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Abstract. The evolutionary time scales for various strategies in the it-
erated Prisoner’s Dilemma on a fully connected network are investigated
for players with finite memory, using two different kinds of imitation
rules: the (commonly used) traditional imitation rule where the entire
meta-strategy of the role model is copied, and the partial imitation rule
where only the observed subset of moves is copied. If the players can
memorize the last round of the game, a sufficiently large random initial
population eventually reaches a cooperative equilibrium, even in an envi-
ronment with bounded rationality (noise) and high temptation. With the
traditional imitation rule the time scale to cooperation increases polyno-
mially with decreasing intensity of selection (or increasing noise), whereas
partial imitation results in an exponential dependence. Populations with
finite lifetimes are therefore unlikely to ever reach a cooperative state
in this setting. Instead, numerical experiments show the emergence and
long persistence of a phase characterized by the dominance of always
defecting strategies.

1 Introduction

We use the Prisoner Dilemma [10] (PD) as an example of a two player game
to study the impact of incomplete information in the imitation process. When
two players play the PD game, each of them can choose to cooperate (C) or
defect (D). Each player is awarded a payoff depending on his own and the op-
ponent’s move. Cooperation yields R (S) if the opponent cooperates (defects)
and defection yields T (P ) if the opponent cooperates (defects). R is the Reward
for cooperation, S is the Sucker’s payoff, T is the Temptation to defect and P
is the Punishment. In the PD, T > R > P > S and 2R > T + P to prevent
collusion if the game is played repeatedly. The PD is a so called non zero sum
game because one players loss does not equal his opponent’s gain. By cooper-
ating, both players win, by mutually defecting they both lose. In this paper we
do not vary these payoff parameters but employ a set of commonly used values
with high temptation: T = 5, R = 3, P = 1, S = 0. These values were also used
in Axelrod’s famous PD computer tournament [2]. For an excellent review of the
PD literature, we refer the reader to [11].



The tragedy behind the PD briefly consists in the fact that the best strategy
for a selfish individual (D) is the worst strategy for the society. The expectation
of playing D is greater than the expectation of playing C (independent of the op-
ponents strategy), but cooperating yields a higher total payoff. The state where
no player has anything to gain by changing her own strategy (the so called Nash
Equilibrium) occurs only when all players defect. Hence, if the players imitate
the behaviour of the more successful players, defection will dominate if we do
not provide any additional circumstances to encourage cooperative behaviour.
Nowak et al. summarized five rules for the emergence of cooperation [5]: kin selec-
tion, direct reciprocity, indirect reciprocity, network reciprocity [6,12] and group
selection. Network reciprocity has attracted an received particular attention re-
cently in the light of co-evolutionary dynamics [8,9] where the network topology
of the underlying interaction network evolves alongside the agent strategies.

The mechanism at work here is direct reciprocity. Players are given a memory
or in other words the ability to remember a fixed number of recent outcomes of
the PD games. Each player is then supplied with a set of answers to respond to
every possible history [4,3]. We call this set of moves a Strategy1.

Players will then imitate other players by adopting their strategies. But if
the strategies are elaborate an imitation may be challenging. As an illustration,
assume Alice and Bob are playing chess and Alice is winning every game. Even
if Bob recalls all of Alice’s moves he will not be able to imitate her strategy
completely until a huge number of games have been played. Instead he may
attempt to improve his own strategy by adapting elements of Alice’s strategy
exposed to him during previous games. Intuitively the more complex a strategy,
the more difficult it should be for a player to imitate it. We incorporate this
condition by means of an imitative behaviour we refer to as partial Imitation Rule
(pIR). According to this rule a player can only imitate based on her knowledge
about the opponent’s strategy gathered during the most recent encounter with
this opponent. This is in contrast to what we call the traditional Imitation Rule
(tIR) that allows players to imitate the complete strategy of their opponents.
Numerical experiments are performed to analyse the impact of the adjustment
to the imitation behaviour. We show that it leads to new phenomena that do
not occur under tIR, such as a phase dominated by defecting strategies.

