
A Card Game Description Language 

Jose M. Font 1 , Tobias Mahlmann 2 , Daniel Manrique 1 , and Julian Togelius2 

Departamento de Inteligencia Artificial, Universidad Politcnica de Madrid. Campus 
de Montegancedo, 28660, Boadilla del Monte, Spain 

{jfont,dmanrique}@fi.upm.es 
2 Center for Computer Games Research, IT University of Copenhagen, 

Rued Langaards Vej 7, 2300 Copenhagen, Denmark 
{tmah,juto}@itu.dk 

A b s t r a c t . We present initial research regarding a system capable of 
generating novel card games. We furthermore propose a method for com­
putationally analysing existing games of the same genre. Ultimately, we 
present a formalisation of card game rules, and a context-free grammar 
Gcardgame capable of expressing the rules of a large variety of card games. 
Example derivations are given for the poker variant Texas hold ’em, 
Blackjack and UNO. Stochastic simulations are used both to verify the 
implementation of these well-known games, and to evaluate the results of 
new game rules derived from the grammar. In future work, this grammar 
will be used to evolve completely novel card games using a grammar-
guided genetic program. 

1 Introduction 

The ruleset is essential to any game, defining its mechanics and in many ways 
being the “core” of the game. Rules can’t be removed or edited without chang­
ing a game’s computational properties. The digital and unambiguous nature of 
most rules (rules for computer games) makes them easy to model as program 
code. The modelling of rules can serve several different purposes, but the two 
most prominent are computational analysis (of gameplay) and generation of new 
games. Computational analysis uses existing games to simulate many playouts 
under various circumstances to analyse the balance, depth, variety and other 
aspects of a game. One approach to game (rules) generation may be done by 
searching a space of games, expressed in some game description language (GDL) 
to find games with desirable properties. These two purposes go well together, 
as modelling several related games is a good way of constructing a GDL, and 
computational analysis is typically used to evaluate candidate games when gen­
erating novel game rules. 

Card games seem to be an interesting application for automated design and 
computational analysis for several reasons. An important factor is clearly their 

1 



ubiquity and popularity; different card games originated from many parts of the 
world, and have been played since hundreds of years. Another important factor 
is their computational simplicity: most card games could be simulated with very 
limited computational effort compared to games which are designed to be played 
with a computer and are normally very calculation heavy (e.g. simulation games). 
Card games share these two aspects with another type of games: classic board 
games such as Chess, Go and Backgammon. But unlike board games, card games 
share a common prop: the classic French deck of cards (52 cards of four colours 
and two jokers). Most card games (certainly most Western card games) can be 
played using only one or two such decks, and perhaps a few tokens representing 
money or score. This enables us to model a large variety of card games by simply 
altering the form of their rules. 

In recent years, several authors have attempted to formally describe and au­
tomatically generate game rules. The two main game genres where this has been 
attempted are board games and simple 2D arcade games. In board games, the 
early work of Hom and Marks [7] was followed by Browne’s Ludi system, which 
managed to evolve a board game of sufficient novelty and quality to be sold 
commercially [2,1]. A system generating simple arcade games was proposed by 
Togelius and Schmidhuber [11], which was followed up by work by Smith and 
Mateas [10] and Cook and Colton [3]. In a related genre, Mahlmann et al. have 
defined a GDL for turn-based strategy games [9]. Mahlmann et al. also published 
similar work to our approach, evaluating different game mechanics of the card 
game Dominion [8]. The representation of game rules and level of abstraction 
in these examples varies wildly, from expression trees reminiscent of those used 
in genetic programming, to tables of actions and consequences, to first-order 
logic expressed in AnsProlog. In all of these examples, the space of games was 
searched using evolutionary algorithms, except Smith and Mates who use answer 
set programming and constraint solving. An overview of this line of research can 
be found in a recent tutorial by Nelson1. 

There are several important considerations when devising a GDL for a partic­
ular game genre. Prominent among these is the expressivity of the language: all 
games in scope have to be expressible in the language. Normally opposing the 
expressivity stands the compactness or verbosity of the language, i.e. its human-
readability, and how efficiently the search space can be traversed by using for 
example an evolutionary algorithm. Especially the latter is only marginally ex­
plored, and more research needs to be done. 

