87

0.87

0.77

0.88

0.89

MAN

0.91

0.90

0.82

0.91

0.96

MAN

0.81

0.82

0.62

0.81

0.82

MAN

0.64

0.64

0.47

0.60

0.64

MAN

0.86

0.86

0.72

0.80

0.80

CHEB

0.85

0.85

0.85

0.82

0.79

CHEB

0.88

0.89

0.77

0.88

0.88

CHEB

0.87

0.89

0.77

0.73

0.79

CHEB

0.80

0.82

0.74

0.80

0.82

CHEB

0.64

0.61

0.52

0.59

0.57

CHEB

0.83

0.85

0.55

0.75

0.81

MAH

0.71

0.71

0.64

0.71

0.71

MAH

0.80

0.80

0.74

0.86

0.84

MAH

0.80

0.67

0.73

0.56

0.83

MAH

0.82

0.81

0.64

0.81

0.81

MAH

0.62

0.60

0.47

0.56

0.56

MAH

0.81

0.82

0.58

0.69

0.69

Table 7.8: The F-measure and G-means scores for the numeric datasets when tested on

the SM(NCut) algorithm.

0.90 (G-means: 0.91), respectively. The average score for the MAH distance is 0.67

(G-means: 0.68), which is the lowest among all the distance measures. For the rest of

the five distance measures, the average scores are: 0.84 (G-means: 0.85) for the CAN

distance, 0.80 (G-means: 0.81) for the MIN distance, 0.83 (G-means: 0.84) for the MAN

distance, 0.83 (G-means: 0.83) for the CHEB distance, and 0.80 (G-means: 0.82) for

Result Analysis - Numeric Data 146

the EUC distance. The EUC distance, which is probably the most widely used distance

measure in cluster analysis, scored low for this dataset. We noticed that the distance

measures may be grouped into three groups based on the average F-measure scores: 1)

the COS distance and COR distance measure in one group where the scores fall in the

range [0.90 - 0.91], 2) the CAN distance, EUC distance, MIN distance, MAN distance,

and CHEB distance measure in the second group where the range is [0.80 — 0.84], and

3) the MAH distance measure which scores the lowest (0.67). The average difference

between the highest and the lowest F-measure score is 0.24 and the range in which the

scores vary is [0.67 — 0.91]. The G-means scores also showed similar results.

Iris Dataset

The COS distance and COR distance measure scored the highest for this dataset. The

highest score is 0.97 for both F-measure and G-means. The lowest score was achieved

by the MAH distance. The lowest average F-measure score is 0.79. The performance

of the rest of the five distance measures is moderately lower than the best score. The

average scores for these measures are: 0.88 (G-means: 0.85) for the CAN distance, 0.86

(G-means: 0.82) for the EUC distance, 0.86 (G-means: 0.83) for the CHEB distance,

0.85 (G-means: 0.84) for the MIN distance, and 0.85 (G-means: 0.84) for the MAN

distance. In this case, the distance measures may also be grouped into three categories

according to their F-measure scores. The first group contains the COS distance and the

COR distance measure, which scored the highest with a value of 0.90 by both of the

evaluation measures; the second group contains the CAN distance, EUC distance, MIN

distance, MAN distance, and CHEB distance measures, where the values fall into the

range [0.85 — 0.88]; and the third group includes the MAH distance which scores 0.79.

The average highest and lowest values falls into the range [0.79 — 0.90] and the average

difference is 0.11. The G-means scores also show similar patterns.

W i n e Datase t

The highest score is achieved by the COR distance measure. Both the F-measure and

G-means scored 0.95 when Split Zero is used as the splitting method. The second largest

scores are achieved by the COS distance and the MAN distance measure in which both

scored 0.89 by the F-measure. The MAH distance measure scored the lowest. For the

MAH distance, the F-measure score is 0.71 and the G-means score is 0.72. In this case, if

we grouped the distance measures according to their average F-measure scores, the first

group would consist of the COR distance, COS distance, and MAN distance measure

as the scores are similar and vary over the range [0.89 — 0.90]. The next group would

include the EUC distance, MIN distance, CAN distance, and CHEB distance measures

Result Analysis - Numeric Data 147

where the scores range in [0.79 — 0.84]. The MAH distance, which scored the lowest

(0.69), would be placed in a separate group. The average difference between the highest

and the lowest score is 0.21 ([0.69 - 0.90]).

SPECT Dataset

According to the evaluation measures, the SPECT dataset performed well when the

CAN distance and the MIN distance are used as the distance measures. However, we

notice that the MIN distance measure scored the highest when the Split Median, Split

NCutl, and Split NCut2 are used as the splitting methods, whereas the CAN distance

performed best when the Split Zero and Split Mean are used as the splitting method.

From our discussion in Chapter 5 and 6, we observed that the Split Zero and Split Mean

methods outperformed other methods. Therefore, we consider the results from these two

splitting methods to be more robust and select the CAN distance for this dataset. The

average difference between the highest and lowest scores for this dataset is 0.05, which

also implies that the performance of all of the distance measures is very close to one

another. The average scores vary over the range [0.73 — 0.79].

Glass Dataset

The glass dataset scored the highest F-measure and G-means scores when the COS

distance is used as the distance measure. The average highest scores achieved by this

distance measure are 0.60 (for F-measure) and 0.63 (for G-means). According to the

F-measure scores, the CHEB distance and the MAH distance measure scored the low­

est, and the G-means scores showed that the MAH distance achieved the lowest score.

Similar to the SPECT dataset, the difference between the highest and the lowest scores

is low (0.07) and the average F-measure scores for the distance measures range between

[0.53-0.60].

Ecoli Dataset

The Ecoli dataset performed well when the MAN distance is used as the distance mea­

sure. The highest F-measure score achieved by the MAN distance is 0.85 (G-means:

0.86). On average the highest score for the F-measure is 0.80 and for the G-means is

0.81. The minimum scores are achieved by the MAH distance (0.70). The average differ­

ence between the highest and the lowest F-measure scores are 0.09 and the scores for each

of the distance measures fall within the range [0.70 — 0.80]. The average scores for the

rest of the distance measures are: 0.77 for the EUC distance, 0.76 for the MIN distance,

and 0.75 for rest of the three distance measures {CHEB distance, CAN distance, and

COS distance).

In general, our results show that the COR distance and the COS distance measure

Result Analysis - Numeric Data 148

often scored higher than the rest of the distance measures. These two distance measures

performed well in four out of the six datasets. The datasets are Body, Iris, Wine, and

Glass. We also notice, that most of the time, these two coefficients achieved similar values

for both of the evaluation measures. The overall average difference is 0.02, irrespective

of the dataset or the splitting method used. In contrast, the MAH distance measure

performed poorly in four out of the six datasets. The datasets for which this distance

measure scored the lowest are Body, Iris, Wine, and Glass. The MAN distance performed

well for the Ecoli dataset. We also notice, that the performance of EUC distance, MIN

distance, MAN distance, CAN distance, and CHEB distance is very similar, and that

they often scored moderately, in comparison to the highest and the lowest scores. As

observed from the results, the EUC distance measure, which is often used in the spectral

cluster analysis algorithms, may not always be a suitable choice. We observe that, if the

COS distance or the COR distance measure is used instead of the EUC distance, then

on average the performance improved by 6.12% and 7.14%, respectively, for our datasets.

7.2.2 Results from NJW(K-means) Algorithm

Here we provide the results from the NJW(K-means) spectral clustering algorithm. Re­

call from Chapter 4, that to compare the performance of the distance measures for nu­

meric datasets, we must first construct the similarity matrix using each of the distance

measures for a given dataset. We then apply the NJW(K-means) algorithm on each of

the similarity matrices and assess the results using the external evaluations measures

(i.e. F-measure, G-means, and Entropy). The performance of each of the distance mea­

sures is then compared by analyzing the results obtained from the external evaluation

measures. Therefore, in this section we analyze the results from F-measure, G-means,

and Entropy, as given in Table 7.9, Table 7.10, and Table 7.11, respectively. Recall from

Chapter 4, that the higher the F-measure and G-means values, the better the clustering

result, and for Entropy a lower value indicates a good result. The datasets used in this

study contain the true cluster information. Therefore, we use the number of true clusters

as the number of clusters k for the K-means algorithm in order to compare the distance

measures. However, we performed our experiments on a range of values for k ([2.. 10])

when the NJW(K-means) algorithm is used. The reason is two-fold. First, we observe

that by considering a range of values for k, the results provided us with additional infor­

mation about the behaviour of the distance measures. For instance, with the increase of

the value of k, the F-measure scores usually decrease. However, for the MAH distance

Result Analysis - Numeric Data 149

measure, we find that the F-measure scores are exactly the same for all values of k for

several datasets (i.e. Body, Glass, and SPECT). This provided us with an indication

that the MAH distance measure may perform differently than other measures. In the

next section, we discuss this in detail when we evaluate the results. Second, by using a

range of values for k, we observe the formation of the clusters when k is set to a value

other than the number of true clusters. For example, consider the Glass dataset, which

possess a hierarchical structure. The original number of true clusters is 5. However, since

we used a range of values for k, starting from 2, we may see how each of the clusters is

formed as k increases. Below we provide the evaluation scores for each of the datasets.

Body Dataset

The Body dataset performed best when the COS distance and the COR distance mea­

sure are used. The highest score achieved by F-measure and G-means is 0.88. The

Entropy also scored the lowest for these two distance measures. The lowest Entropy is

0.36 for both of the distance measures. The lowest F-measure and G-means scores, and

the highest Entropy score, are achieved by the MAH distance. The lowest scores are

0.64 and 0.67, respectively, and the highest Entropy as scored by the MAH distance,

is 0.69. The F-measure and G-means scores usually decrease as k increases. However,

while these scores gradually decreased for all of the distance measures, we notice that

it remained constant for the MAH distance. Therefore, this indicates that the MAH

distance may have worked differently than the rest of the distance measures. We will

analyze this further in the next section. The F-measure scores for the rest of the five

distance measures are (from highest to lowest): 0.83 for the CAN distance, 0.80 for the

MAN distance, 0.79 for the EUC distance, 0.78 for the CHEB distance, and 0.66 for

the MIN distance. The results from G-means and Entropy also show the same pattern.

In this case, the performance of the EUC distance is also lower than the other distance

measures with the exclusion of the MIN distance and the MAH distance measures. The

F-measure scores for all the distance measures range in between 0.64 and 0.88 when

k = 2.