The rest of this paper is structured as follows: in section 2 the terms memory,
strategy and the imitation rules are defined. We also provide details about our
numerical experiments. Results are presented and discussed in section 3. Our
conclusions follow in section 4.

2 Methods

In this section we explain the concepts of memory and strategies and define the
partial imitation rule we previously introduced in [13,14].

1 It is common to refer to cooperate and defect as strategies. A set of rules telling the
player when to cooperate or defect is then called a meta-strategy. For convenience
we refer to the former as “moves” and to the latter as “strategies” instead.



2.1 Memory and Strategies

A player who can remember the last n rounds of the PD game has a n-step
memory. We denote the ensemble of n-step strategies as Mn. The total number of
strategies in Mn is |Mn|. As a player with one-step memory we need to remember
two moves, our move and the one of our opponent. There are four possible
outcomes (DD,DC, CD and CC, where the first letter is the move of the first
player and the second letter is the move of the second player) of the PD game.
For our one-step memory we need to have a response (either C or D) to each of
these four possible outcomes. Thus our strategy can be represented by a 4-bit
string where every bit is a response to one outcome of the previous round of
the game. We add a bit for the first move against an unknown opponent. A
strategy in M1 is denoted as S0|SDDSDCSCDSCC where S0 is the first move
and SDD, SDC , SCD and SCC are the moves that follow DD, DC, CD and
CC histories respectively. Thus there are |M1| = 25 = 32 possible strategies
as there are two choices for each Si, either C or D. Three famous strategies
are Grim-Trigger (GT): C|DDDC, Tit-For-Tat (TFT): C|DCDC and Pavlov
or “win-stay-lose-shift”: C|CDDC.

In this paper we focus entirely onM1. For models with longer memory horizon
see [4,3]. We assume players never play in contradiction to their strategy. Then,
there are four always defecting strategies in M1, namely D|DDDD, D|DDDC,
D|DDCD and D|DDCC. We refer to these strategies as all-D type strategies.
For a given opponent, they all score the same. However when using the partial
imitation rule described below they can produce different children strategies. The
same applies to the four always cooperating strategies. A strategy is nice if the
first move and all moves that follow mutual cooperation are C. In M1 those are
the strategies C|XXXC where X may be either C or D. A retaliating strategy
defects after its attempt to cooperate is met with defection. In M1 retaliating
strategies are X|XXDX. The only four nice and retaliating strategies in M1

are therefore TFT, GT, Pavlov and C|CCDC.

2.2 partial Imitation Rule (pIR)

In general the traditional Imitation Rule (tIR) has the following simple charac-
ter: a player i will imitate the strategy of player j, who is usually one of the
players who interacts with i, with a certain probability given by a monotoni-
cally increasing smoothing function g(∆U) where ∆U = Uj − Ui is the payoff
difference between player i and j. For the rest of this paper we use the following
smoothing function, which also introduces a temperature like noise factor K al-
lowing for irrational choices by players. If player i has been selected to imitate
player j then he will carry out the imitation with probability

P (i imitates j) = g(∆U) =
1

1 + exp
(−∆U

K

) (1)

We note that this probability has the form of Fermi distribution and is a step
function at zero noise (K = 0). For low values of the noise factor K, player i



imitates player j very rationally. For high values of K however, player i imitates
player j with a probability close to 1/2 as for K � 1 we have P ≈ 1

2 + ∆U
4

1
K .

The imitation in this case is similar to a scenario with weak selection intensity
with the addition of the constant 1/2 which introduces noise in finite sized
populations.

The traditional imitation rule implicitly makes a bold assumption in the case
of memory agents: the imitating player is assumed to know the entire strategy
of the role model. Depending on how the two players interacted, some of the role
model’s strategy may be unknown to the imitator. In order to strip the players
from these “mind reading” abilities we use the partial Imitation Rule in which
the imitator only adapts the parts of the role model’s strategy which have been
exposed during their interaction.

