Skip to main content

MONEE: Using Parental Investment to Combine Open-Ended and Task-Driven Evolution

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7835))

Included in the following conference series:

Abstract

This paper is inspired by a vision of self-sufficient robot collectives that adapt autonomously to deal with their environment and to perform user-defined tasks at the same time. We introduce the monee algorithm as a method of combining open-ended (to deal with the environment) and task-driven (to satisfy user demands) adaptation of robot controllers through evolution. A number of experiments with simulated e-pucks serve as proof of concept and show that with monee, the robots adapt to cope with the environment and to perform multiple tasks. Our experiments indicate that monee distributes the tasks evenly over the robot collective without undue emphasis on easy tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: evolving elementary robotic units able to self-assemble and self-reproduce. Connection Science 4, 227–248 (2004)

    Article  Google Scholar 

  2. Bredeche, N., Montanier, J.-M., Liu, W., Winfield, A.F.: Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents. Mathematical and Computer Modelling of Dynamical Systems 18(1), 101–129 (2012)

    Article  MATH  Google Scholar 

  3. Burtsev, M., Red’ko, V., Gusarev, R.: Model of Evolutionary Emergence of Purposeful Adaptive Behavior. The Role of Motivation. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 413–416. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. DeJong, K.: Are genetic algorithms function optimizers? In: Männer, R., Manderick, B. (eds.) Proceedings of the 2nd Conference on Parallel Problem Solving from Nature, pp. 3–13. North-Holland, Amsterdam (1992)

    Google Scholar 

  5. Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine (2012) (in Press)

    Google Scholar 

  6. Eiben, A.E., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  7. Jones, C., Mataric, M.: Adaptive division of labor in large-scale minimalist multi-robot systems. In: Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 2, pp. 1969–1974 (October 2003)

    Google Scholar 

  8. Kurokawa, H., Yoshida, E., Tomita, K., Kamimura, A., Murata, S., Kokaji, S.: Self-reconfigurable m-tran structures and walker generation. Robotics and Autonomous Systems 54(2), 142–149 (2006)

    Article  Google Scholar 

  9. Lehman, J., Stanley, K.: Abandoning objectives: Evolution through the search for novelty alone. Evolutionary computation 19(2), 189–223 (2011)

    Article  Google Scholar 

  10. Mascaro, S., Korb, K., Nicholson, A.: An alife investigation on the origins of dimorphic parental investments. In: Abbass, H.A., Bossomaier, T., Wiles, J. (eds.) Advances in Natural Computation, vol. 3, pp. 171–185 (2005)

    Google Scholar 

  11. Menczer, F., Belew, R.: Latent energy environments. In: Santa Fe Institute Studies In The Sciences of Complexity-Proceedings, vol. 26, pp. 191–210 (1996)

    Google Scholar 

  12. Menczer, F., Willuhn, W., Belew, R.: An endogenous fitness paradigm for adaptive information agents. In: CIKM Workshop on Intelligent Information Agents, Citeseer (1994)

    Google Scholar 

  13. Mouret, J.-B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evolutionary Computation 20(1), 91–133 (2012)

    Article  Google Scholar 

  14. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems 57(4), 345–370 (2009)

    Article  Google Scholar 

  15. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  16. Rasmussen, S., Knudsen, C., Feldberg, R., Hindsholm, M.: The coreworld: Emergence and evolution of cooperative structures in a computational chemistry. Physica D: Nonlinear Phenomena 42(1), 111–134 (1990)

    Article  Google Scholar 

  17. Ray, T.S.: Is it alive or is it GA? In: Belew, R., Booker, L. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms, pp. 527–534. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  18. Scheutz, M., Schermerhorn, P.: Predicting population dynamics and evolutionary trajectories based on performance evaluations in alife simulations. In: Beyer, H.-G., O’Reilly, U.-M. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2005), pp. 35–42. ACM (2005)

    Google Scholar 

  19. Schwarzer, C., Hösler, C., Michiels, N.: Artificial sexuality and reproduction of robot organisms. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution, pp. 384–403. Springer, Heidelberg (2010)

    Google Scholar 

  20. Trianni, V.: Evolutionary swarm robotics: evolving self-organising behaviours in groups of autonomous robots, vol. 108. Springer (2008)

    Google Scholar 

  21. Trivers, R.: Parental investment and sexual selection. In: Campbell, B.G. (ed.) Sexual Selection and the Descent of Man. ch.7, pp. 136–179. Biological Laboratories, Harvard University (1972)

    Google Scholar 

  22. Ventrella, J.: Genepool: Exploring the interaction between natural selection and sexual selection. In: Artificial Life Models in Software, pp. 81–96 (2005)

    Google Scholar 

  23. Ward, M.: Virtual Organisms: The Startling World of Artificial Intelligence. Pan Books (2010)

    Google Scholar 

  24. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an evolutionary algorithm in a population of robots. Robotics and Autonomous Systems 39(1), 1–18 (2002)

    Article  Google Scholar 

  25. Wischmann, S., Stamm, K., Wörgötter, F.: Embodied Evolution and Learning: The Neglected Timing of Maturation. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 284–293. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noskov, N., Haasdijk, E., Weel, B., Eiben, A.E. (2013). MONEE: Using Parental Investment to Combine Open-Ended and Task-Driven Evolution. In: Esparcia-Alcázar, A.I. (eds) Applications of Evolutionary Computation. EvoApplications 2013. Lecture Notes in Computer Science, vol 7835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37192-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37192-9_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37191-2

  • Online ISBN: 978-3-642-37192-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics