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Abstract. The paper shows how to use Extremal Optimization in load
balancing of distributed applications executed in clusters of multicore
processors interconnected by a message passing network. Composed of
iterative optimization phases which improve program task placement on
processors, the proposed load balancing method discovers dynamically
the candidates for migration with the use of an Extremal Optimiza-
tion algorithm and a special quality model which takes into account the
computation and communication parameters of the constituent parallel
tasks. Assessed by experiments with simulated load balancing of dis-
tributed program graphs, a comparison of the proposed Extremal Opti-
mization approach against a deterministic approach based on a similar
load balancing theoretical model is provided.
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1 Introduction

Efficient execution of irregular distributed applications usually requires some
kind of processor load balancing. This is even more true in a multi-user environ-
ment where, following variations in system resources availability and/or changes
of their computational load, the balance in using the executive resources can
notably vary over time. Thus, a dynamic load balancing facility, embedded in
the runtime environment or in the distributed application is essential.

The contribution of this paper is a dynamic load balancing method based
on the program and runtime system behavior observation supported by the Ex-
tremal Optimization (EQ) approach [1]. The presented approach leverages some
our earlier works on load balancing, reported in [2,3], and our experience in using
Extremal Optimization to static task scheduling in distributed programs [4, 5].
The proposed load balancing algorithm is composed of iterative optimization
phases which improve program task placement on processors to determine the



possibly best balance of computational loads and to define periodic migration
of tasks. The Extremal Optimization is used in iterative load balancing phases
which are executed in the background, in parallel with the application program.
The Extremal Optimization algorithm discovers the candidate tasks for migra-
tion based on a special quality model including the computation and commu-
nication parameters of parallel tasks. The algorithm is assessed by experiments
with simulated load balancing of distributed program graphs. In particular, the
experiments compare the proposed load balancing method including the Ex-
tremal Optimization with an equivalent deterministic algorithm based on the
similar theoretical foundations. The comparison shows that the quality of load
balancing with Extremal Optimization is in most cases better than that of the
deterministic algorithm.

A good review and classification of load balancing methods is presented in [6].
When we compare the proposed load balancing method to the current parallel
computing environments with load balancing like CHARM++ [7] or Zoltan [8],
we notice that none of them includes Extremal Optimization as a load balancing
algorithm component. So, the proposed approach has clear originality features
and enables making profit of the Extremal Optimization advantages such as low
computational complexity and limited use of memory space.

The paper consists of three parts. In the first part the Extremal Optimization
principles are shortly explained. The second part describes the theoretical base-
ment for the discussed algorithm and explains how the Extremal Optimization
is applied to the proposed method of dynamic load balancing. The third part
explains the performed experimental assessment of the proposed algorithms.

2 Extremal Optimization algorithm principles

Extremal Optimization is an important nature inspired optimization method. It
was proposed by Boettcher and Percus [1]. It represents a method for NP-hard
combinatorial and physical optimization problems.

EO works with a single solution S consisting of a given number of compo-
nents s;, each of which is a variable of the problem and is thought to be a species
of the ecosystem. Once a suitable representation is chosen, by assuming a pre-
determined interaction among these variables, a local fitness value ¢; is assigned
to each of them. Then, at each time step the global fitness @(.S) is computed
and S is evolved, by randomly updating only the worst variable, to a solution
S’ belonging to its neighborhood Neigh(S). An obtained solution is registered if
its global fitness function is better than that of the best solution found so far.

To avoid sticking in a local optimum, we use a probabilistic version of EO
based on a parameter 7 , i.e., 7—EQ, introduced by Boettcher and Percus. Accord-
ing to it, for a minimization problem, the species are first ranked in increasing
order of local fitness values, i.e., a permutation 7 of the variable labels i is found
such that: ¢-(1) < ¢=(2) < ...¢x(n), where n is the number of species. The
worst species s; is of rank 1, i.e., j = w(1), while the best one is of rank n. Then,
a distribution probability over the ranks k is considered as follows: px ~ k™7,



1 < k < n for a given value of the parameter 7. Finally, at each update, a generic
rank k is selected according to py so that the species s; with ¢ = 7w(k) randomly
changes its state and the solution moves to a neighboring one, S’ € Neigh(S),
unconditionally. The only parameters are the maximum number of iterations
Niter and the probabilistic selection parameter 7. For minimization problems
7-EO proceeds as in the Algorithm 1.

