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Abstract. The task of predicting protein functions using computational
techniques is a major research area in the field of bioinformatics. Cast-
ing the task into a classification problem makes it challenging, since the
classes (functions) to be predicted are hierarchically related, and a pro-
tein can have more than one function. One approach is to produce a set
of local classifiers; each is responsible for discriminating between a subset
of the classes in a certain level of the hierarchy. In this paper we tackle
the hierarchical classification problem in a local fashion, by learning an
ensemble of Bayesian network classifiers for each class in the hierarchy
and combining their outputs with four alternative methods: a) selecting
the best classifier, b) majority voting, ¢) weighted voting, and d) con-
structing a meta-classifier. The ensemble is built using ABC-Miner, our
recently introduced Ant-based Bayesian Classification algorithm. We use
different types of protein representations to learn different classification
models. We empirically evaluate our proposed methods on an ageing-
related protein dataset created for this research.
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1 Introduction

Data mining, a research focus in the fields of artificial intelligence, machine
learning and statistics, is the process of discovering accurate, comprehensible
and useful patterns in real-world datasets. Classification is one of the widely
studied data mining tasks, in which the aim is to learn a model used to predict
the class of unlabelled cases [22]. Many real-world classification problems have
their classes organized into a hierarchy — typically a tree or a Directed Acyclic
Graph (DAG), which makes the hierarchical classification problem a challenging
research topic. A commonly used approach to tackle such a problem is the local
approach, where the class hierarchy is processed in a top-down fashion, producing
one or more local classifiers for each class level and combining their outputs. Each
classifier is trained with a flat classification algorithm using a local data subset,
and it discriminates among a subset of classes in the hierarchy.



Protein function prediction is an important application of hierarchical classi-
fication, and is considered as one of the major types of bioinformatics problems
[7]. Determining protein functions is crucial for improving biological knowledge,
diagnosis and treatment of diseases. In this work, we focus on human ageing-
related proteins, predicting their biological processes according to the Gene On-
tology. Research on ageing is important because ageing is the greatest risk factor
for a number of diseases.

ABC-Miner [14], recently introduced by the authors, is a flat classification
algorithm that learns the structure of a Bayesian Augmented Naive-Bayes (BAN)
network using Ant Colony Optimization (ACO)- a meta-heuristic global search
for solving combinatorial optimization problems [6].

In this paper we approach the hierarchical protein function prediction in a
local fashion, using the ABC-Miner algorithm. We build an ensemble of classifiers
for each node in the class hierarchy using the same algorithm but with four
different types of protein representations, which were the representation types
used in [18]. Each representation consists of a predefined set of protein features
of the same type. There are many types of protein representations, and the
choice of the feature representation might be as important as the choice of the
classification algorithm. The issue of using different representations is related to
the well-known issue of feature selection in data mining, where a subset of the
features is selected during the run of the algorithm to build a classifier. However,
we favour the former, mainly because it significantly reduces computational time.
This is important in our local hierarchical classification problem, where we have
to build a classifier at each of the large number of class hierarchy nodes.

The combination of an ensemble’s outputs at each class node is performed
by four alternative methods: a) selecting the best classifier, b) majority voting,
c¢) weighted voting, and d) constructing a meta-classifier to perform the final
prediction. From one perspective, we compare the use of each protein repre-
sentation individually to the use of the various proposed ensemble methods to
combine representations. From another perspective, we compare the use of our
ant-based algorithm — on each protein representation individually and with the
various ensemble methods — to other well-known Bayesian classification algo-
rithms, namely: Naive-Bayes, TAN, and GBN. We evaluate the classification
performance of our ensemble settings on a new dataset of ageing-related pro-
teins, which was created for this research — due to the lack of ageing datasets
for hierarchical classification in the literature.