Iris Dataset

According to the F-measure and G-means scores, the Iris dataset performed best for

the COR distance measure. The highest scores when k = 3 are 0.82 (F-measure) and

0.83 (G-means). The lowest Entropy for the COR distance is 0.52. We notice that the

scores from the COS distance is also very similar to the highest scores. For this dis­

tance measure, the F-measure and G-means both scored 0.81 and the Entropy scored

0.51. The distance measure that performed the most poorly for this dataset is the MAH

Result Analysis - Numeric Data 150

F-measure

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

COS

0.88

0.83

0.69

0.61

0.51

0.47

0.44

0.41

0.39

COS

0.72

0.94

0.94

0.85

0.76

0.79

0.75

0.71

0.70

COS

0.77

0.77

0.76

0.76

0.75

0.67

0.35

0.34

0.30

COR

0.88

0.85

0.68

0.59

0.55

0.48

0.45

0.39

0.38

COR

0.71

0.96

0.95

0.88

0.84

0.81

0.78

0.78

0.72

COR

0.77

0.77

0.76

0.64

0.63

0.62

0.52

0.61

0.60

CAN

0.83

0.75

0.61

0.54

0.50

0.49

0.45

0.42

0.40

CAN

0.66

0.97

0.84

0.78

0.69

0.65

0.63

0.59

0.56

CAN

0.77

0.77

0.74

0.74

0.74

0.71

0.70

0.70

0.68

Body

EUC

0.79

0.76

0.65

0.58

0.54

0.50

0.45

0.43

0.41

MIN

0.79

0.76

0.66

0.58

0.52

0.50

0.45

0.43

0.40

Wine

EUC

0.67

0.85

0.92

0.89

0.81

0.82

0.80

0.73

0.71

MIN

0.66

0.97

0.87

0.86

0.80

0.68

0.68

0.57

0.56

SPECT

EUC

0.77

0.77

0.75

0.75

0.74

0.74

0.73

0.74

0.72

MIN

0.77

0.77

0.76

0.74

0.75

0.74

0.74

0.72

0.73

MAN

0.80

0.68

0.62

0.55

0.52

0.49

0.46

0.42

0.40

MAN

0.73

0.86

0.87

0.88

0.91

0.86

0.79

0.87

0.82

MAN

0.77

0.77

0.76

0.74

0.74

0.74

0.74

0.74

0.73

CHEB

0.78

0.73

0.66

0.59

0.52

0.50

0.44

0.42

0.39

CHEB

0.71

0.83

0.92

0.83

0.83

0.81

0.80

0.71

0.67

CHEB

0.76

0.75

0.74

0.74

0.72

0.70

0.71

0.63

0.61

MAH

0.64

0.64

0.64

0.64

0.64

0.64

0.64

0.64

0.64

MAH

0.51

0.50

0.49

0.49

0.58

0.55

0.61

0.65

0.59

MAH

0.77

0.77

0.77

0.77

0.76

0.76

0.76

0.76

0.76

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

COS

0.70

0.81

0.80

0.74

0.63

0.60

0.57

0.54

0.51

COS

0.41

0.58

0.56

0.50

0.54

0.46

0.50

0.56

0.56

COS

0.44

0.44

0.44

0.65

0.44

0.44

0.43

0.65

0.71

COR

0.70

0.82

0.73

0.68

0.66

0.60

0.57

0.54

0.51

COR

0.53

0.50

0.56

0.54

0.54

0.56

0.54

0.51

0.48

COR

0.41

0.60

0.73

0.72

0.74

0.68

0.71

0.59

0.60

CAN

0.70

0.79

0.72

0.73

0.68

0.66

0.62

0.57

0.55

CAN

0.53

0.55

0.54

0.53

0.53

0.53

0.53

0.55

0.54

CAN

0.41

0.41

0.41

0.63

0.53

0.61

0.59

0.57

0.60

EUC

0.70

0.78

0.72

0.68

0.64

0.61

0.59

0.56

0.54

Iris

MIN

0.70

0.80

0.72

0.68

0.66

0.62

0.58

0.55

0.52

Glass

EUC

0.41

0.41

0.49

0.55

0.55

0.51

0.56

0.59

0.54

MIN

0.41

0.41

0.53

0.55

0.56

0.56

0.56

0.58

0.56

Ecoli

EUC

0.44

0.64

0.74

0.74

0.76

0.72

0.69

0.73

0.68

MIN

0.44

0.44

0.63

0.73

0.73

0.62

0.73

0.65

0.75

MAN

0.69

0.78

0.73

0.67

0.66

0.63

0.59

0.57

0.54

MAN

0.41

0.41

0.56

0.57

0.58

0.58

0.55

0.57

0.52

MAN

0.44

0.44

0.64

0.75

0.75

0.75

0.76

0.75

0.75

CHEB

0.70

0.79

0.73

0.67

0.63

0.61

0.59

0.56

0.50

CHEB

0.41

0.41

0.55

0.57

0.54

0.55

0.53

0.56

0.57

CHEB

0.44

0.44

0.43

0.65

0.74

0.74

0.74

0.76

0.68

MAH

0.70

0.69

0.65

0.63

0.60

0.55

0.50

0.48

0.45

MAH

0.41

0.42

0.42

0.42

0.50

0.48

0.46

0.49

0.46

MAH

0.44

0.44

0.45

0.48

0.47

0.45

0.46

0.59

0.55

Table 7.9: The F-measure values for the numeric datasets when experimented on the

NJW(K-means) spectral clustering algorithm.

distance. The F-measure and G-means score is 0.69 and the Entropy value is 0.71. The

remaining five distance measures scored similarly; the F-measure scores fall within the

range [0.78 - 0.80]. Both the EUC distance and the MAN distance scored 0.78, while

the CHEB distance and the CAN distance scored 0.79 and the MIN distance scored 0.80

according to the F-measure scores. For this dataset, when k — 3, all of the F-measure

scores fall within the range [0.69 — 0.82].

Result Analysis - Numeric Data 151

k

k2

k3
k4

k5

k6

k7

k8

k9

kit)

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

COS

0.88

0.83

0.71

0.65

0.58

0.55

0.52

0.50

0.48

COS

0.74

0.94

0.94

0.87

0.80

'0.82

0.78

0.75

0.74

COS

0.80

0.80

0.79

0.79

0.78

0.69

0.41

0.38

0.36

COR

0.88

0.85

0.71

0.63

0.61

0.55

0.53

0.49

0.47

COR

0.74

0.96

0.95

0.89

0.85

0.83

0.81

0.81

0.76

COR

0.80

0.80

0.79

0.64

0.64

0.64

0.56

0.63

0.63

CAN

0.83

0.75

0.64

0.59

0.57

0.56

0.53

0.51

0.49

CAN

0.68

0.97

0.86

0.80

0.72

0.69

0.68

0.65

0.61

CAN

0.80

0.80

0.77

0.77

0.76

0.74

0.72

0.73

0.70

Body

EUC

0.79

0.76

0.68

0.62

0.59

0.57

0.53

0.52

0.50

MIN

0.79

0.76

0.67

0.62

0.57

0.56

0.53

0.51

0.50

Wine

EUC

0.69

0.86

0.92

0.90

0.83

0.84

0.83

0.76

0.75

MIN

0.67

0.97

0.88

0.87

0.82

0.72

0.72

0.63

0.62

SPECT

EUC

0.80

0.80

0.78

0.77

0.76

0.76

0.76

0.76

0.74

MIN

0.80

0.80

0.78

0.76

0.77

0.76

0.76

0.75

0.76

MAN

0.80

0.69

0.64

0.60

0.57

0.56

0.54

0.51

0.50

MAN

0.75

0.87

0.88

0.89

0.92

0.88

0.82

0.88

0.83

MAN

0.80

0.80

0.78

0.77

0.77

0.77

0.76

0.77

0.75

CHEB

0.78

0.74

0.68

0.63

0.58

0.56

0.52

0.51

0.49

CHEB

0.73

0.84

0.92

0.84

0.84

0.83

0.82

0.74

0.71

CHEB

0.79

0.77

0.77

0.77

0.75

0.72

0.74

0.64

0.63

G-i

MAH

0.67

0.67

0.67

0.67

0.67

0.67

0.66

0.66

0.66

MAH

0.58

0.57

0.55

0.54

0.62

0.59

0.63

0.69

0.64

MAH

0.80

0.80

0.80

0.79

0.79

0.79

0.79

0.79

0.78

means

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

COS

0.72

0.81

0.81

0.76

0.67

0.65

0.63

0.59

0.58

COS

0.51

0.62

0.58

0.52

0.56

0.48

0.52

0.57

0.58

COS

0.52

0.52

0.52

0.69

0.52

0.52

0.51

0.68

0.72

COR

0.72

0.83

0.75

0.71

0.69

0.65

0.63

0.60

0.57

COR

0.59

0.54

0.57

0.55

0.55

0.57

0.55

0.52

0.49

COR

0.51

0.63

0.75

0.74

0.76

0.70

0.72

0.63

0.64

CAN

0.72

0.79

0.74

0.74

0.71

0.69

0.66

0.63

0.60

CAN

0.60

0.61

0.57

0.56

0.56

0.56

0.55

0.56

0.56

CAN

0.51

0.51

0.50

0.68

0.58

0.63

0.63

0.61

0.64

EUC

0.72

0.79

0.73

0.70

0.67

0.66

0.64

0.62

0.60

Iris

MIN

0.72

0.80

0.73

0.70

0.69

0.66

0.63

0.61

0.59

Glass

EUC

0.51

0.50

0.55

0.58

0.58

0.54

0.60

0.63

0.57

MIN

0.51

0.50

0.59

0.61

0.58

0.59

0.57

0.60

0.58

Ecoli

EUC

0.53

0.68

0.76

0.75

0.77

0.73

0.70

0.74

0.71

MIN

0.53

0.52

0.67

0.75

0.74

0.67

0.74

0.67

0.77

MAN

0.71

0.79

0.75

0.69

0.70

0.67

0.64

0.63

0.60

MAN

0.51

0.50

0.61

0.61

0.62

0.62

0.58

0.58

0.53

MAN

0.53

0.53

0.68

0.77

0.77

0.77

0.77

0.77

0.77

CHEB

0.72

0.79

0.74

0.70

0.67

0.65

0.63

0.62

0.58

CHEB

0.51

0.50

0.60

0.62

0.56

0.58

0.54

0.57

0.59

CHEB

0.53

0.52

0.52

0.68

0.75

0.76

0.75

0.77

0.71

MAH

0.72

0.69

0.67

0.65

0.64

0.59

0.55

0.55

0.51

MAH

0.51

0.51

0.50

0.50

0.55

0.53

0.51

0.53

0.50

MAH

0.52

0.52

0.50

0.52

0.52

0.50

0.50

0.61

0.58

Table 7.10: The G-means values for the numeric datasets when experimented on the

NJW(K-means) spectral clustering algorithm.