2 Definition of a Search Space for Card Games 

It is not possible to evolve any kind of game without setting the constraints that 
define the basics of the search space [11]. Insofar as card games are the subject 
of the evolutionary process described here, it is mandatory to define a set of 
axioms that will be shared by any card game in the evolutionary population. 

http://kmjn.org/ 

http://kmjn.org/


Fig. 1. Main components of a card game with three players and two table locations 
(P = 3 and T = 2) 

Those axioms are the following: 

— The card game is played by exactly P players. 
— A card location is defined as a place where any number of cards can be placed 

during the game. Every game has the following card locations L: 
• A number of hands H, one for each player in P. Hereafter, HX refers to 

the “hand of the current player” and HA to “hands of all other players”. 
H0, H1, H2 refer to the hand of player one, two, or three respectively. 

• One standard French deck of cards D, composed of four suits with 13 
cards each, numbered from 1 to 13 (jokers are excluded). Cards in the 
deck are always placed face down. 

• A number of table locations T, which are areas in a virtual table where 
cards can be placed, always face up. 

— Insofar as many card games involve bets, tokens are defined as virtual repre­
sentations of coins or chips. Analogously to card locations, a token location 
K is defined as a place where any number of tokens can be placed during the 
game. Every player J has two token locations, KJ0 and KJ1. KJ0 functions 
as a player’s stash), and KJ1 may be used to place bets. To illustrate the 
nomenclature, player 0 has two token locations denoted by K00 and K01. 
The term KX1 refers to “the current bet of the current player”, and KA1 
to “the current cumulative bets of all other players”. Figure 1 shows the 
main components of a card game with P = 3 and T = 2, therefore includ­
ing six token locations (K00, K01, K10, K11, K20, K21), and three hands 
(H0, H1, H2). 

— A card game consists of several stages, each one composed by a set of rules. 
The stages are played in sequential order. 

— Stages are played out in a turn-based way with a round-robin turn order. 
Within each stage and during his turn, a player may play a variable number 
of rules. A player’s turn is over when he is done, next or out: 

• done refers to a player being done with the current stage (but will return 
to play in the nest stage). 



• next indicates that the player has finished his turn but will be able to 
play again during the current stage when all other players’ turns are 
over. 

• out defines a player as being out of the game. He will not play in any 
remaining stages of the game. 

— A stage ends when all players are either done or out. While one or more 
player are next, their turns alternate in a round-robin order. 

— A game ends when all stages have been played or when all players are out. 

Given these specifications, a card game is defined as a set of stages, a ranking 
of card combinations, and a set of winning conditions. Every stage comprises 
a set of conditional rules (production rules) in the form “if antecedent then 
consequent”. Antecedents are conditions that - when fulfilled - trigger actions 
defined in consequents. For example: “if the player has no cards, then he draws 
a card”. Optionally, a rule may have no antecedents at all, meaning that it can 
be played without any particular prerequisites. Following this structure, three 
different kinds of rules can be found: 

— Optional rule. Standard rule which can be played a multiple number of times. 
If the current player satisfies the condition defined in the antecedent, he can 
play the action defined in the consequent. 

— Play-only-once rule. These rules (marked with a “once” modifier) can only 
be played once per stage. 

Table 1. Types of antecedents and their related conditions 



– Mandatory rules. Mandatory rules must be played (and only once) by every 
player at the beginning of his first turn of the stage. They are marked with 
a “mandatory” modifier. 

Additionally, so called computer commands are always played once by the game 
(i.e. a virtual dealer) at the beginning of the stage before the players’ turns. These 
rules are marked with a “com” modifier. Command rules include no conditions, 
i.e. no antecedent, and only one consequent which describes the action to be 
played. Table 2(b) illustrates the implemented types of computer rules. 

Once the game’s setup is finished, the first player’s turn begins. After all 
“mandatory” rules have been invoked (which may be none), he may play as 
many “once” and/or optional rules as possible. When there are no satisfiable 
antecedents left, the player is marked as done. Optionally, a player may choose 
to not play any (more) rules, deliberately changing his state to next (if he wants 
to play again during the current stage) or done (otherwise). Table 1 shows the 
different kinds of antecedents possibly involved in a rule. Notice that the terminal 
symbol “lambda” (λ) is used to represent a “null” value for any given variable, 
and LA and LB refer to any two valid card locations. 

When played, rules trigger consequents which modify the game state. Ta­
ble 2(a) shows the types of consequents which can be found in a rule. Notice 
that the “bet” consequent does not specify any location. Betting always refers 
to moving tokens from a player’s total amount of tokens to his current bet. 
“Gain” always implies moving tokens from the specified location to a player’s 
total amount of tokens. 