The rest of the paper is organized as follows. Section 2 gives a brief overview
on Bayesian network classifiers. Section 3 describes our Ant-based Bayesian Clas-
sification Algorithm. Section 4 discusses hierarchical classification approaches.
Section 5 describes our proposed ensemble-of-classifier methods based on differ-
ent protein representations for hierarchical classification. Section 6 describes the
creation of our ageing-related dataset. Experimental results are shown in Section
7, followed by the conclusion and future research directions in Section 8.



2 Bayesian Network Classifiers

In the context of reasoning with uncertainty, Bayesian networks (BN) is one
of the most powerful tools that model (in)dependence relationships between
variables [5]. A directed acyclic graph (DAG) is used to represent the variables
as nodes and statistical dependencies between the variables as edges between the
nodes. In addition, a set of conditional probability tables (network parameters),
one for each variable, is obtained by computing the probability distribution of
the variable given its parents. Note that a Bayesian network should be able to
answer probabilistic queries about any node(s) in the network.

Bayesian network classifiers are a special kind of probabilistic networks, where
the concern is to answer queries about the probability of a specific node: the class
attribute. Thus, the class node is treated as a special variable in the network;
it is set as the parent of all other variables. The purpose is to compute the
probability of each value ¢ in the class variable C' given a case x (an instance
of the input attributes X = {X1, X2, ..., X, }), then label the case with the class
having the highest probability, as in the following formulas:

C(x) = argmax P(C = c|x = x1, T2, ..., Tp), (1)
VeeC

letting Pa(X;) be the set of parent predictor variables of X; in the network,
according to the Bayes’ Theorem:
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There are several types of Bayesian network classifiers studied in the lit-
erature: Naive-Bayes, Tree Augmented Naive-Bayes (TAN), Bayesian network
Augmented Naive-Bayes (BAN), and General Bayesian networks (GBN). Naive-
Bayes is the simplest Bayesian classifier in the literature, and it assumes the
attributes are independent given the class label [3] — i.e., each feature node has
just one parent node in the network: the class variable.

Since the independency assumption in general is not realistic, extended ver-
sions were developed to improve the performance of Naive-Bayes. TAN allows
a node in a BN to have more than one parent, besides the class variable. This
produces a tree-like BN structure. In BAN classifiers, no restrictions (or at most
k-dependencies) are enforced on the number of parents that a node in the net-
work can depend on. Unlike the other BN classifier learners, a GBN learner
treats the class variable node as an ordinary node during network construction.
The idea is to build a general purpose BN, extract the Markov blanket of the
class node and use the resulting network as a Bayesian classifier. For a review
and comparison of various BN classifiers, see [3,9].

Learning a BN (classifier) from a dataset D is decomposed into two phases;
learning the network structure and learning the network parameters. Parame-
ter learning can be done in a relatively straightforward way by computating a



conditional probability table (CPT) for each variable with respect to its parent
variables. The CPT of variable X; encodes the likelihood of each value of this
variable given each combination of values of Pa(X;) in the network structure G,
and the likelihood of the dataset D given a network G is denoted by P(D|G).
Typically, the purpose is to find G that maximizes P(D|G) for a given D, which
is the role of BN structure learning. A common approach to this problem is
to introduce a scoring function, f, that evaluates each G with respect to D,
searching for the best network structure according to this score [3].

Most algorithms used in the literature for building such BN classifiers are
deterministic and greedy, and so are likely to get trapped into local optima in
the search space. Since learning the optimal BN structure from a dataset is N'P-
complete, stochastic meta-heuristic global search methods like ACO, which are
less likely to get trapped into local optima, can be applied to build high-quality
BN classifiers in an acceptable computational time.

3 The ABC-Miner Algorithm

Ant Colony Optimization (ACO) [6] is a meta-heuristic for solving combinatorial
optimization problems, inspired by observations of the behavior of ant colonies
in nature. The main idea is to utilize a swarm of simple individuals that use col-
lective behaviour to achieve a certain goal. ACO algorithms have been successful
in solving several combinatorial optimization problems, including classification
rules discovery [12, 11] and general purpose BN construction [2, 13, 23]. However,
ABC-Miner [14], recently introduced by the authors, is the first ACO algorithm
to learn BN classifiers.