We illustrate the difference between the two imitation rules with the example
of a C|DDDD-strategist, Alice, imitating a TFT -strategist, Bob. Figure 1 shows
the transition graph for this encounter. As shown in the transition graph the CD

Fig. 1. Transition graph between the C|DDDD player Alice and the TFT (C|DCDC)
player Bob from Alice’s point of view. Bob’s point of view is described by the moves
in parenthesis. The recurrent states is DD and the average recurrent state payoff is
therefore P for both Alice and Bob.

state from Alice’s perspective (or DC state from Bob’s perspective) never occurs.
Bob has therefore never used the SDC move of his strategy in this encounter.
According to pIR Alice cannot copy such hidden moves. Hence if the C|DDDD
player Alice imitates the TFT player Bob according to the partial Imitation Rule
she will only imitate S0, SDD, SCD and SCC , hence becoming herself a GT - and
not a TFT -player. If Alice imitates Bob using tIR she will copy the entire TFT
strategy and become a TFT player herself. By using tIR we implicitly assume
Alice has found a way to expose Bob’s hidden response to the DC history.

2.3 Simulation

An important parameter in the iterated Prisoner’s Dilemma with memory is the
number f of rounds played during an encounter between two players i and j. If
f = 1 we have a ”one-shot” game and the agents can not make use of their mem-
ory. From our recent works in [13,14]we understand that the number f affects
our results in a complex way. Here, we follow the approach employed in [3] for



replicator dynamics: assuming that the number f is sufficiently large the average
payoff per instance of the PD game played in a confrontation is well approxi-
mated by the average payoff from the recurrent states of the transition graph.
In other words, we address the case f → ∞ in our simulations by considering
only payoff accumulated in recurrent states of the transition graph.

Let Uij be the average recurrent state payoff obtained by an i strategist
playing against a j strategist. If N is the total number of players and every player
i plays against all other players and himself, his average payoff per encounter is

Ui =
1

N

N∑
j=1

ST
i USj = ST

i U 〈S〉 , i = 1, 2 . . . |Mn| (2)

Where U is the |Mn| × |Mn| real Matrix with coefficients Uij = Uij . The vector
ST
i = (0 . . . 0 1 0 . . . 0) is a |Mn| boolean vector where the m-th entry is equal to

1 only if player i is an m-strategist. 〈S〉 is the |Mn| dimensional real column-
vector of the ”average strategy” that can also be written as 〈S〉m = ρm where
m = 1, 2, . . . , |Mn| and ρm is the number density of m-strategists. Note that the
summation of ρm over all m equals 1.

Initially every player is assigned a random strategy out of the 32 strategies
in M1. The system is then evolved with random sequential updating from time
t = 0 until some final time tf . We chose two players i and j and let them
play against all opponents and themselves to accumulate an average payoff per
encounter Ui and Uj . By using the reasoning above this can be achieved by
randomly selecting two strategies i and j with probabilities equal to ρi and ρj
respectively and evaluating Ui and Uj according to equation 2. Agent i then
imitates agent j with a probability given by equation 1 according to pIR or tIR.
If this imitation occurs we adjust ρi and ρk where k is the children strategy
produced by the imitation process. The outline of this procedure is given in
algorithm 1.

Algorithm 1 Outline of simulation procedure
poorest

chose N random strategies
compute 〈S〉
for t = 0 to tf do

for n = 1 to N do
pick random strategy i and j with probability ρi and ρj respectively
compute Ui and Uj

i imitates j according to tIR or pIR with probability g(∆U)
ρi ← ρi − 1

N

ρk ← ρk + 1
N

end for
end for



A Monte Carlo sweep, generation or one time unit corresponds to N such
updates. As a result of introducing noise, the strategy fractions during a typi-
cal simulation fluctuate considerably even if N is large. The fate of the entire
population is then subject to the survival of a few key strategies, such as GT , in
the early phase of evolution. As our primary interest is neither directed towards
these special cases of evolution nor towards finite size effects we use a very large
number of players. We have found that by choosing N = 2.5 · 107 we can ob-
tain reliable data for noise factors up to at least K = 150, which is sufficient
for our observations. Based on our experiments we may state here that if the
aforementioned extinctions of key strategies due to random fluctuations do not
occur, the strategy fractions as a function of time for smaller population sizes
are very similar to those we will observe below.