Wine Dataset

The highest F-measure and G-means scores for this dataset are archived by the CAN

distance and the MIN distance measures. Both the F-measure and the G-means scores

are 0.97 for both of the distance measures. The COS distance and the COR distance

measure also scored a value close to the highest F-measure and G-means score. For

F-measure and G-means both, it scored 0.94 by the COS distance and 0.96 by the COR

distance. The lowest Entropy score is 0.11 for the MIN distance and 0.13 for the CAN

distance. In this case, the MAH distance measure also scored the lowest F-measure

Result Analysis - Numeric Data 152

Entropy

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

COS

0.36

0.34

0.50

0.30

0.28

0.27

0.27

0.26

0.25

COS

0.61

0.19

0.12

0.18

0.18

0.13

0.14

0.20

0.16

COS

0.51

0.51

0.50

0.50

0.50

0.46

0.42

0.43

0.43

COR

0.36

0.35

0.52

0.30

0.28

0.27

0.26

0.26

0.26

COR

0.62

0.15

0.14

0.13

0.16

0.15

0.13

0.16

0.11

COR

0.51

0.51

0.51

0.49

0.47

0.44

0.44

0.44

0.44

CAN

0.46

0.46

0.69

0.39

0.36

0.31

0.28

0.28

0.26

CAN

0.66

0.13

0.19

0.18

0.21

0.19

0.18

0.19

0.15

CAN

0.51

0.51

0.49

0.49

0.49

0.48

0.47

0.47

0.46

Body

EUC

0.51

0.49

0.34

0.36

0.32

0.30

0.29

0.29

0.27

MIN

0.51

0.49

0.48

0.39

0.34

0.31

0.30

0.29

0.29

Wine

EUC

.66

0.38

0.15

0.08

0.06

0.10

0.12

0.12

0.06

MIN

0.66

0.11

0.13

0.10

0.13

0.22

0.18

0.19

0.19

SPECT

EUC

0.51

0.51

0.50

0.49

0.49

0.49

0.49

0.49

0.48

MIN

0.51

0.51

0.50

0.49

0.49

0.49

0.49

0.48

0.49

MAN

0.50

0.51

0.46

0.38

0.31

0.31

0.30

0.28

0.27

MAN

0.60

0.34

0.23

0.18

0.13

0.07

0.03

0.03

0.03

MAN

0.51

0.51

0.50

0.49

0.49

0.49

0.49

0.49

0.48

CHEB

0.52

0.51

0.49

0.36

0.34

0.33

0.32

0.32

0.31

CHEB

0.65

0.42

0.16

0.25

0.15

0.14

0.16

0.15

0.10

CHEB

0.50

0.50

0.49

0.49

0.48

0.47

0.48

0.43

0.42

MAH

0.69

0.69

0.46

0.69

0.68

0.68

0.68

0.68

0.68

MAH

1.08

1.05

1.05

1.02

0.84

0.85

0.47

0.23

0.21

MAH

0.51

0.51

0.51

0.51

0.50

0.50

0.50

0.50

0.50

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

k

k2

k3

k4

k5

k6

k7

k8

k9

klO

COS

0.76

0.51

0.42

0.40

0.47

0.42

0.38

0.39

0.34

COS

1.48

0.97

0.95

1.00

0.87

0.99

0.96

0.81

0.77

COS

1.39

1.38

1.38

0.87

1.35

1.34

1.35

0.68

0.60

COR

0.76

0.52

0.51

0.47

0.42

0.39

0.40

0.36

0.34

COR

1.10

1.08

1.04

0.90

0.86

0.82

0.84

0.85

0.80

COR

1.43

1.04

0.74

0.74

0.63

0.71

0.59

0.63

0.55

CAN

0.76

0.58

0.56

0.44

0.40

0.37

0.37

0.36

0.37

CAN

1.20

1.17

1.07

1.06

1.04

1.02

0.99

0.93

0.83

CAN

1.43

1.43

1.42

0.78

0.93

0.89

0.70

0.67

0.63

EUC

0.77

0.60

0.54

0.51

0.46

0.39

0.34

0.33

0.32

Iris

MIN

0.77

0.58

0.53

0.50

0.41

0.39

0.38

0.39

0.36

Glass

EUC

1.48

1.49

1.33

1.07

1.01

1.02

0.97

0.91

0.94

MIN

1.48

1.48

1.23

1.13

1.00

0.99

0.86

0.85

0.83

Ecoli

EUC

1.39

0.92

0.68

0.60

0.58

0.59

0.55

0.53

0.44

MIN

1.38

1.38

0.91

0.68

0.63

0.89

0.62

0.55

0.52

MAN

0.79

0.60

0.52

0.49

0.40

0.35

0.32

0.32

0.29

MAN

1.48

1.49

1.10

1.08

1.00

0.94

0.95

0.86

0.88

MAN

1.38

1.38

0.91

0.66

0.60

0.61

0.57

0.57

0.49

CHEB

0.78

0.59

0.53

0.49

0.45

0.43

0.39

0.36

0.36

CHEB

1.48

1.47

1.14

1.09

1.00

0.99

0.92

0.88

0.89

CHEB

1.38

1.38

1.37

0.86

0.63

0.63

0.59

0.55

0.50

MAH

0.76

0.71

0.66

0.63

0.60

0.57

0.58

0.52

0.54

MAH

1.48

1.47

1.44

1.42

1.26

1.23

1.28

1.10

1.19

MAH

1.39

1.38

1.35

1.28

1.28

1.24

1.25

0.93

0.86

Table 7.11: The Entropy values for the numeric datasets when experimented on the

NJW(K-means) spectral clustering algorithm.

and G-means scores and the highest Entropy score. The scores are 0.50, 0.57, and 1.05,

respectively. The MAN distance, EUC distance, and CHEB distance scored moderate

scores where the F-measure score ranges between 0.83 and 0.86. The overall F-measure

score ranges between 0.50 and 0.97 when k = 3.

SPECT Dataset

For the SPECT dataset, all of the distance measures scored similarly. This also includes

the MAH distance measure, which performed low in the previous three datasets. The

F-measure and G-means scores for this dataset are 0.77 and 0.81, respectively. The

Result Analysis - Numeric Data 153

CHEB distance performed slightly lower that the rest of the five distance measures but

the difference is negligible (0.01). All three evaluation measures showed a similar trend,

which we will discuss further in the next section when we evaluate our results.

Glass Dataset

According to the F-measure and G-means scores, the MAN distance measure achieved

the highest score. The values are 0.58 and 0.62, respectively. However, the Entropy

scores suggest that the COS distance and the COR distance performed the best. The

lowest Entropy in this case is 0.86 and 0.87, respectively. For clarification, we manually

looked into the clusters and found that the clusters are more robust than the clusters

formed by the MAN distance. We also consulted the results from the SM(NCut) al­

gorithm and observed that the COS distance performed slightly better than the MAN

distance. Therefore, we consider the COS distance, COR distance, and MAN distance

measures for this dataset. In this case, the MAH distance measure also scored the low­

est. The F-measure and G-means scores are 0.50 and 0.55, respectively, and the lowest

Entropy is 1.26. The F-measure scores for all of the distance measures fall in the range

[0.50 — 0.58] when k — 6. Therefore, the rest of the distance measures fall within the

range [0.53 — 0.56] excluding the distance measures with the highest and the lowest val­

ues. This indicates that the performance of these distance measures is very similar.

Ecoli Dataset

The F-measure and G-means scores show that the MAN distance performed best for the

Ecoli dataset. The highest scores are 0.75 and 0.77, respectively. The MAH distance

measure again scored the lowest. The values are 0.48 for F-measure and 0.52 for G-

means. We also notice that the COR distance, EUC distance and MIN distance scored

well for this dataset. The F-measure scores for these three distance measures are 0.72,

0.74, and 0.73, respectively. The F-measure scores for all the distance measures fall in

the range [0.48 - 0.75] when k = 5.

The discussion in this section showed results similar to those of experiments per­

formed on the SM(NCut) algorithm. In both cases, the results indicate that the MAH

distance measure often scored the lowest scores over a range of datasets. The results

also indicate that the performance of the MAH distance measure is poor for all of the

six datasets. Moreover, the EUC distance measure never scored the highest score in any

of the datasets. In two datasets (i.e. Body and Iris), the COR distance and the COS

distance performed well, and for the Wine and Glass datasets, the scores were very close

to the highest scores achieved for these two datasets. The MAN distance performed well

for the Ecoli and Glass datasets.

Result Analysis - Numeric Data 154

7.3 Result Evaluation

In the previous section, we performed a quantitative analysis on the results from the

cluster evaluation measures to compare the performance of the distance measures. In

this section, we analyze further to evaluate the performance of the distance measures and

address the issues related to the possible reasons that may have caused the differences in

the performance. The results from the Friedman Test that we used to measure the statis­

tical significance, is depicted in Figure 7.2. The p-values are 0.0332 and 0.0097, when the

proximity measures are combined with the SM(NCut) and NJW(K-means) algorithm,

respectively. In both cases, the p-values are less than 0.05. According to our discussion

in Chapter 4, from a p-value less than 0.05, we may conclude that there is a significant

difference between the performance of the proximity measures on our datasets. Our re­

source SS df HS Chi-sq Prob>Chi-sq
Columns 83.917 7 11.9881
Error 147.583 35 4.2167
Total 231.£ 47

(a)

Source SS df US

Columns 96.75 7 13.8214 18.S5
Error 122.25 35 3.4929
Total 219 47

<b)

Figure 7.2: Results from the Friedman test when applied on the results from (a) the

SM(NCut) algorithm and (b) the NJW(K-means) algorithm.

suits showed that the MAH distance often performed poorly when compared to the rest

of the distance measures according to the cluster evaluation measures. We noticed that,

when the MAH distance is used, the spectral clustering algorithms produced imbalanced

clusters. Here the clusters are imbalanced when one partition contains relatively fewer

objects than the other cluster. We also noticed that the objects that are placed in the

smaller cluster are the objects that have the lowest degree. Recall from Chapter 2 that

the degree is the total similarity value from one object to rest of the objects in a dataset.

In spectral clustering, the objects are considered as nodes in the graph, and a partition

separates objects where the total within cluster similarity is high and the between cluster

similarity is very low. Therefore, when the degree is low for an object, in comparison

to the rest of the objects, it indicates that the object is less similar than most of the

objects in the dataset. Now, the equation of the MAH distance defines an ellipsoid in

Chi-sq Prob>Chi-sq

Result Analysis - Numeric Data 155

n-dimensional space [45], [31]. The distance considers the variance (how spread out the

values are from the mean) of each attribute as well as the covariance (how much two

variables change together) of the attributes in the datasets. It gives less weight to the

dimensions with high variance and more weight to the dimensions with small variance.