In ABC-Miner the decision components in the construction graph (which
define the search space that an ant uses to construct a candidate solution) are
all the edges of the form X — Y where X # Y and X,Y belong to the set
of predictor attributes. These edges represent the attribute dependencies in a
constructed BN classifier. Each ant in the colony creates a candidate solution
(BN classifier). Then the quality of that solution is evaluated. The best solution
produced in the colony at the current iteration is selected to undergo local search
before the ant updates the pheromone trail on the construction graph according
to the quality of its solution. The pheromone amounts deposited on the decision
components guide the subsequent ants towards new better candidate solutions.
After that, it compares the current iteration’s best solution with the global best
solution to keep track of the best solution found along the entire search so far.
This set of steps is repeated until the algorithm converges on a solution or the
maximum number of iterations is reached.

In order to build the structure of a BN classifier, the maximum number of
parents for a node is typically specified by the user. However, the selection of
the optimal number of dependencies that a variable in the network can have is
automatically carried out in ABC-Miner [14]. To create a candidate solution,
an ant starts with the network structure of Naive-Bayes, i.e. a BN in which all
the variables have only the class variable as the parent. Then it expands that



structure into a Bayesian Augmented Naive-Bayes (BAN) structure by adding
edges to the network. The selection of the edges is performed according to a
probabilistic state transition formula that involves pheromone amount and the
heuristic information — using conditional mutual information [14] associated with
the edges. An edge is valid to be added to the BN classifier being constructed
if its inclusion does not create a directed cycle and does not exceed the limit
of k parents (chosen by the current ant). After the ant adds a valid edge, all
the invalid edges are eliminated from the construction graph. The ant keeps
adding edges to the current solution until no valid edges are available. When
the structure is finished, the CPT is computed for each variable, producing a
complete BN classifier. Then the quality of the solution is evaluated and all the
edges become available for constructing further candidate solutions.

The ABC-Miner algorithm evaluates the quality of the BN classifier using
accuracy [14], a conventional measure of predictive performance, since the goal
is to build a BN only for predicting the value of a specific class attribute, unlike
conventional BN learning algorithms whose scoring function do not distinguish
between the predictor and the class attributes. Experimental evaluations showed
the predictive effectiveness of ABC-Miner in flat classification comparing to other
Bayesian classification algorithms, namely: Naive-Bayes, TAN and GBN [14].
Thus, we carry on using it for hierarchical classification.

4 Hierarchical Classification

Hierarchical classification refers to the task of predicting the class value(s) of
a given case in a domain where the class values are arranged into a hierarchy.
Many real-world classification problems have hierarchical classes, were a case
belongs to a series of classes related in a general-to-specific structure. Such class
structure is found, e.g., in document topics, music genres and protein functions,
which makes the classification task more complex and challenging [19].

Figure 1 shows examples of hierarchical classification problems. A hierarchical
classification problem can be characterized by three properties:
Graph Structure - This specifies whether the type of graph representing the
hierarchical classes is tree or DAG. A node in the tree structure has only one
parent, while it can have multiple parents in the DAG.
Labelling Type - This indicates whether a case is allowed to have class labels
associated with a single or multiple paths in the class hierarchy. The hierarchy
can be a tree, yet a case can be labelled with classes in different paths.
Labelling Depth - In full depth labelling, every case is labelled with classes at
all levels, from the root to the leaf level. Partial depth labelling indicates that
for some cases the value of the class label at the leaf level is not specified.