3 Extremal Optimization applied to load balancing

3.1 System and program model

An ezecutive system consists of N computing nodes interconnected by a message
passing network (e.g. a cluster of workstations). Each node, identified by an
integer value in the range [0, N — 1], is a multicore processor.

Distributed application programs are composed of processes and threads in-
side each process. The application model is similar to the model presented in [9]
(Temporal Flow Graph, TFG). The application consists of T indivisible tasks
(these are threads in processes). Each task consists of several computational
instruction blocks, separated by communication with other tasks.

The target problem is defined as follows: assign each task ¢y, k € {1...|T|}
of the program to a computational node n,n € [0, N — 1] in such a way that the
total program execution time is minimized, assuming the program and system
representation as described earlier in this section.

The load balancing approach, proposed in the paper, consists of two main
steps: the detection of the imbalance and its correction. The first step uses
some measurement infrastructure to detect the functional state of the computing
system and executed application. In parallel with the execution of an application,
computing nodes periodically report their loads to the load balancing controller
which evaluates the current system load imbalance value. Depending on this
value the second step (i.e. the imbalance correction) is undertaken or the step

Algorithm 1 General EO algorithm

initialize configuration S at will

Sbest — S

while maximum number of iterations Njter not reached do
evaluate ¢; for each variable s; of the current solution S
rank the variables s; based on their fitness ¢;
choose the rank k according to k=7 so that the variable s; with 7 = 7 (k) is selected
choose S’ € Neigh(S) such that s; must change
accept S « S’ unconditionally
if &(S) < @(Spest) then

Sbest — S

end if

end while

return Shest and P(Shest)




one is repeated. In the second step, we execute the EO-based load balancing algo-
rithm described in next sections, which determines the set of tasks for migration
and the migration target nodes. Then we perform the physical task migrations
following the best solution found by the EO algorithm. Next we proceed to step
one.
The state of the system is expressed in the terms of:

Indpower(n) — computing power of a node n, which is the sum of computing
powers of all cores on the node,

Timelpy; (n) — the percentage of the CPU power available for computing threads
on the node n, periodically estimated by observation agents on computing nodes.
The state metrics are used to detect and correct a load imbalance between nodes.

3.2 Detection of load imbalance

Computing nodes composing the parallel system can be heterogeneous, there-
fore to detect the current load imbalance in the system, we will base it on the
percentage of the CPU power available T z'meg"pU (n) for computing threads on
the node n.

A current load imbalance LI is defined as the difference of the CPU avail-
ability between the most heavily and the least heavily loaded computing nodes
composing the cluster, which can be determined as:

LI = glea]%((Timeé)PU(n)) - Trlréijr\}(Timeé)PU(n)) >«
where: N — the set of all computing nodes. The current load imbalance requires
a load balancing correction if LI is at least so big as a positive constant c. The
value of the « is set using a statistical or/and experimental approach. Following
our previous research [2] on load balancing algorithms for Java-based distributed
environment, we can restrict the value to the interval [0.25...0.75].

Then, according to the load of each node, the set of computing nodes is
divided into three categories, based on the computed power availability indexes:
overloaded, normally loaded and underloaded. To build categories, we use the
K-Means algorithm [10] with K = 3. The three centers that we choose are the
minimum, average and maximum availability indexes, where the average index
is simply the average of indexes measured during the last series of measures over
the whole cluster.

3.3 Load balancing procedure

Now, we are able to perform the second step of our approach — migration of
application’s task to balance the load of the system.