The covariance between the attributes allows the ellipsoid to rotate its axes and increase

and decrease its size [31]. Therefore, the distance measure is very sensitive to the ex­

treme points [21]. Figure 7.3 illustrates a scenario showing the MAH distance between

the objects. In the figure, the distance between object 1 and 2 will be less than the dis­

tance between object 1 and 3, according to the MAH distance. This is because, object

2 lies very close to the main axes along with the other objects, whereas the object 3 lies

further away from the main axes. Therefore, in such situations, the MAH distance will

be large. For numeric data, the similarity will be very low when the distance is very

large. The function in Equation 4.3, which is used to convert a distance value into a

similarity value, will give a value close to zero when the distance is very large. Therefore,

the degree from this object to the rest of the objects becomes very low and the spectral

methods separate these objects from the rest of the objects. This is one of the possible

reasons for the MAH distance performing poorly. It either discovers imbalanced clusters

or places similar objects wrongly into two different clusters. However, one possible way

to improve the performance of the MAH distance measure might be by changing the

value of a to a larger value. In this way, according to our discussion in Chapter 4, the

similarity will not have a very small value.

Figure 7.3: A scenario depicting the Mahalanobis (MAH) distance between three points.

Our results also indicate that the COR distance and the COS distance performed

best for four out of the six datasets. Both of the distance measures calculate the relative

distance from a fixed point (mean or zero, respectively). Therefore, two objects with a

similar pattern will be more similar even if their sizes are different. The EUC distance,

Result Analysis - Numeric Data 156

MAN distance, MIN distance, CAN distance, and CHEB distance measure, however,

calculate the absolute distance (i.e. straight line distance from one point to another).

For instance, the Body dataset partitions the objects into two main clusters, one with

larger body dimensions and another cluster with smaller body dimensions. According to

the true cluster information, the larger body dimensions denote the Male population and

the smaller body dimensions denote the Female population. When compared to the true

clusters, we observed that several individuals whose body dimensions are comparatively

lower than the average body dimensions of the Male population, are placed with the

individuals from the Female population by the distance measures that calculate the

absolute distance. Conversely, Female individuals with larger body dimensions than

the average body dimensions of the Female population are placed with the individuals

from Male population. Therefore, these individuals that fall very close to the boundary

of the two true clusters, are placed differently by the distance measures that calculate

the absolute distance (i.e. EUC distance, MAN distance, and MIN distance) than

the distance measures that consider the relative distance (i.e. COR distance and COS

distance). In such cases, the COS distance and the COR distance correctly identify

these individuals. In Figure 7.4, we plot the first two attributes of the Body dataset

when the EUC distance is used as the distance measure. The object marked with a

smaller circle is an example of a Male individual with smaller body dimensions. When

the EUC distance is used as the distance measure in the spectral clustering algorithm,

this object is placed with the Female population. The objects marked with the larger

circle illustrate the reversed situation, where a Female individual with larger body size

is placed with the individuals from Male population. In both of the situations, the COR

distance and the COS distance placed the objects with their own groups.

o
0

Figure 7.4: Example of cluster assignments of the Body dataset. The circles are used to

point to the several individual members that are placed differently.

Result Analysis - Numeric Data 157

In Figure 7.5, we provide the clusters from the Ecoli dataset when the MAN distance

(Left) and the COS distance (Middle) are used as the distance measure. The farthest

right figure (with the title Original) depicts the true clusters. The objects, according

to the true clusters, overlap between the clusters in a number of situations (e.g. the

objects marked with circle 2 and 4, or the objects marked with circle 3 and 5). This

indicates that there are several objects in the dataset that may be very similar but are

placed in two different true clusters. When the spectral clustering algorithms are applied

to this dataset, both the COS distance and the MAN distance divide the true cluster

marked with circle 1 (in Figure7.5) into two different clusters. However, the clusters

produced by the COS distance contain members from true cluster 1 and 3, whereas the

clusters produced by the MAN distance contain the members from true cluster 1. The

figure indicates that the shape of the clusters produced by the COS distance are more

elongated toward the origin, which is the reason why some of the members from true

cluster 3 are included in the cluster.

MAN COS ^ S i n a l

Figure 7.5: Example of cluster assignments of the Ecoli dataset. (Left) The clusters

obtained by using the MAN distance measure, (Middle) the clusters obtained by using

the COS distance, and (Right) the original true clusters.

7.4 Clustering Results

In Table 7.12, we provide the maximum F-measure scores obtained from the two spectral

clustering algorithms. For each dataset the maximum F-measure score is the value

obtained by the distance measure that performed the best for that particular dataset.

For the first three datasets, the F-measure score is high, which indicates that the clusters

discovered from the spectral clustering algorithms are very similar to the true clusters.

In Figure 7.6, we provide the similarity matrices for the Body dataset. The similarity

Result Analysis - Numeric Data 158

Dataset SM(Ncut) NJW(K-means)

Body 0.97 0.88

Iris 0.97 0.82

Wine 0.95 0.97

SPECT 0.81 0.77

Glass 0.61 0.58

Ecoli 0.85 0.75

Table 7.12: The F-measure scores for the SM(NCut) and NJW(K-means) spectral clus­

tering algorithm for the numeric datasets.

matrix on the left, in the figure, is ordered according to the true cluster index. The

similarity matrix on the right is from the spectral clustering algorithm where objects

are ordered according to the clusters index. According to [63], if the clusters are well

separated, then the similarity matrix should be block diagonal, where the blocks on the

main diagonal refer to each individual cluster, and where the similarity is the maximum.

The Iris and Wine dataset also give similar structures.

Figure 7.6: Similarity matrices for the Body dataset. (Left) Similarity matrix when

objects are ordered according to their true cluster index. (Right) Similarity matrix when

objects are assigned according to their cluster index obtained from spectral clustering

algorithm.

The SPECT, Glass, and Ecoli datasets are imbalanced datasets. One of the reasons

for these three datasets not performing as well as the previous three datasets is that

the true cluster labels may not correspond to the natural clusters in the datasets. The

spectral cluster algorithms discover natural clusters after considering the similarity be­

tween the objects. We provide an example to illustrate the situation. In Figure 7.7,

Result Analysis - Numeric Data 159

we provide the clusters (true clusters) according to the true cluster labels for the Ecoli

dataset (left) and the clusters obtained from the spectral clustering algorithm (right).

The figure shows that for the true clusters, several objects from Class 2 and Class 4

are very similar to one another but have different class labels. This is also true from

members of Class 3 and Class 5. When the spectral clustering algorithm is applied on

this dataset, it discovers clusters similar to the one (right) in Figure 7.7. The clusters

are based on the natural grouping of the objects. Therefore, unlike the true clusters,

which separate the objects from Class 3 and Class 5, the spectral clustering algorithm

groups them together, as the objects are very similar. In such situations, the evaluation

measures give lower scores, as the natural groups do not necessarily correspond to the

true clusters.

----- * - ----- I

Original

Figure 7.7: Cluster visualization for the Ecoli dataset. (Left) The clusters according

to the true cluster labels for the Ecoli dataset. (Right) The clusters obtained from the

spectral clustering algorithm.

The SPECT and Glass dataset also show similar behavior, where the objects from

the true clusters are scattered across the space. To verify that the natural clusters may

not correspond to the true clusters, we applied the K-means algorithm on the SPECT

dataset. Figure 7.8 illustrates the clustering results from the spectral clustering algorithm

(left figure) and the K-means algorithm (middle figure). In addition to the clustering

result, the figure also depicts the true clusters (right figure). The figure shows that when

the clustering algorithm is applied to the SPECT dataset, the clusters are generated

based on the distance between the objects. The two clusters are represented with two

differ colors (red and blue) and marked with circles. In contrast, the true clusters show

that the objects from both of the true clusters are scattered across the space and there

is no clear partition or natural groupings visible from the right most figure.

Result Analysis - Numeric Data 160

82 12

Spectral K-means True Clusters

Figure 7.8: Cluster visualization for the SPECT dataset. (Left) The clustering result

from the spectral clustering algorithm, (middle) the clustering result from the K-means

algorithm, and (right) the true clusters according to the cluster labels for the SPECT

dataset.

7.4.1 Clustering Results from SM(NCut) Algorithm

Here we provide the clusters discovered from the SM(NCut) algorithm. For each dataset,

we provide the clusters obtained from the distance measure that performed the best.

/
H (1-1): Male

(Male = 237) (Female = 8)

/
H (2.1): Smaller

size Male
(Male -138)
(Female =1)

\

Root: Bod}' Dataset
(Male = 247)

(Female = 260)

H (2.2): Larger
size Male

(Male = 99)
(Female = 7)

X
H (1.2): Female

(Female = 252) (Male - 10)

/
H (2.3): Smaller

size Female
(Female- 106)

(Male = 5)

..v.... ..
H (2.4): Larger

size Female
(Female =146)

(Male = 5)

Figure 7.9: The hierarchical tree structure of the Body dataset when SM(NCut) algo­

rithm is applied. H(l.l) and H(1.2) is the first level of the tree and H(2.1), H(2.2),

H(2.3), and H(2.4) are the nodes from the second level.

Figure 7.9 depicts the hierarchical structure for the body dataset. The hierarchical

structure is a symbolic way of showing the results where each square box represents

a node in the tree. The boxes include the level of the tree as well as the dominating

members according to the true cluster information. The overall error rate for this dataset

is very low (3.55%) and only 18 out of 507 instances are incorrectly clustered. The

class distribution for this dataset is given in Table 7.1. We see from the tree, that

8 of the female members are incorrectly clustered with the male members, and 10 of

the male members are wrongly placed with the female members. The first level of the

Result Analysis - Numeric Data 161

tree almost completely separates the female and male members. When comparing the

members from Level 1.1, which mostly represents the male members, and Level 1.2,

which mostly represents the female members, we notice that the members in Level 1.1

exceed the members in Level 1.2 in all features except the Thigh Girth measurement.

Interestingly, the second level separates the groups into two different sizes based on the

body girth measurements and skeletal diameter measurements. The first group contains

the members which have comparatively smaller body structure based on these attribute

values. In contrast, the members in the second group have a relatively larger body

structure. We also notice that the average age and weight of the members in this group

are significantly higher than the members with a relatively smaller body structure. This

is shown in Table 7.13 where we provided the centroids for each of the nodes (numbered

according to their position in the tree) in the hierarchical tree given in Figure 7.9. In

the figure, H (l . l) : M a l e and H(1.2):Female, represent the first level of the hierarchy

where the original dataset is divided into two partitions. The second level of the hierarchy

is represent by H(2.1):Male, H(2.2):Male, H(2.3):Female, and H(2.4):Female.