There are three different broad approaches to tackle hierarchical classifica-
tion problems [19]. The first (and the simplest) approach is to completely ignore
the class hierarchy and convert the problem into flat classification by predict-
ing only classes at the leaf nodes. The second approach is to produce one or
more local classifiers for each class level and combine their outputs. Each clas-



(a) (b)

Fig. 1. Examples of hierarchies of classes: (a) Tree and (b) DAG. If each case in (a)
is labelled with exactly one of the classes: 1.1, 1.2, 2.1, 2.2, then (a) is a single-path
and full-depth classification problem. If a case in (b) is labelled with only class 2,
and another case is labelled with both 1.1 and 1-2.1, then (b) is a multiple-path and
partial-depth problem.

sifier is trained with a flat classification algorithm using a local data subset,
discriminating among a subset of classes in the hierarchy. The third (and most
complex) approach is to design a specific classification algorithm that can pro-
cess the whole hierarchy in a global way. The local approach is widely used
since it utilizes existing flat classification algorithms and the divide-and-conquer
principle (see below) to solve more easily manageable classification problems,
by comparison with the first and third approaches where a single classifier has
to discriminate among a very large set of all leaf classes or all classes in the
hierarchy, respectively.

The local approach for hierarchical classification uses the principle of “divide
and conquer” to process the class hierarchy in a top-down fashion. More pre-
cisely, we use the “one-classifier-per-node” version of the local approach, which
is suitable for our dataset, where the graph type is DAG, labelling type is mul-
tiple paths, and labelling depth is partial depth (see Section 6). In this local
approach version, a binary flat classifier is built for each class in the hierarchy
(except the root node). The flat classification algorithm at a given node uses the
cases belonging to this class node as positive examples, and the cases belonging
to the siblings of this class node (but not to the current class node) as negative
examples in the training phase. To illustrate how to classify a case in the testing
phase, we use example (b) in Figure 1. The local classifier at node 1 decides
whether a given case belongs to this class or not, the same for node 2. If the case
is classified as belonging to class 2, it is passed to the classifiers of the class nodes
2.1 and 2.2 (the case is also passed to the classifier at node 1-2.1 if it is classified
as belonging to class 1 and 2) at the next level. If the case does not belong to
class 2, no further classifications are performed from node 2. In this example, a
case can be labelled with, say, classes 1, 2, and 2.2, which is appropriate for the
aforementioned characteristics of our dataset.



5 Proposed Methods for an Ensemble of Classifiers

An ensemble of classifiers is often used to combine the predictions from sepa-
rate classifiers in order to increase predictive accuracy. The idea is to construct
an ensemble of classifiers having different inductive biases, so they make differ-
ent errors. Hence, combining their classification outputs will make the overall
prediction of the ensemble more accurate [22].

There are two main issues in ensembles of classifiers. First, the type of di-
versity in the classifiers: different algorithms with the same dataset, different
attributes (features) from the same dataset, different data representations with
the same algorithm, and different training case subsets with the same algorithm
(e.g., bagging). The second issue is how the classes predicted by the classifiers
are combined. Table 1 shows how our work fits into the context of related work
on hierarchical classification according to these two issues.

Table 1. Related Work on Ensembles in Hierarchical Protein Function Classification

Approaches to Combine Classifier Ensemble’ Predictions

Select the best [Majority Vote|Weighted Vote Stacking

Different Secker et al. Costa et al. [4]
Algo- [17], Silla et al.

rithms [18]

Different This  Work,|This Work |This Work This Work
Data Repre-|Silla et al. [18]

sentations

Different Fea-|Secker et al.
ture Subsets |[16]
Different Schietgat et al.
Data subsets [15]

Diversity in the Ensemble

In addition to the use of our ABC-Miner for hierarchical protein function
prediction in a new ageing-related dataset, what is novel in this work are the
various methods we employ to combine the outputs of an ensemble’s classi-
fiers built with different protein representations in hierarchical classification. As
shown in Table 1, three of the four cells marked with the keyword “this work”
involve a new combination of the technique of building classifiers with different
protein representations (proposed in [18]) with a technique for combining the
classifiers’ predictions.