3 Results

In this section we first discuss a typical simulation at high noise in section 3.1 for
illustrative purposes and to introduce the all-D phase. In section 3.2 we report
and discuss the time scale of the evolution of cooperation in our model.

3.1 All-D Phase

The number density, concentration or fraction of a strategy i in a population
of players is denoted as ρi. Figure 2 shows the number density of key strategies
as a function of time for a typical pIR simulation with high noise factor (here
K = 100). We notice that in a first phase the D|DDCD and D|DDCC fraction
increase rapidly but die out soon thereafter to make room for the D|DDDD
and D|DDDC strategy. These two strategies dominate for a long time but the
C|DDDD and GT fraction increase progressively up to a point where all four
remaining strategies are about equally abundant. In figure 2 this occurs around
t = 9500. The GT fraction then rises rapidly while the other strategies die out.
Eventually we are left in an equilibrium state where all players cooperate by
using the GT strategy.

We first give a intuitive explanation of these observations. When noise is high,
the imitation probability is close to 1/2, thus, the imitation processes occur in
many directions with only marginal drift towards imitation of better strategies.
We denote the process of an A-strategist becoming a C-strategist by imitating

a B-strategist as A
B−→ C. If the C-strategist may turn back into an A-strategist

by imitating the A-strategist we say that this imitation is directly reversible.
In an early tumultuous phase the majority of strategies die out rapidly.

The famous and well scoring strategies TFT and Pavlov do not survive this
phase either. Due to the nature of pIR there is a net drift away from these
strategies at K = 100. In this early period of evolution, the players will ob-
tain the highest payoff by exploiting the naive players in the initial random
setup and adopt the all-D type strategies. As a result, most players go out
of this early extinction phase as D|DDCD and D|DDCC defectors. The fate
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Fig. 2. Strategy fractions during a typical simulation at high noise, K = 100. The
cumulative all-D fraction is given by ρcum all-D = ρD|DDDD + ρD|DDDC + ρD|DDCD +
ρD|DDCC .

of these two strategies is governed by D|DDCD GT orC|DDDD−−−−−−−−−−→ C|DDDD
and D|DDCC GT orC|DDDD−−−−−−−−−−→ GT . Note that these imitation processes are not
directly reversible under pIR. To illustrate this interesting phenomena, let’s
consider the example of a GT -strategist (C|DDDC) imitating a D|DDCC-
strategist. He will become aD|DDDC-strategist (and not aD|DDCC-strategist).
This means that once a D|DDCC-strategist has imitated a GT -strategist, he
may not turn back into a D|DDCC-strategist simply by imitating the GT
strategy. The D|DDCD and D|DDCC-strategists are gradually converted into
D|DDDD and D|DDDC strategists by the interaction with GT and C|DDDD
players. The extinction of D|DDCD and D|DDCC is the inevitable conse-
quence.

The main imitation processes during the following long phase of dominance of

theD|DDDD andD|DDDC strategies areD|DDDD GT orC|DDDD−−−−−−−−−−→ C|DDDD,

D|DDDC GT orC|DDDD−−−−−−−−−−→ GT and C|DDDD GT−−→ GT . As all these processes are
directly reversible it takes a very long time for the players to drift towards the
better scoring GT strategy. GT is the only strategy that scores higher than the
other three remaining key strategies as GT players cooperate with GT players
but defect against all the other remaining strategies.



3.2 Time Scale for Emergence of Cooperation

From extensive simulations we know that all populations eventually reach an
equilibrium state2 in which more than half the players use GT . We use this fact
to analyse the time scale of our numerical experiments and define a quantity
called the GT First Passage Time τGT , which is the time at which the population
contains more GT players than defectors for the first time or in other words the
GT First Passage Time is the lowest time t such that ρGT > ρcum. all-D. Where
ρcum. all-D = ρD|DDDD + ρD|DDDC + ρD|DDCD + ρD|DDCC is the cumulative
all-D fraction. As mentioned before there is no all-D phase for tIR. Nevertheless
we can use this definition for the GT First Passage Time τGT to compare the
time scale to equilibrium of tIR and pIR populations. The first passage times
τGT as function of K are shown in figure 3.
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Fig. 3. First passage time τGT for ρGT > ρc.all−D for both imitation rules. For illustra-
tive purpose the data is shown in two figures, focusing on the higher end of the noise
factor scale on right hand side. Note the logarithmic scale on both axes on the left and
linear scale on the x-axis and logarithmic scale on the y-axis on the right.