In this case, H(2.1):Male and H(2.2):Male are the partitions from H(l . l) :Male ,

whereas H(2.3):Female, and H(2.4):Female are the partitions from H(1.2):Female.

Since the dataset contains 24 attributes and cannot be fitted into one row, we split

the attributes into three segments. The segments are Skeletal Measurements, Girth

Measurements, and Other Measurements.

Figure 7.10 depicts the hierarchical tree for the Iris dataset. The overall error rate is

2.67%. Since the original dataset has three classes (Table 7.4), we only show the first two

levels in the figure. The original tree contains more nodes, as the algorithm stops only

when one of the stopping criteria is satisfied. In the first level of the tree, the spectral

Root: Iris Dataset
(Iris Settsa = 50) (Iris Versicoiour = 50)

(IrisVirginica=50)

H (1.2): Iris Versicoiour,
Iris VirgiDica

(Iris Versicoiour - 50)
(Iris Virginica = 50)

' ' •/•'•"' " : V " ' • •

* *.
H (2.1): Iris H 0.2): Iris
Versicoiour Virginica

(Iris Versicoiour=46) (Iris Virginica =50)
TST-,—-— .-,;,-. .' 0 " s Versicoiour = 4)

Figure 7.10: The hierarchical tree structure of the Iris dataset when SM(NCut) algorithm

is applied.

H (1.1): Iris Setosa
(Iris Serosa = 50)

Result Analysis - Numeric Data 162

Hierarchy level

H(l.l):Male
H(2.1):Male
H(2.2): Male
H(1.2):Female
H(2.3):Female
H(2.4):Female

H(l.I):Male
H(2.1): Male
H(2.2): Male

H(1.2):Female
H(2.3):Female
H(2.4):Female

Biacromial
Diameter
41.18
41.42
40.86
36.66
36.70
36.62

Pelvic
Breadth
28.00
27.54
28.63
27.70
26.93
28.72

Bitrochanteric
Diameter

32.45
31.93
33.16
31.57
30.96
32.38

Skeletal Measurements
Chest
Depth
20.74
20.03
21.70
17.77
17.21
18,54

Chest
Diameter

29.94
29.52
30.51
26.12
25.83
26.52

Elbow
Diameter

14.41
14.32
14.54
12.44
12.29
12.65

Wrist
Diameter
11.22
11.18
11.27
9.91
9.82
10.04

Knee
Diameter

19.54
19.52
19.58
18.16
17.89
18.52

Ankle
Diameter

14.68
14.56
14.85
13.10
12.91
13.36

Age

31.96
27.82
37.58
28.48
25.70
32.22

Other Measurements
Weigh

77.84
74.49
82.38
61.10
57.71
65.66

Height

177.44
177.55
177.29
165.69
165.40
166.09

Girth Measurements
Shoulder

116.51
115.82
117.43

100.45

99.51
101.72

Chest

100.93
99.19
103.29

86.08
84.06
88.81

Waist

84.40
79.35
91.24

69.99
66.66
74.47

Navel

87.42
82.65
93.90

83.95
78.06
91.88

Hip

97.43
94.95
100.78

95.92
92.75
100.19

Thigh

56.33
55.51
57.43

57.31
55.52
59.71

Bicap

34.41
34.19
34.71

28.16
27.29
29.33

Forearm

28.22
28.19
28.25

23.83
23.47
24.33

Knee

37.11
36.58
37.82

35.41
34.84
36.18

Calf M

37.14
36.66
37.77

35.05
34.72
35.50

ax Ankle Min

23.10
22.80
23.51

21.31
21.03
21.69

Wrist Min

17.18
17.15
17.21

15.11
14.97
15.30

Table 7.13: The cluster centroids for the Body dataset when SM(NCut) algorithm is

used.

clustering algorithm separates Iris Setosa from the two other types. This is because the

sepal and petal sizes of the Iris Setosa are clearly different from Iris Versicolour and

Iris Virginica. Its petal width and length is strictly smaller than the other two types.

The objects that are wrongly placed according to the true cluster are from the class Iris

Versicolour. They are incorrectly clustered with the members of class Iris Virginica.

For the wine dataset, the number of incorrectly clustered objects is 20, among 178

objects. The members from class 1 and class 3 are correctly placed. However, we noticed

that the members of class 2 overlap between the clusters. In the hierarchical tree, the

first two levels separate the three classes, with the exception that 17 members from class

2 are placed with the members of class 1, and 3 of them are clustered with the members

of class 3. The overall error rate is 11.24%. This is likely because the chemical attributes

of the misplaced objects from class 2 are more similar to the attribute values of class

1 for the five attributes (Magnesium, Total phenols Flavanoids, Nonflavanoid phenols,

Proanthocyanins and OD280/OD315 of diluted wines).

According to the information provided with the Glass dataset, the objects in this

dataset follow a hierarchical structure as given in Figure 7.11. The figure shows that in

the first level of the hierarchy, there are two groups: one that contains the members from

classes 1, 2, 3 and 4, which represent the Window Glasses, and the second group which

includes members from classes 5, 6 and 7, which represent the Non-Window Glasses.

Result Analysis - Numeric Data 163

j — 163 Window gia3S (trailding windows and vehicle windows) (2,2,3,4}
I — S7 float processed (1,3)
i — 70 building windows (1)
I — 17 vehicle windows (3)
j — 76 non-float processed (2,4)

Glass (1,2,3, •a, 5, 6,7} j — 76 building windows (2)
! — 0 vehicle windows (-3)
3 — 51 Non-window glass (5,6,7)
I — 13 containers (5)
i — 9 tableware (6)
1 — 29 neadlarcp3 (7)

Figure 7.11: The original hierarchical structure for the Glass dataset.

In the second level, the second group stays intact, but the first group may again be

subdivided into two groups with members from classes 1 and 3 (representing the family

of Float Processed Glasses) placed together and classes 2 and 4 {Non-Float Processed

Glasses) clustered together. As mentioned above, for this dataset the true clusters may

not correspond to the natural groupings. Therefore, two similar objects may be placed

in two different true clusters and this may cause a high error rate. Most of the elements

from classes 1, 2 and 3 {Window Glasses) are placed together with exception of several

members from classes 1 and 2 that are placed with the members from classes 5, 6 and

7 {Non-Window Glasses) in a separate cluster. The overall error rate at this level is

9.34%. In the second level the members from class 7 are placed into a separate cluster,

whereas the members from classes 5 and 6 are grouped together. The partitions that

subdivide the members of the Window Glasses are not satisfying. In most cases, both

of the partitions contain members from classes 1, 2, and 3, not necessarily grouping

according to the original structure. Thus, the overall error rate is high for the entire

tree.

The SPECT and Ecoli datasets also show similar behavior. For the SPECT dataset,

both of the partitions contain members from both of the true clusters. The error rate

at the first level of the tree is 38.58%. The first partition of the Ecoli dataset contains

members from Class 2(IM) (69/77 members) and Class 4(IMU) (34/35 members). Figure

7.7 shows that in the original dataset, the objects from these two true clusters are located

very close to one another. Therefore, several nodes include objects from both of the

true clusters. The second partition contains the members from Class 1(CP) (142/143

members), Class 3(PP) (47/52 members), and Class 5(Others) (24/29 members). The

next level for this partition separates the objects from Class 1 (CP), Class 3 (PP) and

Class 5 (Others). The members from Class 3 (PP) and Class 5 (Others) are placed into

the same cluster, as the objects from these two groups are very similar to one another

(Figure 7.7).

Result Analysis - Numeric Data 164

7.4.2 Clustering Results from NJW(K-means) Algorithm

In this part, we present the clusters discovered from the NJW(K-means) algorithm.

Similar to the previous section, we provide clusters obtained from the distance measure

that performed best for a particular dataset.

There are two true clusters in the Body dataset. Therefore, k is set to 2. We also

provide the results from k = 3 and k = 4 to see how the clusters form with an increase

in k.

k = 2: Recall that this dataset contains the body measurements of 507 individuals.

When k = 2, the clusters separate the Male individuals and the Female indi­

viduals and assign them to two different clusters. The algorithm correctly clusters

217 Males out of 247 Male individuals. Thus, there are 30 Male individuals that

are wrongly placed in the cluster, which contains mainly the Female individuals.

Out of 260 Female members, 28 members are wrongly clustered and thus placed

in the cluster with Male members. A further analysis on the wrongly clustered

objects shows that the Male members with relatively smaller body measurements

are placed in the wrong cluster with the Female members. The average body mea­

surements for these Male members are significantly below the average body size of

the Male population. Moreover, the average body size for these members is also

very close to the average size of the Female population. This also holds true for

the Female members that are wrongly clustered with the Male members. For this

wrongly placed fraction of Female population, the average body measurements are

much higher than the average body size of the Female population, but are very

close to the average body measurements of the Male members. Thus, even though

some of the members are incorrectly clustered according to the class labels, accord­

ing to the body measurements, the clusters separate a group with higher body size

from those with the lower body size. The overall error rate when class labels are

considered is 11.44%.

k = 3: In this case, one of the clusters is comprised mostly of the members from class

Male. The other two clusters share the members from class Female. The two

clusters that include members from class Female differ in that one is made up of

Female members with below average Female body sizes and the other contains the

remaining Female members.

k = 4: In this case, two of the clusters are comprised mostly of the members from class

Result Analysis - Numeric Data 165

Female and the rest of the two clusters are made up of the members from the class

Male. When we analyzed the clusters, we found that one of the two clusters (which

contains Female members) contains mainly the Female members that are below the

average body size (smaller size) with regards to the entire Female population. The

other cluster contains the Female members with larger body sizes. The average for

this group falls above the average body measurements of the Female population.

The situation is similar for the rest of the two clusters, which contain members

from the Male population. One of the clusters is for larger sized Males (above

average) and the other is for smaller sized Males (below average).

The Iris dataset separates the three different types of Iris plants based on the length

and width of the sepal and petal.

k — 2: In this case, one cluster mostly contains members from class Iris Setosa and the

second cluster includes members from class Iris Versicolour and Iris Virginica.