In essence, ABC-Miner builds an ensemble of four binary classifiers (one for
each protein representation, i.e. a pre-defined feature set) for each class node in
the hierarchy. The selective method chooses the best classifier — with the highest
accuracy in a validation set (a subset of the training set) [17] — in the ensemble
to predict whether or not a given case belongs to the current local class node.
The majority voting method uses the majority decision of the ensemble to make
a local class prediction. For example, if three out of four classifiers predicted



that a given case does not belong to the current class, this case is not labelled
by this class. The weighted voting method weights the vote of each classifier by
its accuracy on a validation set (again, a subset of the training set), and predicts
the class with the the largest sum of weighted votes.

The stacking method is a meta-classifier built upon the predicted classes of
the ensemble’s classifiers to perform the final classification of a case. For a given
training case, a meta-case is constructed with four attributes: each represents the
class predicted by one of the ensemble’s four classifiers. The class of the meta-
case is the same as the one in the training case. At each node in the hierarchy the
algorithm uses an ensemble’s classifiers to classify the n cases of its local training
subset and then n meta-cases are generated upon the output of the classifiers.
A meta-classifier is built to learn the relationships between the predictions of
the various classifiers and the actual classes. In the testing phase, the meta-
classifier outputs the final classification for a test case upon the predictions of
the ensemble’s classifiers.

The accuracy of a classifier in an ensemble is measured by the hierarchical
F-measure, which combines hierarchical precision (hP) and hierarchical recall
(hR), as shown in the following formula, where A; is the set of actual (true)
class labels and P; is the set of predicted class labels, respectively, for the ith
case, and n is the total number of validation cases.

>icy [Ai U P hR:E?:HAz‘UPJ W = ZhPRE
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Zi:l ‘PZ‘ Zi:l |AZ‘ hP +hR

6 The Ageing-Related Protein Dataset

A new dataset of human ageing-related protein was created specifically to be
used in our experiments. A case (protein) has four different sets of predictor
attributes (four protein representations), extracted from its amino acid sequence
as described later, and a set of class labels (functions) to be predicted. These
functions are hierarchically-related biological processes in the Gene Ontology
(GO) [20]. To create the dataset, first a set of ageing genes were obtained from the
GenAge database [10], which contained 260 human ageing-related genes (species
“Homo sapiens”). Note that we obtained only the gene names from the GenAge
dataset, the proteins target classes and features were obtained as follows.

Next, we used the Swiss-Prot database [21] from the UniProt knowledge base
to obtain the sequences of the proteins corresponding to those genes (from which
the predictor attributes are extracted) and the biological process GO terms (to
be predicted) for each protein. The total number of GO terms included in that set
of proteins was 2889. Considering each of those terms as a class to be predicted is
not desirable, for two reasons. First, the number of classes in the hierarchy would
be very large, with many classes having very few cases (making their prediction
unreliable). Second, a lot of those GO terms are irrelevant to the process of
ageing, since an ageing-related protein often performs other biological processes
unrelated to ageing. Therefore, it is desirable to have a subset of these terms
containing only GO terms related to the ageing process.



In order to mitigate these problems, we used the DAVID [8] bioinformatics
tool to identify enriched GO terms in our set of ageing-related proteins. DAVID
performs statistical tests to identify the GO terms whose annotations are most
correlated with a specific set of proteins. We set the minimum number of proteins
per GO term to 15, and set the EASE parameter that represents the maximum p-
value of the enrichment significance to 1E-10. We obtained 102 biological process
GO terms, which were used as the class hierarchy in our dataset. The dataset
was reduced to 247 proteins, as 16 were lost due to the GO terms reduction.
Table 2 shows the top 100 GO terms (GO:Term Proteins_Count) in our dataset
sorted by the protein count. The top left term is the root node that has the 247
proteins. To see the names and the hierarchical organization of the terms, please
refer to QuickGO [1], where only the “IS-A” relationship is considered in our
construction of the class hierarchy.