Every card game has its own card and play values. Those features are specified 
in the ranking: a table that contains pairs in the form [play, score], in order to 
assign a fixed score to a given play (card combination). This table is used every 
time a condition “play” is evaluated in order to know the actual value of the 
card combinations in comparison. For example, when playing poker, all valid 
poker hands have to be indexed in the ranking table, therefore it is possible 
to know that two pairs have a lower value than three of a kind. When a given 
hand has no specified value, the standard ranking of cards is assumed. Thus: 
1 > 1 3 > 1 2 > 1 1 > 1 0 > 9 > 8 > 7 > 6 > 5 > 4 > 3 > 2 . Upon finishing the 
game, winning conditions determine which player wins. This is done by assigning 
points to the remaining amount of tokens the player has and extra points if the 
player status is not out. An exception here is, that certain consequents may 
declare a certain player as the winner a priori. 

2.1 The Card Game Language 

A context-free grammar (CFG) G is defined as a string-rewriting system com­
prising a 4-tuple G = (SN, ST, S,P)/SN (~}ST = O/, where SN is the alphabet 
of non-terminal symbols, ST is the alphabet of terminal symbols, S represents 
the start symbol or axiom of the grammar, and P is the set of production rules 
in Backus-Naur form. Every grammar generates a language composed where all 
sentences are grammatically valid, meaning they conform to the constraints de­
fined by that grammar. The context-free grammar Gcardgame has been designed 



to generate the language composed by all the valid card games that comply with 
the axioms described above. 

A grammar-guided genetic program (GGGP) is an evolutionary system that 
could potentially find solutions to any problem whose syntactic restrictions can 
be formally defined by a CFG [5]. Individuals are derivation trees of the CFG 
that, when the algorithm starts, are generated by a grammar-based initialization 
method [6]. Neither this method nor crossover and mutation operators can gener­
ate invalid individuals because they are not contained in the language described 
by the CFG [4]. Thus the individual population of a GGGP using Gcardgame is a 
set of derivation trees, each of them defining a card game that follows the above 



constraints. Our card games are codified in the genotype of individuals with the 
structure STAGES : RANKING : WINNING CONDITIONS, where: 

– STAGES represents several sets of rules, each of them corresponding to a 
stage of the game. 

– RANKING is a list of pairs in the form [play, score] which will be later 
translated into a ranking table. 

– WINNING CONDITIONS specifies two natural numbers that are the amount 
of points awarded to a player for each remaining token and for not being out 
of the game respectively. 

Gcardgame has been intentionally designed to generate a high level language 
containing a great variety of card games. Since individuals of a GGGP have 
no fixed size, the evolutionary system becomes a flexible tool, being able to 
design games from simple one-stage games up to long strongly ruled games. 
Nevertheless, despite the high level approach, this language contains at least 
three very well known card games: Texas hold ’em poker, Blackjack and UNO. 
For brevity, the following paragraphs assume that the reader is familiar with 
said games and their terms. 

Table 3 presents Texas hold ’em poker’s stages codified as a sentence of the 
language generated by Gcardgame. The game is composed by 12 stages which 
cover the standard parts of the game (pre-flop, flop, turn, river and showdown) 
as well as additional stages for player bets and bet checking. Bets are checked in 
order to set the status of players which have folded as out. The ranking includes 
poker hands, and the winning conditions define that the winner is the player with 
the most tokens at the end of the game. Please note that single cards are not 



listed in the ranking table as poker uses the default card ranking. The ranking 
used for the poker hands is: Straight flush (900), Poker (800), Full house (700), 
Flush (600), Straight (500), Three of a kind (400), Two pairs (300), and One 
pair (200). 

Table 4(a) shows the codification of blackjack. In this implementation of black­
jack, players play against each other instead of the dealer. The winner of the game 
is the player who earned more tokens during the game, meaning the player who 
bet most and got the highest score below or equal to 21. The ranking sets all 
figures’ values (13, 12, 11) to 10, and includes the two possible values for an ace: 
1 and 10. The only winning condition is one point per token earned. 

Table 4(b) shows the codification the basic rules of UNO. For simplicity, we 
excluded cards with any special effect, e.g. changing the turn order or skipping 
players. Notice that the ranking table is empty because the goal for a player is 
to empty his hand (rather than getting the best play). There is no need to set 
winning conditions or rankings because the winner is determined by the last rule 
of stage 1. 

3 Experimental Results 

In order to test the quality of the card games generated by Gcardgame, random 
plays have been run over a set of games expressed by its language. All games have 
been designed for three players and up to two table locations (P = 3,T = 2). 
The term “random” herein refers to artificial players playing random moves. 

The set of games is composed by the sample games presented above: Texas 
hold ’em poker, Blackjack and UNO. Each of these has been run a 1000 times. In 
addition to this, 1000 random mutations of each of them have also been tested. 
Ultimately, we also sampled 1000 randomly generated card games. 