The reason for such groupings may be that the members from Iris Setosa have

comparatively smaller sepal length and smaller petal length and width than the

other two classes.

k = 3: The three clusters in this case comprise members from the three different clusters,

almost correctly separating the objects belonging to the same class. There are

150 objects in the dataset, with each class having exactly 50 members. The first

cluster contains 45 members from class Iris Setosa, where the rest of the members

are placed with class Iris Virginica. The second cluster contains 42 members from

class Iris Versicolour and rest of the members from this class are placed either with

class Iris Setosa or Iris Virginica. The third cluster comprises 43 members from

class Iris Virginica, and in this case, the rest of the members are also placed in

either of the two other clusters. The overall error rate for this solution is 13.33%

because of the 20 members from the three classes that are misplaced and put into

different clusters other than their own. These members have slightly different sepal

and petal sizes than the rest of the objects in their group, and are therefore placed

with the objects that are more similar to them.

k = 4: Cluster 1 and Cluster 2 include members from class Iris Versicolour and class

Iris Virginica respectively. The other two clusters share the members from class

Iris Setosa. The clusters differ on the attribute values and thus the members from

Result Analysis - Numeric Data 166

class Iris Setosa that fall below the average are placed together in one cluster and

the ones that are above the average are grouped together.

The Wine dataset has three true clusters. The clusters formed by this algorithm are:

k = 2: When k = 2, Clusterl is dominated by the members from a type of wine denoted

as Class 1 (The name is not provided with the dataset). The second cluster contains

the members from Class 2 and Class 3. We notice that Class 1 has, on average, a

comparatively lower value for all the chemical attributes than the average attribute

values of Class 2 and Class 3.

k = 3: The three clusters achieved in this case, almost correctly represent the original

true cluster distribution. Out of 178 objects, only 7 are misplaced, and the overall

error rate is 3.93%. Thus, Cluster 1, Cluster 2 and Cluster 3 represent Class 1,

Class 2 and Class 3 respectively. The objects that are placed in the wrong cluster

according to the true cluster labels are from Class 2, and are placed differently as

their chemical properties are slightly different than the other objects in their true

cluster.

The Glass dataset has six classes and the clusters follow a hierarchical structure as

given in Figure 7.11. Below, we present each of the clustering solutions from k = 2..6.

Recall that this dataset identifies the type of glass based on the information from various

chemical substances. As mentioned above, for this dataset the true clusters do not

correspond very well to the natural clusters. Therefore, there are objects that are very

similar but belong to two different true clusters, and the natural clusters often contain

members from several true clusters.

k — 2: Cluster 1 mostly contains the members from classes 1, 2 and 3. These members

belong to the family of Window Glasses. Non Window Glasses, which are denoted

by the symbols 5, 6 and 7, are placed together in the second cluster. We also

notice that in this cluster there are several members from the Window Glasses

that are incorrectly clustered with the members of Non Window Glasses. The

main difference between these two clusters is, that the Window Glasses (1, 2, and

3) have a relatively low value for most of the chemical substances. In contrast,

the Non Window Glasses have high values for most of the chemical substances.

Thus, the members from class Window Glasses that are wrongly placed with the

Non Window Glasses have comparatively higher values for the chemical substances

Result Analysis - Numeric Data 167

than the members from their own group, hence explaining why they are clustered

in such way.

k = 3: In this case, one of the clusters is mostly comprised of the members from class 7,

which denotes the glass of type Headlamps, and falls into the category Non Window

Glasses. The other two clusters are formed similarly to the previous solution. One

cluster contains members from classes 1, 2 and 3 and the other contains members

from classes 5, 6 and 7 along with some of the members from the former group.

k = 4: In contrast to the previous solution, the clustering solution in this case, separates

some of the members of classes 1 and 2, which denote the glass of type Building

Window Float Process and Building Window Non-Float Process, respectively, into

two separate clusters. The third cluster includes glasses of type Non Window

Glasses and the forth cluster contains the remaining members of classes 1, 2 and

3, which represent the Window Glasses.

k = 5,6: In both of these cases, the clusters are similar to the previous case (when k = 4).

The additional clusters mainly subdivide the members from true cluster 1, which

is the largest true cluster in the dataset.

The SPECT dataset, which is an imbalanced dataset, is also an example of a situation

where spectral clustering fails to find the clusters according to the true clusters. While

natural clusters are based on the similarity between the objects, the true clusters do not

show such natural groupings. Therefore, the clusters obtained from this dataset often

contain members from both of the true clusters.

The Ecoli dataset has 5 true clusters. Below are brief descriptions on each of the

solutions. In this case, the true clusters also do not exactly correspond to the natural

clusters. Therefore, members from the same true cluster may reside in two different

cluster. Below, we provide the clusters that contain members from the dominating true

clusters.

k = 2: In this case, the algorithm divides the objects into two groups: one which con­

tains the Ecoli proteins mostly residing at the area called the Inner Membrane

without Signal Sequence (IM) and the Inner Membrane, Uncleavable Signal Se­

quence (IMU). The second group contains Ecoli members that are located in the

Cytoplasm (CP), Perisplasm (PP) as well as the locations listed with Others.

Result Analysis - Numeric Data 168

k = 3: When k = 3, the Ecoli that are located at the Cytoplasm (CP) are isolated in

a separate cluster from the rest of the members. The other two clusters contain

the members that are located in Inner Membrane without Signal Sequence (IM)

and Inner Membrane, Uncleavable Signal Sequence (IMU), respectively. The third

cluster contains the members from class Perisplasm (PP) and Others.

k — 4: The solution is very similar to the previous one except that some of the members

of class Others are placed in a separate cluster.

k = 5: Four of the clusters are very similar to those achieved, when the number of clusters

was set to 4. The fifth cluster is comprised of some of the members from the largest

class where Ecoli proteins are located at the Cytoplasm (CP).

7.5 Chapter Summary

In this chapter, we presented the performance of the eight distance measures for numeric

datasets. The experiments are performed on two different versions of the spectral clus­

tering algorithm and tested against six datasets. The results indicated that the Pearson

Correlation distance (COR) and the Angular distance (COS), frequently performed bet­

ter than the rest of the distance measures. Both of these distance measures calculate

the relative distance between the objects. In contrast, the Mahalanobis distance mea­

sure scored relatively lower than the rest of the distance measures. We noticed that

this distance measure is very sensitive to the extreme points. However, the performance

may be improved by selecting the value for a carefully. On the other hand, the results

from Euclidean distance, Manhattan distance, Minkowski distance, Chebyshev distance,

and Canberra distance measure obtained very similar scores. For these measures, the

scores are moderate, in that they scored lower than the best ones but better than the

Mahalanobis distance. In contrast to the Angular distance and the Pearson Correlation

distance measure, these distance measures calculate the absolute distance between the

objects. Our results suggest that the Angular distance and the Pearson Correlation

distance may be a suitable choice when spectral clustering is applied on the numeric

datasets. In addition, according to our results, the Mahalanobis distance measure may

not be a suitable choice.

The next chapter provides a summary of this thesis. We also discuss several directions

in which this study may be furthered.

Chapter 8

Conclusion

In this chapter we provide a summary of our work as presented in this thesis. We discuss

the results and contributions of our work. We also suggest several directions in which

this research may be pursued further.

8.1 Discussion

Cluster analysis is an exploratory data analysis technique, where the data is divided into

groups or clusters, based on the similarity between the objects. Recently, a graph-based

cluster analysis method, called the spectral clustering algorithm, has become popular

in the research community. The spectral clustering algorithms originated from the area

of graph partitioning. The algorithm takes the similarity matrix, constructed from the

pair-wise similarity between the objects, as input. Next, the Laplacian matrix is con­

structed from the similarity matrix and the algorithm manipulates the eigenvector(s)

and eigenvalue(s) of this Laplacian matrix to find the clusters. One of the advantages of

using a spectral clustering algorithm is that the spectral algorithm is not sensitive to any

particular data type. As such, datasets with numeric, categorical, binary, or mixed data

types may work equally well with the spectral clustering algorithm. One needs only to

convert the dataset into a similarity matrix. This may be accomplished by using existing

proximity measures or by introducing new measures. As with any cluster analysis meth­

ods, the selection of the proximity measure is very crucial to the spectral algorithms.

While, the Euclidean distance is the most popular choice for numeric datasets, it may

not be the most suitable distance measure [19]. Therefore, in this thesis, we performed

a comparative and exploratory study on several proximity measures, to compare their

169

Conclusion 170

performance on the spectral clustering algorithm.

We considered three different data types. Apart from numeric data, our work included

datasets with binary and mixed variables. For each of the data types a number of existing

proximity measures were considered. For all our experiments, we closely followed the four

fundamental steps of cluster analysis, as discussed in Chapter 2. In our experiments, we

first constructed the similarity matrices for a given dataset using each of the proximity

measures. The spectral algorithm was then applied to each of the similarity matrices. The

result from the spectral clustering algorithm was assessed with the help of the external

cluster evaluation measures. In order to compare the performance of the proximity

measures, we compared the scores obtained from the cluster evaluation measures. We

then analyzed the results to address the probable causes that might have affected the

performance of the distance measures. The contributions from our experiments are stated

below:

Performance of proximity measures for binary data: In this study, we analyzed

the performance of six similarity coefficients for binary data. These included: 1)

Sokal and Sneath, 2) Jaccard, 3) Simple Matching Coefficient, 4) Rogers and Tani-

moto, 5) Russell and Rao, and 6) Czekanowski. We found that the performance of

the Russell and Rao similarity coefficient is often poor when compared to the rest of

the coefficients. We also noticed, as may be expected, that the performance of each

of the coefficients depends on the datasets used in the experiments. The issues that

most affected the performance of the similarity measures were, the weights given

to the positive and negative matches, the ratio of zeros and ones in the dataset,

and in a number of cases, the weights given to the number of unmatched pairs.

Performance of proximity measures for mixed data: We evaluated the perfor­

mance of two coefficients for mixed data: 1) the Gower similarity coefficient and

2) the Laflin similarity coefficient. Our results showed that, on average, the Gower

coefficient performed better than the Laflin coefficient. However, the difference

between the scores is very low. We also found that under certain constraints the

Gower similarity coefficient and Laflin similarity coefficients performed similarly.

We observed that, for our experiments, the performance of the Gower coefficient

and the Laflin coefficient vary mostly due to the distance measures for the numeric

attributes.

Performance of proximity measures for numeric data: In our study, we ana­

lyzed the performance of eight proximity measures for numeric data. The distance

Conclusion 171

measures that are considered in this study are: 1) Pearson Correlation Coefficient,

2) Angular Distance, 3) Euclidean Distance, 4) Manhattan Distance, 5) Minkowski

Distance, 6) Chebyshev Distance, 7) Canberra Distance, and 8) Mahalanobis Dis­

tance. Our results suggest that the Mahalanobis distance might not be a suitable

choice for spectral clustering algorithms. We observed, that when combined with

spectral algorithm, the clusters formed by this distance measure often produced im-

balanced clusters. In this case, the objects in smaller clusters contained the objects

with lower degrees. We also noticed that the rest of the seven distance measures

were not as sensitive as the Mahalanobis distance measure in terms of the extreme

points. Our results from the evaluation measures also indicated that the Pearson

Correlation Coefficient and the Angular Distance measure, most frequently per­

formed well. We also noticed that the Euclidean distance often scored moderately

in our experiments. In a majority of the cases in our study, the difference between

the performances occurred due to the shape of the clusters formed by each distance

measure.