The state of the application is characterized by two application-specific
metrics, which should be provided by an application programmer:

1. COM(ts,tq) is the communication metrics between tasks t, and t4,
2. WP(t) is the load weight metrics of a task t.



A mapping solution S is represented by a vector p = (p1,..., ) of
|T| integers ranging in the interval [0, N — 1], where the value p; = j means
that the solution S under consideration maps the i—th task t; of the applica-
tion onto computing node j. The number of processor cores is not represented
inside the solution encoding, however, it is implicitly taken into account (via
the Indpower(n) function) when estimating the global and local fitness functions
while solving the scheduling problem.

The global fitness function @(S) is defined as follows.

&(S) = attrExtTotal(S) x Ay + migration(S) * Ay +imbalance(S) * [1 — (A1 + Az)]

where 1 > A1 >0,1> Ay >0 and A + A < 1 hold.

The function attrExtTotal(S) represents the total external communication
between tasks for given mapping S. By ”external” we mean the communica-
tion between tasks placed on different nodes (i.e. which have to be transmitted
actually through communication links between computing nodes). The value of
this function is normalized in the range [0, 1], i.e. it is a quotient of an absolute
value of the total external communication volume and the total communica-
tion volume of all communications (when all tasks are placed on the same node
attrEztTotal(S) = 0, when tasks are placed in the way that all communication
became external attrExtTotal(S) = 1):

_ total Ext(S)
- COM

where: COM = >__ ;7 COM(s,d) and total Ext(S) = >, jer.u. 2, COM(s,d).

The function migration(S) is a migration costs metrics. The value of this
function is normalized in the range [0,1] by dividing by the total number of
tasks (i.e. when all tasks have to be migrated migration(S) = 1, otherwise 0 <
migration(S) < 1).

attrExtTotal(S)

{t €T :pf # p*}
|7

migration(S) =

where: S is the currently considered solution and S is the previous solution (or
the initial solution at the start of the algorithm).

The function imbalance(S) represents the load imbalance metrics in the so-
lution S. It is equal to 1 when in S there exists at least one unloaded (empty)
computing node, otherwise it is equal to the normalized average absolute load
deviation in S.

1 exists at least one unloaded node

imbalance(S) = { D*(S)/2 * N x WP otherwise

where: D*(S) =3, cjo.n—1] INWP(S,n)/Ind power(n) — WP|,

NWP(S,n) = ZteT:m:n WP(t), WP = > er WP(t)/ Zne[O,Nfl] Ind power(n).
In the applied EO the local fitness function of a task ¢(t) is designed in
such a way that it forces moving tasks away from overloaded nodes, at the



same time preserving low external (inter-node) communication. The  parameter
(0 < v < 1) allows tuning the weight of load metrics.

o(t) = v * load(pt) + (1 — 7) * rank(t)

The function load(n) indicates whether the node n, which executes ¢ is over-
loaded (i.e. it indicates how much its load exceeds the average load of all nodes):

load™ (n) NWP(S,n)
max,,cpo,N—1] load™ (m)’ Ind power (1)

load(n) = load™(n) = max( — WP, 0).

The rank(t) function governs the selection of best candidates for migration.
The migrated ones are those which have lower communication with their current
node and which have the average load (in order not to change load balance too
much nor too little):

rank(t) =1 — (B * attr(t) + (1 — B) = ldev(t))

where: (3 is a real number between 0 and 1 — a parameter indicating the impor-
tance of the weight of attraction metrics. The comparison formulae are:
(1) the attraction of the task ¢ to the actual computing node:

attr*(t)
max,er, ) (attr* (o))
Wher?: attr™(t) = X oep+ 1) (COM(Z, 0) + COM(o,t)) — the amount of commu-
nication between task ¢ and other tasks on the same node,
L(t) ={s €T : p = pus} — the set of threads, placed on the same node as the
thread ¢ (including t),
L*(t) ={se€T,s #t:u = ps} — the set of threads, placed on the same node
as a thread ¢ (excluding ).
The formula above allows computing the attraction of a task to the local node
in order to compare it with the attractions of other tasks on this node.
(2) the load deviation compared to the average quantity of work:

Idev™(t)
maXoeL(t) (ldev™(0))

where: ldev™(t) = [WP(t) — meanwp(t)], meanwp (t) = 3 cr) WP(0)/|L(2)]-

attr(t) =

ldev(t) =

3.4 Deterministic approach for load balancing

For comparison purposes, we have implemented also a fully deterministic load
balancing algorithm, based on similar migration criteria as shown in the previous
section (see [3] for the description). Similarly to the EO approach, the load
balancing triggering is controlled by the imbalance metrics LI. The deterministic
algorithm iterates over all overloaded nodes and migrates a single task from each
such node to an underloaded one. The task for migration inside an underloaded
node is selected according to the value of the rank(t) function. The target of
migration is the node that minimizes the weighted sum of attrEztTotal(S) and

Timelpy(n).



4 Experimental assessment of load balancing algorithms

We will present now an experimental assessment of the presented load balancing
algorithm. The experimental results have been obtained by simulated execution
of application programs in a distributed system. The assumed simulated model
of execution corresponds to parallelization based on message-passing, using the
MPI library for communication. The applied simulator was built following the
DEVS discrete event system approach [11].

Applications were run in a cluster of multi-core processors, each of which had
its own main memory and a network interface. Communication contention was
modeled at the level of the network interface of each computing node.

During experiments we used a set of 10 synthetic exemplary programs, mod-
eled as TFG (see section 3.1). These programs were randomly generated, but
their general structure resembled typical MPI-based parallel applications which
correspond to numerical analysis or physical phenomena simulation. Each ap-
plication program consisted of a set of program modules, Fig 1. A module was
composed of parallel tasks (threads). Tasks of the same module communicated,
at the boundaries between modules, there was a global exchange of data.

The number of tasks in an application varies from 16 to 80. The communica-
tion/computation ratio (the quotient of the communication time to the execution
time in our experimental environment) for applications is in the range 0.05...0.15.
Three applications have regular tasks’ execution times. The difference between
regular and irregular applications is that the execution time of tasks in some (or
all) modules of the irregular applications depends on the processed data. From
the external view, the irregular applications exhibit the behavior in which the ex-
ecution time of tasks and the communication scheme seem unpredictable. Thus,
in irregular applications, a load imbalance will occur in computing nodes in a
natural way. In regular ones a load imbalance can appear due to the placement
of multiple tasks on the same processor.

During experiments, we have used the following parameters: o = 0.5, =
0.5,y =0.5,41 = 0.25, Ay = 0.25, 7 = 1.5. The number of iterations of the EO
algorithm was set to 500. We simulated execution of applications in systems with

Fig. 1. The general structure of exemplary applications.



algorithm 2 3 4 8 average
irregular|18.66%)|33.42%|37.32%41.91%|35.08%
regular (21.95%|31.85%|46.85%|34.21%|34.71%
irregular|18.27%)|28.17%|33.97%|43.82%|33.80%
regular (22.95%]|29.54%|41.62%35.02%|33.39%

EO — extremal optimization

DT — deterministic

Fig. 2. Speed-up improvement for irregular and regular applications due to load bal-
ancing for different number of nodes in the system.

2, 3, 4 and 8 identical computing nodes. The results are the averages of 5 runs
of each application, each run for 4 different methods of initial task placements
(random, round-robin, METIS, packed) i.e. 20 runs for each parameter set.

The speed-up improvement resulting from load balancing performed by the
EO-based algorithm and the deterministic approach (DT) is shown in Fig. 2.
The general speed-up improvement over the execution without load balancing is
bigger for EO-based algorithm. As we’ll show later in this section, it is possible
to obtain even better speedup by EO through proper parameter tuning.

In Fig. 3(a) the speed-up of irregular and regular applications for different
number of computing nodes is shown. Our exemplary regular applications give
smaller speed-up than irregular ones (with or without load balancing).

Since migration costs can be very different (the single migration can be as
short as a simple task activation message, but also it can involve a transfer of
the processed data, which is usually very costly), we decided to measure also
the imposed load balancing costs as the number of tasks migrations. As shown
in Fig. 3(b), the average cost imposed by EO algorithm is generally lower than
the cost introduced by the deterministic approach.