Table 2. Top 100 GO Terms in the Dataset and Their Protein Counts

GO:0008150 247
GO:0009987 241
G0O:0065007 207
G0O:0050789 204
GO:0050794 201
G0O:0008152 196
G0O:0044237 188
GO:0050896 184
G0:0044238 181
GO:0051716 163
G0:0019222 158
G0:0043170 156
G0O:0044260 150
GO:0031323 148
GO:0080090 145
GO:0048518 144
GO:0060255 143
G0:0048522 135
GO:0006807 120
G0:0034641 119

GO:0034641 119
GO:0007165 119
G0O:0009889 119
GO:0051171 118
GO:0031326 116
G0:0019219 116
GO:0048519 115
G0O:0006950 111
GO:0042221 111
G0O:0006139 110
G0:0048523 110
GO:0010556 107
G0O:0090304 104
G0:2000112 104
G0:0010468 103
G0O:0065009 102
GO:0009893 97
GO:0051252 96
GO:2001141 96
GO:0006355 94

GO:0031325 91
G0:0010604 89
G0:0032502 85
GO:0007166 85
GO:0065008 84
GO:0033554 78
GO:0050790 78
G0:0010033 76
GO:0010941 76
GO:0043067 76
G0O:0042981 76
GO:0035556 75
GO:0044093 74
GO:0051246 72
GO:0009891 69
GO:0032268 69
GO:0051173 67
GO:0031328 67
G0:0045935 64
GO:0042127 62

GO:0043085 62
GO:0050793 61
G0:0009892 60
GO:0010557 60
G0:0006259 59
GO0:0031399 59
GO:0051726 56
GO:0006974 55
GO0:0010605 55
GO:0006357 54
GO:0007167 53
GO:0051254 53
GO:0010628 52
G0:0007169 51
GO:0060548 49
GO:0043069 49
G0:0045893 49
GO0:0043066 49
G0:0009719 47
GO0:0042592 44

GO:0048856 42
G0:0009725 40
G0:0010942 40
G0:0043068 40
G0:0043065 40
G0:0045944 40
G0:0051094 38
G0:0009628 37
G0:0006281 37
GO0:0008284 37
G0:0012502 31
GO0:0006917 31
G0:0009314 29
G0:0040008 28
GO0:0043434 27
GO0:0051052 27
GO0:0006979 26
G0:0006916 26
GO0:0048513 19
G0:0009416 19

We extracted 4 sets of protein features (used in [18]), each set constitut-
ing a different protein representation, from the proteins’ amino acid sequences.
In essence, the first feature set contains 5 z-values, representing hydrophobic-
ity /hydrophilicity (z1), steric/bulk properties and polarizability (z2), polarity
(z3), and electronic effects (z4 and z5) of the amino acids in the whole sequence.
The second set contains 15 z-values; 5-values are averaged over the whole se-
quence, other 5 z-values are averaged over the N-terminus (the first 150 amino
acids) of the protein, and further 5 z-values are computed from the C-terminus
(the last 150 amino acids) of the sequence.



The third feature set contains amino acid compositions, which are the per-
centages of occurrence of each amino acid within a protein sequence. This pro-
duces a set of 20 features, each of them with the percentage of how many times
a given amino acid occurs within the protein sequence. The fourth set contains
local descriptors, consisting of 21 features (3 Composition, 3 Transition and 15
Distribution features), which are computed based on the variation of occurrence
of functional groups of amino acids within the protein sequence. The functional
groups used were: hydrophobic (amino acids CVLIMFW), neutral (amino acids
GASTPHY), and polar (amino acids RKEDQN). We also added the sequence
length and molecular weight of the protein as two additional features to each of
the feature sets, since both are easy to obtain and may be somewhat relevant to
protein functional prediction.