Comparison of the splitting methods for SM(NCut) algorithm: Our results

showed that the selection of the splitting methods for the SM(NCut) algorithm,

also affect the performance of the SM(NCut) spectral algorithm. We compared five

splitting methods in this study. They are: Split Zero, Split Mean, Split Median,

Split NCutl, and Split NCut2. The results from our study showed that the perfor­

mances of the splitting methods are comparative. The Split Zero and Split Mean

are among the splitting methods that most often outperformed, in terms of the

evaluation measures. Moreover, in terms of the composition of clusters, these two

splitting methods often produced robust clusters. We also found that the clusters

produced from the Split NCutl and Split NCut2 splitting method might produce

imbalanced clusters, where one cluster contains a relatively smaller number of ob­

jects than the other cluster.

8.2 Future Work

The work presented in this thesis may be furthered in several other directions. Firstly, the

experiments may be extended to consider clustering algorithms other than the spectral

clustering methods used in this study. It would be interesting to explore the performance

of various proximity measures on different clustering algorithms and to evaluate how these

Conclusion 172

measures vary for each of the algorithms. More precisely, it would be interesting to see

whether the conclusions drawn from our study persist for other clustering algorithms

in a similar manner. Recall from Chapter 2 that the clustering solutions may also be

evaluated by applying the internal evaluation measures. Therefore, in future, a similar

study using the internal cluster evaluation measures may also be performed to explore

the performance of the proximity measures.

Another direction for future work is to consider more diverse selections of datasets.

For example, in this study we considered the datasets from the UCI repository. In the

future, steps could be taken to investigate the performance of these proximity measures

on synthesis datasets, datasets with noise and outliers, or large datasets with high dimen­

sionality. However, large datasets with high dimensionality have many additional issues

to consider. For high dimensional datasets, these proximity measures may not perform

as per our expectation. As mentioned in Chapter 2, with high dimensions, the data may

become sparse and the distance computed from these measures may not capture the

difference properly. In such different set of proximity measures may be required

to deal with the problem of high dimensionality.

This research may be significantly extended for linked datasets. A linked dataset

considers the attribute's information and also includes the information about the rela­

tionships in between the objects in the datasets. In recent years, a new area called Link

Mining [25], which concentrates particularly on linked data, has become popular in the

research community. Examples of linked datasets include bibliographic data, web data,

social networking data, and epidemiological data. However, there are several issues that

may make the task more complex. For instance, linked datasets are usually large and

the similarity matrix constructed from these datasets will therefore also be very large.

As such, the calculation of the eigenvalues and eigenvectors of a very large matrix will

likely also be time and space consuming. These issues need special attention when linked

datasets are concerned.

Appendix A

Acronyms and Mathematical Terms

A . l Acronyms

C A N CANberra distance for numeric data.

CHEB CHEByshev distance for numeric data.

COR pearson CORrelation distance for numeric data.

COS angular distance or COSine distance for numeric data.

CZE CZEkanowski similarity coefficient for binary data.

EUC EUClidean distance for numeric data.

GOWER GOWER (dis) similarity coefficient for mixed data.

JAC JACcard similarity coefficient for binary data.

LAFLIN LAFLIN's similarity coefficient for mixed data.

M A H MAHalanobis distance for numeric data.

M A N MANhattan distance for numeric data.

MIN MINkowski distance for numeric data.

NJW(K-means) Ng, Jordan, and Weiss's spectral algorithm with K-means.

SAS Sokal And Sneath similarity coefficient for binary data.

173

Acronyms and Mathematical Terms 174

SIM SIMple matching coefficient for binary data.

SM(NCut) Shi and Malik's Normalized Cut spectral algorithm.

R A R Russell And Rao similarity coefficient for binary data.

RAT Rogers And Tanimoto similarity coefficient for binary data.

A.2 Mathematical Terms

Eigenvectors and Eigenvalues Let Abe an x n square matrix. Then, A is an eigen­

value of A if there exists a non-zero vector x such that, Ax = Xx. Here, x is called

an eigenvector of A corresponding to eigenvalue A. [9]

Covariance Matrix The matrix of covariances between elements of a vector.

Covariance In statistics, covariance [72] is the measure of how much two random vari­

ables change together. If two variables tend to vary together (that is, when one

of them is above its expected value (mean), then the other variable tends to be

above its expected value too), then the covariance between the two variables will

be positive. On the other hand, if one of them is above its expected value and the

other variable tends to be below its expected value, then the covariance between

the two variables will be negative.

Bibliography

[1] AGRAWAL, R., G B H R K E , J., GUNOPULOS, D., AND RAGHAVAN, P . Automatic

subspace clustering of high dimensional data for data mining applications. ACM

SIGMOD Record 27, 2 (1998), 94 - 105.

[2] AIELLO, M., ANDREOZZI, F . , CATANZARITI, E., ISGRO, F . , AND SANTORO,

M. Fast convergence for spectral clustering. In ICIAP '07: Proceedings of the

14th International Conference on Image Analysis and Processing (Washington, DC,

USA, 2007), IEEE Computer Society, pp. 641 - 646.

[3] ASUNCION, A., AND NEWMAN, D. UCI Machine Learning Repository, 2007.

[4] BACH, F . R., AND JORDAN, M. I. Learning spectral clustering. In Neural Infor­

mation Processing Systems (2003), MIT Press.

[5] BACH, F . R., AND JORDAN, M. I. Learning spectral clustering, with application

to speech separation. The Journal of Machine Learning Research 7 (2006), 1963 -

2001.

[6] BEIL , F . , E S T E R , M., AND X U , X. Frequent term-based text clustering. In KDD

'02: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (New York, NY, USA, 2002), ACM, pp. 436 - 442.

[7] BERKHIN, P . Survey of clustering data mining techniques. Technical Report, Accrue

Software, 2002.

[8] B R E W , C , AND IM WALDE, S. S. Spectral clustering for German verbs. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP) (July 2002), pp. 117 - 124.

175

Bibliography 176

[9] CARTER, T . A., TAPIA, R. A., AND PAPAKONSTANTINOU, A. Linear algebra, An

introduction to linear algebra for pre-calculus students, h t t p : / / c e e e . r i c e . e d u /

Books/LA/index.html.

[10] C H E N G , D., KANNAN, R., VEMPALA, S., AND W A N G , G. On a recursive spectral

algorithm for clustering from pairwise similarities. Technical Report MIT-LCS-TR-

906, Massachusetts Institute of Technology, Cambridge, US, 2003.

[11] CHUNG, F . R. K. Spectral Graph Theory (CBMS Regional Conference Series in

Mathematics, No. 92). American Mathematical Society, February 1997.

[12] COSTA, I. G., DE CARVALHO, F . A. T. , AND DE SOUTO, M. C. P . Comparative

study on proximity indices for cluster analysis of gene expression time series. Journal

of Intelligent and Fuzzy Systems: Applications in Engineering and Technology 13,

2-4 (2002), 133 - 142.

[13] CUNNINGHAM, P . Dimension reduction. Technical Report UCD-CSI-2007-7, Uni­

versity College Dublin, 2007.

[14] DEMSAR, J. On the Appropriateness of Statistical Tests in Machine Learning. The

3rd workshop on Evaluation Methods for Machine Learning, In conjunction with

ICML 2008.

[15] DONATH, W. E., AND HOFFMAN, A. J. Lower bounds for the partitioning of

graphs. IBM J. Research and Development 17, 5 (September 1973), 420 - 425.

[16] DUNHAM, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2002.

[17] ESPINOLA, R. P . , AND EBECKEN, N. F . F . On extending F-measure and G-means

metrics to multi-class problems. In DATA MINING VI - Data Mining, Text Mining

and Their Business Applications (2005), C. A. B. A. Zanasi and N. F. F. Ebecken,

Eds., WIT press, pp. 25 - 34.

[18] E S T E R , M., KRIEGEL, H.-P. , SANDER, J., AND X U , X. A density-based algo­

rithm for discovering clusters in large spatial databases with noise. In Proceedings of

2nd International Conference on Knowledge Discovery and Data Mining (KDD'96)

(1996), pp. 226 - 231.

[19] E V E R I T T , B. S. Cluster Analysis, 2nd ed. Edward Arnold and Halsted Press, 1980.

http://ceee.rice.edu/

Bibliography 177

[20] FIEDLER, M. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal

23, 98 (1973), 298 - 305.

[21] FILZMOSER, P . , G A R R E T T , R., AND REIMANN, C. Multivariate outlier detection

in exploration geochemistry. Computers and Geosciences 31, 5 (2005), 579-587.

[22] F ISCHER, I., AND P O L A N D , J . New methods for spectral clustering. Technical

Report IDSIA-12-04, IDSIA, 2004.

[23] F ISCHER, I., AND POLAND, J. Amplifying the block matrix structure for spectral

clustering. Technical Report IDSIA-03-05, IDSIA, 2005.

[24] FODOR, I. K. A survey of dimension reduction techniques. Technical Report UCRL-

ID-148494, Lawrence Livermore National Laboratory, Center for Applied Scientific

Computing, 2002.

[25] G E T O O R , L. Link Mining: A new data mining challenge. SIGKDD Explorations 5,

1 (2003), 84 - 89.

[26] GHOSH, J. Scalable Clustering. In The Handbook of Data Mining, Chapter 10,

N. Ye, Ed. Lawrence Erlbaum Associates, 2003, pp. 247 - 277.

[27] G O L U B , G. H., AND LOAN, C. F . V. Matrix Computations (3rd ed.). Johns

Hopkins University Press, Baltimore, MD, USA, 1996.

[28] GUHA, S., RASTOGI , R., AND SHIM, K. CURE: An efficient clustering algorithm

for large databases. In SIGMOD '98: Proceedings of the 1998 ACM SIGMOD

International Conference on Management of Data (New York, NY, USA, 1998),

ACM, pp. 73 - 84.

[29] GUHA, S., RASTOGI , R., AND SHIM, K. ROCK: A robust clustering algorithm for

categorical attributes. In ICDE '99: Proceedings of the 15th International Confer­

ence on Data Engineering (Washington, DC, USA, 1999), IEEE Computer Society,

p. 512.