Speedup Cost of dynamic load balancing
6,00 70
'
60 P
5,00
4,00 — . 50 ///
3.00 A__‘,,» - 40 «"_,,—» r//
’ /
A%l - 30 —]
2,00 f=—u == —
£ 20 —
4 A — S
1,00 10;7/" ‘
0,00 0 ! |
2 3 4 8 2 3 4 8

nodes
—— (irreg) — B— (irreg) no Ib.
—&— (reg) (reg) no Ib. - DT - DT (irreg) EO —4EO (irreg)

(a) (b)
Fig. 3. (a) Speedup for different number of nodes with and without load balancing

(b) Cost of the dynamic load balancing as the number of task migrations per single
execution of an application.



The big advantage of the EO approach is the ability to tune its behavior
through the algorithm parameters setting. Thus, we can have bigger speedup at
the higher cost of migration, or lower speedup together with a reduced migrations
number. To do so, we performed the simulations for different values of 7 €
{0.75,1.5,3.0} and a varying Imbalance factor, see table below. The Imbalance
factor is a set of ~, Ay, As values, which regulates the importance of the load
imbalance in local and global evaluation functions of the EO algorithm.

Imbalance factor v |4y |As

U05 (imbalance least important) [0.50(0.25(0.25
U06 0.60]0.18(0.22
Uo7 0.75|0.13(0.17
U09 (imbalance most important)|0.95(0.05|0.05

For the tested applications, better results were obtained when the load im-
balance was the primary optimization factor, namely for U07 and U09, Fig. 4(a).
On the other hand, for U09 the cost of load balancing was very high (the algo-
rithm migrates tasks very often to maintain a perfect load balance). We expect
that for applications with more intense communication (i.e. higher value of com-
munication/computation ratio) better results can be obtained for U05 and UO06.
It will be investigated in further research.

Fig. 4(b) shows that an increasing value of 7 decreases the number of mi-
grations, it reduces also slightly the obtained speedup (note that increasing 7
increases the probability of selection of the worst species for change).

Our experimental results collected so far by simulation confirm that the pre-
sented EO-based load balancing method performs well for different run-time con-
ditions. Other important features of the method are the low migration overhead
as well as the ease of programming and tuning the load balancing algorithm.

Average speedup and cost for different U factor Average speedup and cost for different Tau
70 3,5 70 3,5
60 — 3 60 3
v ¥
50 r2,5 50 2,5
40 r2 3 40 r2
@ 3 I
8 30 rL5 o 8 30 ri,5
20 7 20 1
10— — — — r0,5 10 — — — ro0,5
0-— — — — -0 0— — — r0
uos uoe Uo7z uoo tau=0.75 tau=1.5 tau=3.00
cost (reg) ez cost (irreg) cost (reg) ez cost (irreg)
~¥-speedup (reg) —speedup (irreg) ~¥-speedup (reg) —speedup (irreg)

(a) (b)

Fig. 4. Speedup and cost for different values of EO parameters as a function of: (a)
Imbalance factor (UOx), (b) 7 (tau).

speedup



5 Conclusions

Dynamic load balancing in distributed systems based on application of the Ex-
tremal Optimization approach and global states monitoring has been discussed
in this paper. The load balancing algorithm composed of iterative optimization
phases based on the use of Extremal Optimization which define periodic real
migration of the tasks proved to be an efficient and successful method for load
balancing. The Extremal Optimization is executed in the background of appli-
cation computations, in parallel with the application program.

The proposed algorithm including the Extremal Optimization has been as-
sessed by experiments with simulated load balancing of distributed program
graphs. In particular, the experiments compare the proposed load balancing
method including the Extremal Optimization with an equivalent deterministic
algorithm based on the similar theoretical foundations for load balancing. The
comparison shows that the quality of load balancing with Extremal Optimization
is in most cases better than that of the deterministic algorithm.
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