For each game the following data has been collected: number of plays won by 
each player, number of plays ended in a draw, number of games which crashed 
and the average number of turns needed to properly finish the game. A game 



is considered to be crashed when it hasn’t finished within 100 turns or when a 
non semantic expression occurs, e.g. forcing a player to bet an amount of tokens 
lower than zero. 

Table 5 shows the results obtained from these tests. The three sample games 
have been properly played during all 1000 runs, showing that the language de­
fined by Gcardgame allows to codify well-formed and semantically valid card 
games. These games are finished in a very reasonable number of turns, whereas 
UNO seems to be the longest one. It seems easy to conclude, that this may 
because UNO’s last stage is not finished until one of the players gets rid of all 
his cards. UNO is also the game most likely to end in draw. A draw takes place 
when the deck and the table location run out of cards before any player has been 
able to win. 

As expected, random mutations on these games lead to an increase in their 
crash rate. Nevertheless, almost 80% of poker mutations, 70% of blackjack mu­
tations and 45% of UNO mutations can be properly played until the end of the 
game. Draw rates also increased, meaning that changes produced by mutations 
create games where winners are not clearly defined. 

Randomly generated games produce similar results, showing a rate of playable 
games close to 73%. 

4 Conclusions and Future Work 

A context-free grammar, Gcardgame, that generates a game description language 
for card games has been presented. All card games contained in this language 
share a fixed set of basic axioms, that represent the main components of a 
game. Every game defines its very own rules that, when played along with these 
axioms, compose a playable card game. This language contains a set of high-
level instructions that allows the codification of a high variety of games. To 



show this, examples codifications of Texas hold ’em poker, Blackjack and UNO 
have been proposed. The experiments conducted show the ability of Gcardgame 

to produce randomly generated but playable card games. Our results indicate, 
that it is possible to improve the generation of card games with searching and 
optimizing techniques. For this reason, our grammar is intended to be part of 
a grammar-guided genetic program that evolves populations of card games in 
order to automatically generate entertaining and playable card games. Leading 
the evolutionary process to improve the satisfaction achieved by players when 
playing these games will allow the possibility of creating interesting card games 
without human assistance. In other words, mimicking human creativity inside a 
computer process. 

References 

1. Browne, C., Maire, F.: Evolutionary game design. IEEE Transactions on Compu­
tational Intelligence and AI in Games 2(1), 1–16 (2010) 

2. Browne, C.: Automatic generation and evaluation of recombination games. Ph.D. 
thesis, Queensland University of Technology (2008) 

3. Cook, M., Colton, S.: Multi-faceted evolution of simple arcade games. In: Pro­
ceedings of the IEEE Conference on Computational Intelligence and Games, CIG 
(2011) 

4. Font, J.M., Manrique, D., R´ıos, J.: Evolutionary construction and adaptation of 
intelligent systems. Expert Systems with Applications 37, 7711–7720 (2010) 

5. Font, J.M.: Evolving Third-Person Shooter Enemies to Optimize Player Satisfac­
tion in Real-Time. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, 
F.F., Di Caro, G.A., Drechsler, R., Ek´art, A., Esparcia-Alc´azar, A.I., Farooq, M., 
Langdon, W.B., Merelo-Guerv´os, J.J., Preuss, M., Richter, H., Silva, S., Sim˜oes, 
A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., 
Uyar, A.S¸., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, 
pp. 204–213. Springer, Heidelberg (2012) 

6. Garcia-Arnau, M., Manrique, D., Rios, J., Rodriguez-Paton, A.: Initializa­
tion method for grammar-guided genetic programming. Knowledge-Based Sys­
tems 20(2), 127–133 (2007) 

7. Hom, V., Marks, J.: Automatic design of balanced board games. In: Proceedings of 
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertain­
ment (AIIDE), pp. 25–30 (2007) 

8. Mahlmann, T., Togelius, J., Yannakakis, G.: Evolving card sets towards balancing 
dominion. In: IEEE World Congress on Computational Intelligence, WCCI (2012) 

9. Mahlmann, T., Togelius, J., Yannakakis, G.: Modelling and evaluation of complex 
scenarios with the strategy game description language. In: Proceedings of the Con­
ference on Computational Intelligence and Games (CIG) 2011, Seoul, KR (2011) 

10. Smith, A.M., Mateas, M.: Variations forever: Flexibly generating rulesets from a 
sculptable design space of mini-games. In: Proceedings of the IEEE Conference 
on Computational Intelligence and Games, Copenhagen, Denmark, August 18–21, 
pp. 273–280 (2010) 

11. Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: IEEE 
Symposium on Computational Intelligence and Games, CIG 2008, pp. 111–118. 
IEEE (2008) 