We first examine the figure on the left hand side. For both imitation rules
τGT increases monotonically with K. For K < 0.1 τGT is practically constant for
tIR and increases only marginally with K for pIR. For tIR the growth is linear
for K & 0.5. Between 0.5 . K . 5, τGT also exhibits a linear relationship with
K for pIR. On the other hand by examining the figure on the right hand side
we realize an exponential increase of τGT for pIR and K > 40. We find another

2 Note that for tIR and pIR and all considered values of the noise factor K only nice
strategies exist in the equilibrium state. In this state we have completely random
drift among the surviving strategies for tIR. For pIR on the other hand there is no
such drift as nice strategies do not change by imitating other nice strategies.



fundamental impact of our subtle adjustment to the imitation behaviour. The
GT First Passage Time which can be considered as an indicator of the time the
players need to become cooperators, scales very differently for the two imitation
rules at high noise. The results also suggest, once more, that finite size effects
are more important for higher noise factors, which imply stronger fluctuations
due to the random nature of the imitation process.

The exact rate at which τGT increases with K depends on the values of
the payoff parameters R, T , S and P . We note in passing that an exponential
relationship for high values of the noise factor K is not unique to our choice of
parameters. Notably, we also observe it for the entire range of T in the weak
Prisoner’s Dilemma [7] with R = 1, 1 < T < 2 and S = P = 0.

In addition we observe that for pIR the time scale increases exponentially
with K. These two phenomena coupled together put the survival of the cooper-
ating strategies and the eventual emergence of a cooperative society at risk for
finite sized populations. Furthermore, due to the exponential growth of τGT for
pIR and because the lifetime of real populations are finite the cooperative equi-
librium might never be reached. The partial imitation rule therefore introduces
two new obstacles for the emergence of cooperation in the weak selection or high
noise regime.

4 Conclusion

By performing numerical experiments on a large population of prisoners with fi-
nite memory playing the iterated Prisoner’s Dilemma game on a fully connected
network we have shown that a direct and fast route to cooperation may not
exist unless the players are given the ability to copy unknown parts of their
role models. Our adjustment to the imitative behaviour shows that incomplete
information about opponent strategies has important consequences for the emer-
gence of cooperation in such a society of prisoners. If the information about the
wealth of opponents is vague (at high noise or in the weak selection regime)
the majority of prisoners stick to defecting strategies for a very long time. As
we have seen that in this environment the duration of this route to cooperation
scales exponentially with the noise factor, we must question the significance of
such a cooperative equilibrium not only for finite sized populations with finite
life times.

The partial Imitation Rule also presents a new challenge for famous PD
strategies. The Grim Trigger strategy has a fundamental advantage over other
nice strategies such as TFT and Pavlov, despite the very similar performance
of all these strategies: GT is the only strategy that is easy to imitate. This
observation is the principle is sometimes referred to as Occam’s razor. All other
things being equal, the simplest strategy is the best strategy.

Many of the problems involving evolutionary games and memory could be
reexamined under the new light of partial information. Although we have shown
that considering partial rather than complete information has a strong impact
already in the case of a one-step memory, we expect even more drastic effects in



the case of longer memory. A natural extension of our work will therefore include
more intelligent prisoners with longer memory. We expect that the simple GT
strategy will not be as efficient anymore because once defecting it does not
provide a way to reestablish cooperation.

Finally, finite size effects as well as the topology of the underlying network
is an interesting topic for further investigation. In two dimensions [13,14], we
also reported striking difference for the two imitation rules considered here. We
may therefore extend our studies to other networks, such as scale-free networks
which model the topology of real societies more accurately [1].
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