7 Experimental Results

The experiments were carried out using a well-known 5-fold cross validation pro-
cedure [22]. The results (average F-measure on the test set) are reported in Table
3. From one perspective, we compare the performance of the various ensemble-
of-classifiers methods to the use of each protein representation separately. From
another perspective, we compare the use of ABC-Miner as the base classifier in
an ensemble to the use of other BN classification algorithms: Naive-Bayes, GBN
and TAN. Parameter settings are the same as in [14].

In Table 3, the top four rows refer to the use of each protein representation
separately, so that no ensemble of classifiers is built. The bottom four rows
refer to experiments with ensembles, using the various methods of prediction
combination (discussed in Section 5) of the ensemble of classifiers built with
different representations. An entry in bold face indicates that it is the highest
F-measure value obtained across the four algorithms for the same experiment
variation. An underlined entry indicates that it is the highest F-measure value
obtained in all of the experiment variations for the same algorithm.

Table 3. Predictive Performance (mean + standard error) Results - F-measure.

Experiment Variation Naive-Bayes TAN GBN ABC-Miner
5 Z-values 0.196 £ 0.02 0.285 £ 0.01 0.218 + 0.02 0.342 £+ 0.02
15 Z-values 0.307 &£ 0.01 0.321 £ 0.01 0.242 £ 0.01 0.298 £ 0.01
AA Composition 0.279 &+ 0.01  0.283 = 0.02 0.271 £ 0.01 0.363 + 0.02
Local Descriptors 0.345 + 0.00 0.340 = 0.00 0.342 £ 0.00 0.347 + 0.00
Selective Classifier 0.332 £ 0.01 0.332 &£ 0.01 0.287 &+ 0.01 0.351 £ 0.02
Majority Voting 0.269 £ 0.01 0.372 £ 0.02 0.251 +0.02 0.366 £ 0.01
Weighted Voting 0.376 £ 0.01 0.378 £ 0.02 0.376 + 0.02 0.481 £ 0.01
Meta-Classifier 0.308 &£ 0.02 0.381 + 0.01 0.328 £ 0.02 0.397 £+ 0.02




As shown in Table 3, ABC-Miner obtained the highest performance in 6 out
of 8 experiments variations, where in 5 variations it was significantly better than
the second best algorithm according to a two-tailed Student’s t-test with signifi-
cance level of 5%. TAN performed the second best, since it came in the first place
in 2 variations and in the second place in 5 variations. In addition, the different
approaches for combining an ensemble’s classifiers’ predictions have generally
performed better than the use of each protein representation separately. Specif-
ically, the weighted voting approach obtained the best results with 3 out of 4
algorithms. The meta-classifier came in the first place for 1 algorithm and in the
second place for 2 algorithms. Unexpectedly, the selective approach has outper-
formed the majority vote for 2 algorithms. For each of the four used algorithms,
the best ensemble method outperformed the best single protein representation at
the statistical significance level of 5%, showing the effectiveness of the proposed
ensemble methods over other approaches.

8 Concluding Remarks

In this paper we have used our recently introduced ant-based Bayesian classifica-
tion algorithm in several ensembles of classifiers to tackle the hierarchical protein
function prediction problem in a local approach. We created a new ageing-related
protein dataset to carry out our experiments. Results have showed the effective-
ness of the proposed ensemble methods in hierarchical classification, especially
when ABC-Miner is used. However, lack of prediction model comprehensibility
is an issue; a large number of classifiers (four for each class in the hierarchy) are
built, reducing the interpretability of the models by users. This is an inherited
drawback of the local approach. Therefore, an important research direction is to
extend ABC-Miner to tackle hierarchical classification in a global fashion, where
only one classification model is produced for the entire class hierarchy.

Acknowledgements. The authors thank Dr. Carlos Silla for extracting the
feature sets used in our experiments and Dr. Joao Pedro de Magalhaes for his
valuable advice about the creation of the ageing-related protein’s dataset.
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