[30] Guo, H., AND V I K T O R , H. Learning from imbalanced data sets with boosting

and data generation: the DataBoost-IM approach. ACM SIGKDD Explorations

Newsletter 6, 1 (2004), 3 0 - 3 9 .

Bibliography 178

[31] HAMPRECHT, F . , SCHNORR, C , AND JA.HNE, B. Pattern Recognition 29th DAGM

Symposium, Heidelberg, Germany, September 12-14, 2007: Proceedings. Springer,

2007.

[32] HAN, J., AND KAMBER, M. Data Mining: Concepts and Techniques, 2nd Ed.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[33] HEINZ, G., P E T E R S O N , L. J., JOHNSON, R. W., AND K E R K , C. J. Exploring

relationships in body dimensions. Journal of Statistics Education 11, 2 (2003).

[34] HlNNEBURG, A., AND K E I M , D. A. An efficient approach to clustering in large

multimedia databases with noise. In Proceedings of 4th International Conference on

Knowledge Discovery and Data Mining (KDD'98) (1998), pp. 58 - 65.

[35] JAIN, A. K., M U R T Y , M. N., AND FLYNN, P . J. Data clustering: A review.

ACM Computing Surveys 31, 3 (1999), 264 - 323. www.c i t e see r . i s t . p su .edu /

j a in99data.html.

[36] JAPKOWICZ, N., AND SHAH, M. Performance Evaluation for Classification A

Machine Learning and Data Mining Perspective (in progress): Chapter 6: Statistical

Significance Testing.

[37] KANNAN, R., VEMPALA, S., AND V E T A , A. On clusterings: Good, Bad and

Spectral. In FOCS '00: Proceedings of the 41st Annual Symposium on Foundations

of Computer Science (Washington, DC, USA, 2000), IEEE Computer Society.

[38] KARYPIS, G., H A N , E.-H. S., AND KUMAR, V. Chameleon: Hierarchical cluster­

ing using dynamic modeling. IEEE Computer 32, 8 (1999), 68 - 75.

[39] KAUFMAN, L., AND ROUSSEEUW, P . Finding Groups in Data: An Introduction to

Cluster Analysis. Wiley-Interscience, 2005.

[40] K I M , Y., S T R E E T , W. N., AND MENCZER, F . Feature selection in data mining.

80 - 105.

[41] KUBAT, M., H O L T E , R. C., AND MATWIN, S. Machine learning for the detection

of oil spills in satellite radar images. Machine Learning 30, 2 - 3 (1998), 195 - 215.

[42] KURUCZ, M., BENCZUR, A., CSALOGANY, K., AND LUKACS, L. Spectral clus­

tering in telephone call graphs. In WebKDD/SNA-KDD '07: Proceedings of the 9th

http://www.citeseer.ist.psu.edu/

Bibliography 179

WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network

Analysis (New York, NY, USA, 2007), ACM, pp. 82 - 91.

LAFLIN, S. Laflin's general coefficient. Website, 1998. ht tp: / /www.cs.bham.ac.

uk/~slb/courses/Taxonomy/Taxonomy02.html.

LAROSE, D. T. Discovering Knowledge in Data: An Introduction to Data Mining.

Wiley-Interscience, 2004.

L E E , S., AND V E R R I , A. Pattern Recognition With Support Vector Machines:

First International Workshop, Svm 2002, Niagara Falls, Canada, August 10, 2002:

Proceedings. Springer, 2002.

LuXBURG, U. A tutorial on spectral clustering. Statistics and Computing 17, 4

(2007), 395 - 416.

M E I L A , M., AND SHI , J. Learning segmentation by random walks. In Neural

Information Processing Systems (2000), pp. 873 - 879.

MEILA, M., AND SHI, J. A random walks view of spectral segmentation. In

International Conference on Artificial Intelligence and Statistics (AISTAT) (2001).

NEVILLE, J., ADLER, M., AND JENSEN, D. Spectral clustering with links and

attributes. Technical Report 04-42, University of Massachusetts Amherst, 2004.

N G , A. Y., JORDAN, M. I., AND W E I S S , Y. On spectral clustering: Analysis and

an algorithm. In Advances in Neural Information Processing Systems (2001), T. G.

Dietterich, S. Becker, and Z. Ghahramani, Eds., vol. 14.

N G , R. T. , AND H A N , J. CLARANS: A method for clustering objects for spatial

data mining. IEEE Transactions on Knowledge and Data Engineering 14, 5 (2002),

1003 - 1016.

PACCANARO, A., CASBON, J. A., AND SAQI, M. A. Spectral clustering of protein

sequences. Nucleic Acids Research 34, 5 (2006), 1571-1580.

PAGE, D. KDD cup 2001 - Genes dataset. Website, h t t p : / / p a g e s . c s . w i s c . e d u /

~dpage/kddcup2001/.

PEDRYCZ, W. Knowledge-Based Clustering: From Data to Information Granules.

Wiley-Interscience, 2005.

http://www.cs.bham.ac
http://pages.cs.wisc.edu/

Bibliography- ISO

[55] ROMESBURG, C. Cluster Analysis for Researchers. Lulu. Com, 2004.

[56] SHAKHNAROVICH, G. Introduction to machine learning, Lecture 25. Website, 2006.

h t tp : / /www.cs .b rown.edu /courses /csc i l950- f / l ec tu res / l ec tu re25 .pdf .

[57] SHEIKHOLESLAMI, G., CHATTERJEE, S., AND ZHANG, A. WaveCluster: A multi-

resolution clustering approach for very large spatial databases. In VLDB '98: Pro­

ceedings of the 24th International Conference on Very Large Data Bases (San Fran­

cisco, CA, USA, 1998), Morgan Kaufmann Publishers Inc., pp. 428 - 439.

[58] SHI, J., AND MALIK, J. Normalized cuts and image segmentation. IEEE Trans­

actions on Pattern Analysis and Machine Intelligence 22, 8 (2000), 888 - 905.

[59] SOKAL, R., AND SNEATH, P . Principles of Numerical Taxonomy. WH Freeman,

1963.

[60] STATSOFT, I. Electronic Statistics Textbook. World Wide Web electronic publica­

tion, 2007. h t tp : / /www.s ta tsof t .com/textbook/s ta thome.html .

[61] STEINBACH, M., KARYPIS, G., AND KUMAR, V. A comparison of document

clustering techniques. KDD Workshop on Text Mining, 2000.

[62] STRANG, G. Linear Algebra and Its Applications, 4th ed. Thomson Brooks / Cole,

February 2006.

[63] T A N , P . , STEINBACH, M., AND KUMAR, V. Introduction to Data Mining, 2005.

[64] T E K N O M O , K. Similarity Measurement. Website, 2007. h t t p : / / p e o p l e . r e v o l e d u .

c o m / k a r d i / t u t o r i a l / S i m i l a r i t y / .

[65] UNIVERSITY, P . WordNet 3.0. Website, 2006. h t t p : / / w o r d n e t . p r i n c e t o n . e d u /

perl /webwn?s=clustering.

[66] V E R M A , D., AND MEILA, M. Comparison of spectral clustering methods. Technical

Report 03-05-01, University of Washington, Computer Science and Engineering,

2003.

[67] W A N G , C., JUN L I , W., D ING, L., T I A N , J., AND CHEN, S. Image segmenta­

tion using spectral clustering. In ICTAI '05: Proceedings of the 17th IEEE Inter­

national Conference on Tools with Artificial Intelligence (Washington, DC, USA,

2005), IEEE Computer Society, pp. 677 - 678.

http://www.cs.brown.edu/courses/cscil950-f/lectures/lecture25.pdf
http://www.statsoft.com/textbook/stathome.html
http://people.revoledu
http://wordnet.princeton.edu/

Bibliography 181

[68] WANG, W., YANG, J., AND M U N T Z , R. R. STING: A statistical information grid

approach to spatial data mining. In VLDB '97: Proceedings of the 23rd International

Conference on Very Large Data Bases (San Francisco, CA, USA, 1997), Morgan

Kaufmann Publishers Inc., pp. 186 - 195.

W E B B , A. R. Statistical Pattern Recognition, 2nd Edition. John Wiley &; Sons,

October 2002.

W H I T E , S., AND SMYTH, P . A spectral clustering approach to finding communities

in graph. SIAM Data Mining Conference (2005).

WIKIPEDIA. Class (biology) — wikipedia, the free encyclopedia, 2008. [Online;

accessed 28-November-2008].

WIKIPEDIA. Covariance — wikipedia, the free encyclopedia, 2008. [Online; accessed

28-November-2008].

WIKIPEDIA. Exponential function — wikipedia, the free encyclopedia, 2008. [On­

line; accessed 28-November-2008].

W I K I P E D I A . Mahalanobis distance — wikipedia, the free encyclopedia, 2008. [On­

line; accessed 28-November-2008].

WIKIPEDIA. P-value — wikipedia, the free encyclopedia, 2009. [Online; accessed

28-January-2009].

W I T T E N , I. H., AND F R A N K , E. Data Mining: Practical Machine Learning Tools

and Techniques, 2 ed. Morgan Kaufmann, 2005.

Wu, Z., AND LEAHY, R. An optimal graph theoretic approach to data clustering:

Theory and its application to image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence 15, 11 (1993), 1101 - 1113.

XIONG, H., STEINBACH, M., TAN, P . , AND KUMAR, V. HICAP: Hierarchical

Clustering with Pattern Preservation. In Proceedings of the 4th SIAM International

Conference on Data Mining (2004), pp. 279 - 290.

XlONG, H., Wu, J., AND C H E N , J. K-means clustering versus validation mea­

sures: a data distribution perspective. In Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (2006), ACM

New York, NY, USA, pp. 779 - 784.

Bibliography 182

[80] Xu, R., AND W U N S C H II, D. Survey of clustering algorithms. IEEE Transactions

on Neural Networks 16,3 (May 2005), 645 - 678.

[81] Y I N , X., HAN, J., AND Y U , P . S. Cross-relational clustering with user's guidance.

In KDD '05: Proceedings of the 11th ACM SIGKDD International Conference on

Knowledge Discovery in Data Mining (New York, NY, USA, 2005), ACM, pp. 344

- 3 5 3 .

[82] Yu, L., AND Liu, H. Feature selection for high-dimensional data: A fast

correlation-based filter solution. In Proceedings, 20th International Conference on

Machine Learning (ICML-2003) (2003), vol. 2, pp. 856-863.

[83] ZHANG, T. , RAMAKRISHNAN, R., AND LIVNY, M. BIRCH: An efficient data

clustering method for very large databases. A CM SIGMOD Record 25, 2 (1996),

103 - 114.

